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1c INTRODUCTION |

The electron thermal conductivity and diffusion coefficient have been
calculated using the neoclassical model of electron transport in a tokamak plasma.
However, anomalous particle and energy transport have been experimentally
observed [1], with these measurements exceeding theoretical estimates by one and
two orders of magnitude, respectively.

The instabilities of an inhomogeneous, magnetised plasma [2] have been
used in an attempt to explain this anomalous transport. Drift wave instabilities
enhance particle and energy transport across the magnetic field through a
correlation between electron density and electric field fluctuations. However, for
this type of instability it has been estimated that particle and energy transport
are of the same order of magnitude [3].

Electromagnetic instabilitities enhance particle and energy transport
through the destruction of magnetic surfaces by the associated stochastic magnetic
field fluctuations. Transport across the magnetic field is increased by the
coupling of radial transport to the more rapid transport along the magnetic field.
Theoretical estimates of transport in the presence of stochastic magnetic field
fluctuations are consistent with Alcator scaling in ohmically heated tokamaks.

In particular, microtearing modes [4-11] with poloidal mode numbers in the
range 10 to 20 have been shown to be unstable in PLT tokamak [4,5]. In these
references model tokamak profiles with equal electron and ion temperatures and
Z = 1 were assumed.

With the view to providing a theoretical basis for the interpretation of
experimental observations of magnetic field fluctuations in ASDEX, the linear
stability of microtearing modes are calculated in this report for ASDEX plasmas.
Tokamak profiles calculated by the BALDUR code for discharges in the O, L, and H

regime are considered.




In section 2, the theory of microtearing modes in a one ion species plasma
is reviewed. In section 3, the theory of microtearing modes in a two ion species
plasma is developed. The calculation of the parallel electron conductivity from
the Fokker-Planck equation is outlined in section 4. The algorithm for the solution
of the coupled second order eigenmode equations is presented in section 5. In
section 6, a comparison of the resulting eigenvalue with those published in the
literature for standard conditions shows that the coding of the algorithm has been
successfully performed. The stability of microtearing modes are calculated for
ASDEX discharges in the O, L and H regimes. The relevance of these calculations
to recent experiments concerned with broadband magnetic fluctuations in tokamaks
is discussed in section 7. The conclusions of this report are summarised in l

section 8, and the references are listed in section 9.




2. MICROTEARING MODES IN A ONE ION SPECIES PLASMA

The tearing instability of a collisional plasma has been recognised [12],
and the presence of Mirnov oscillations in a tokamak have been identified with
this instability. Since a resistive plasma is not frozen to magnetic field lines,
the tearing and reconnection of magnetic field lines is allowed and the plasma
relaxs to a state of lower magnetic energy. It has been shown that tearing modes
in a tokamak with m > 4 are stabilised when the current density profile is
sufficiently peaked [13].

An inhomogeneous plasma, with electron density and temperature gradients,
requires that the effects of electron and ion drifts be considered. It was found
that the tearing mode is destabilised by electron temperature gradients [14]. The
drift-tearing or microtearing mode refers to the high m tearing modes driven
unstable by electron temperature gradients.

The theory of microtearing modes in a one ion species plasma is carried out
in slab geometry, with the plasma embedded in a sheared magnetic field, B, :

B y= Boy (Kbl aslla3125) (2.1)
The magnetic shear length, Lg, in a tokamak is given by :

Ls = R/rs m/n q'(r)/q(r) (2.2)
where R is the major radius of the torus, rg is the radial position of the mode
rational surface, m and n are the poloidal and toroidal mode numbers and q(r) is
the safety factor. In ASDEX R = 1.67 m and a = 0.40 m. The theoretical model may
still be applied to tokamaks by setting kg = m/r and k; = n/R. In the vicinity of
the mode rational surface :

ky = kB/IBol = ky/Ls x + k3 (2.3)

= ky/Ls X
The narrow width of the tearing layer in comparison to the minor radius of the

tokamak implies that this simple transformation is justified. However, the




coupling of modes with different m has been neglected [11] and k, = O has been

chosen. Both of these assumptions are not well justified in toroidal geometry [S].

In a one ion species plasma the plasma beta, B, and the electron beta, B,
are defined by :
Ne ( Te + Ti )

B = (2.4)
Bo2/(241,)

Ne Te
Bo2/(2}10)
where n, is the electron density
To is the electron temperature in energy units
T; is the lon temperature in energy units
and By is the magnitude of the steady magnetic field.
The MKS system of units is adopted in this report.
When B << 1, the coupling to compressional waves may be neglected and

only magnetic field perturbations perpendicular to the magnetic field need be

considered. The electric and magnetic field perturbations may then be expressed in

terms of the parallel vector potential, A, and the scalar potential, ¢ :

b

"

V XAy

I

E=--VQ - 8A /5t (25
Assuming perturbations of the form :
Ap= Ay(x) exp { (-0t + kyy + kj2) }

and 9= @(x) exp { (-0t + kyy + k) | (2.8)

so that Ey=1 (WA, - k)

then from the component of Ampere's law parallel to the magnetic field [5,11] :
- Mo Iy

by | Ho 0']9( (l)A” - k"SD) (27)

n

((82/8x2 - ky2 ) Ay

1



The contribution to the perturbed current by the ions may be neglected for the
modes being considered. The electron parallel conductivity, oy.. willr be considered
in further detail in a later section. Away from the mode rational surface, the
perturbed current, j, rapidly approaches zero [11]. In slab geometry, A, decays as
exp ( -kyx ). In cylindrical geometry, A, decays as r-m.

Equating the charge density perturbations arising from perturbations in the
electron and ion density ( the quasi-neutrality condition ), gives the relationship
governing the fluctuations in @. The perturbed electron charge density, Q. is given

bg [10] :

Qe = ne1 e = + (P (28)
® T ordw

where w,q = kyTe/(eBLp) and Ly = ng/(8ng/8x).
The ion density perturbation, nj;, in Fourier space is found by considering
the collisionless Vlasov equation [8,11] and is given by :
- (Ze) ny
Nj1(k) = ———— (1 - (® + 0, )/ Fylk) ) (k) (2.9)

W 2TT Ti

1/4/(2m) J dk @(k) elkx

=
-
@
b |
1]
=)
—
>
~—
"

Folk) = I4(h) exp(-h)
h :(k2 + kuz)p12/2

W, = kyTi/(ZeBLy)

pi2 = (vi/w¢i)2 = 2T{M;/(eBZ)?2

The approximation that kp; << 1 is then made. It has been shown that
this approximation is not justified in all cases [8]. However, a comparison of
results shows that the calculated stability of the mode is only slightly

overestimated when using this approximation. The form of the problem is a pair

of coupled second order differential equations when this approximation is used,




rather than a second order differential equation and an integral equation. The
algorithm for the solution of the coupled pair of second order equations is more
straightforward.

Retaining first order terms in the Taylor expansion of F,(k) leads to the
following expression :

Folk) = ( Ig(b) - k2pi2/2 (I4(b) - 11(b)) ) exp(-b) (2.10)
with b = ky2p;2/2 and I, Iy are the modified Bessel functions [15]. Noting that
Io(b) = I(b) and letting Ty(b) = I4(b) exp(-b) then :

Fo(k) = To(b) - k2p;i2/2 I, '(b)l (2.11)
The perturbed ion charge density, Q;, may be found by Fourier transforming :

Qi = (Ze) nj;(x) (2:12)

-(Ze)2n; ;
[1 - Tob)w+w,i)/w - pi2/ 2Ty (D) (w+w,i)/©w §2/5x2] P(x)

Ti
Assuming T = Ty and Z = 1, so that nj = ng, W,j = W, and
nie2/ Ty = (c2/ v A2)(2/p;2), where vao2 = B2/(pgM;n;). and letting p,2 = p;2/2 then :
Qj = - go(c2/ v p2)/ (wp,2)
X (@ - Tob) (W+w,i) - p,2ITy" (D)l (wew,;) 82/8x2) ¢
Q= - ikioye ( @A, - kP /@ + eo(c2/ v p2)/p,2 (w,i/w) @ (2.13)
Applying the quasi-neutrality condition ( Qj = Qg ) yields :
c2/ v 72 (0+w,) (1T, ()] 82/8%x2 - (1 - To(b))/p,2 ) @
= —ikyope ( WA, - k@ e, (2.14)
which is of the same form as equation 3 of reference 5, with the difference due to

different definitions of pi. Introducing the following substitutions :

4> = SO/VA
W= 0/,
C = ijlg We Pi? Ope (2.15)

K= KyValW,e = 2.(Ly/Lg) (2/78) X
X = x/p,



enables equations ( 2.3 ) and ( 2.4 ) to be expressed in the form :

(-CKW) Ay +(CK24+2(1 -ToXW+1))9

§2¢/8X2 = , (2.16)
(W 1) Il
In this form the coupled second order differential equation may be solved
numerically by the invariant imbedding method [16].
The boundary conditions to be satisfied at the origin are :
A,(0) = $(0) = O for the microtearing mode
A0) = $'(0) = 0 for the drift wave mode (2.17)

The solution with even parity in A, and odd parity in 43 is the microtearing
mode. For this mode the coupled second order differential equations are invariant
under the transformation :

X =-X
$(X) — -$(-X)
A (X)) = A (-X) (2.18)
since the matrix coefficients contain a term in K, and this term has odd parity.
The boundary conditions at X = oo are given by :
¢(w0) = 0
Afe)= 0 (2.19)
since a spatially localised mode is under consideration and the radial component

of the perturbed magnetic field at the conducting wall must vanish.
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3. MICROTEARING MODES IN A TWO ION SPECIES PLASMA

Assuming that a plasma contains a single ion species with T, = T; and
Z = 1 is not usually justified in a tokamak. In most discharges Zgr # 1 and
Ti > T in discharges with neutral beam injection. The theory of the previous
section may be extended to exclude the limiting assumptions. This is achieved by
representing the different impurity ion species populating the tokamak plasma by a
sole species of impurity ion.

The densities of the ionised filling gas, nj;, and the impurity ions, njp.

with atomic charges Z, and Zj respectively, are then related to Zg¢r and ng by

Ne = Z3 Nia + Zp Nip
Ne Zeoff = Nia Za2 + Nip Zp2 (3.1)
Substituting nj; = f5 ng and nj, = fy Ne in these equations allows the two
constants f, and f,, to be determined in terms of Z,, Z, and Zgyy.
From equation ( 2.12 ), the total perturbed charge density, Qy, is the sum of
the perturbation in charge density of each ion species :
Q = (25002047 Ti1 {1-Tolb@s+w,5)/0 - p12/21ry (b))l (W+w,,)/w §2/8x2 } @
(Zpe)2nip/ Tip 11-Tolbo)@rw,p)/ 0 - po2/ 21T, (b))l (wew,p)/ 0 §2/8x2 } @
where by = ky2p12/2 and by = ky2py2/2. (3.2)
Assuming Ti = Tj; = Tjp and letting © = Tj/ T, then from equations ( 2.8 )
and ( 2.9) :
Wigs. = Kol Z,5) s

Wy = (T/2p) Wee (3.3)

p22/2 = (Mz/M])(Za/Zb)z ,012: Lp|2/2 =L p*2
where M,/ M is the ratio of the masses of the two ion species. Noting that :
222 Niz02/ Ti = g (c2/V pq2) /p,2 (3.4)

and letting x = (fy/1,) (25/Z,)2 allows Q7 to be written in the following form :
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Q1 = g (€2/vp12) / (p2w) (3.5)

X { (@ - To(b1Nw+Tw,ae/ Z,) - pi2 Ty (by)] (0+Tw,.e/ Z,) 82/8X2)

+ k(@ - Tobo)WsTw,e/ Zp) - L p,2 1Ty (b)) (T W,/ Zp) 82/8%2) }

Since nge2/ Ty = T (ng/nj,) (nj,e2/T;) then from equation ( 2.8 ) Qo is given by :
Qe = KyoyeEy/w + g ( T/(Z5213) ) (c2/vp12) (1/p,2) (W, /0 ) P (3.6)
Applying the quasi-neutrality condition and equation ( 2.15 ) with X = x/p; and
4) = Q/vpq then :

{ 1Ty (b (Wez/Zg) + x (L ITy(bo)l (Wz/Zp) ) } 82¢/8X2 (3.7)
=20 T/(1,2,2) + W - To(b)(W+2/2Z,) + k(W - To(bo)(Ws2/Zp)) } $—CK( WA, -K$ )

The equation above and the Ampere’'s Law of equation ( 2.16 ) may also

be solved by the invariant imbedding method. It will be assumed that Z; = 1

( hydrogen ) and Z, = 8 ( oxygen ). Therefore Mo/ M = 16 and M;/mg = 1836.
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4. PARALLEL ELECTRON CONDUCTIVITY

The derivation of the parallel electron conductivity, oo . is outlined in
this section [5,11]. The collision operator, Csj of the Fokker-Planck equation takes
the following form when electron-ion collisions are considered [17] :

Cei = U(V)/2 8/8v . (V2] -vv).8/sy (4.1)

3J/T/4 (Vo/ V)3 /g

1]

where v(v)

3.86 x 10-12 nilm-3] Z;2 In A (vg/ V)3 / Tglev13/2 (4.2)

zei = the electron-ion collision time of Braginskii [18]

and In A = the Coulomb logarithm

31.3 - 0.5 In ( nglm-31) + 1.5 In ( TleVvl ) (4.3)
The Fokker-Planck equation for the electrons is :

(8/6t + v.8/6X + F/mg.8/8v ) fg = Cgj fo (4.4)
where f, is the electron velocity distribution function and F - -e (E + v X B ).
A first order perturbation, fq, results from the perturbations in the electric and
magnetic fields. Letting :

fe = Teo + Tei

B=By+b (4.5)
and retaining first order terms yields :

(8/8t + v.8/8% - Cqi ) Toq = (e/mg) (E + v X b ).8fgo/8V + Wee 871/ 8t (4.6)
Cylindrical co-ordinates in velocity space are used :
vV = (v, o vy) (4.7)
The expression for the last term in equation ( 4.6 ) arises since Coulomb
collisions result in pitch-angle scattering which produces perturbations in v, and
«only. In addition, the o dependence of gy is weak [11]. This term may be
neglected when averaged over «, since it is small when compared to the other

term on the right hand side of equation ( 4.6 ).
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Assuming the perturbations of f, are of the form :
fer = felvy) exp ( -lwt + ikyy + ikyz ) (4.8)
then equation ( 4.6 ) is simplified to :
{1 (0 - kyvy) + v(v)/2 [ 8/8v, (v2-v 2) 8/8v, 11} Mg (4.9)
= (e/mg) (E + v x b ).8fgq/8V
The electron energy, and hence the quantity v2, remains approximately constant
during the pitch angle scattering of the electrons from the ions. By taking
£ - v”/v the above equation reduces to :
{ i (@ -kyvy) « vv)/2 [ 8/8E (1-£2) 8/8E 11} fg (4.10)
= (e/mg) (E + V X b ).81gg/8V

In the presence of density and temperature gradients then [11] :

feo= M ( 1+ PUZ/Tg s+ PU/ Tg s PUT/Te (H-3To/2)/Tg2) (4.11)
Me 3/2
where fp—=nglX) |- ———— exp ( -H/Tg(x) )
20T alh)
Py = mgVy P, - MgV - €A, H = mgvd/2
U,T = Te/(eBLy) Uy" = Te/(eBLy) Uy = B/(Jgheels) (4.12)

Lt = To/( 8To/8x) L, = ng/(8ng/8x)
Noting that :
(e/mg) 8/8v =e (v 8§/8H + 8/8P )

(E+vxb)y=-tky (@ - vAy) (4.13)
and recognising that the term in 8fg /8P, may be neglected in the vicinity of the
tearing layer [5,11] allows equation ( 4.10 ) to be further simplified :

{i(w -kyv,) + v(v)/2 [ 8/8F (1-£2) 8/8E 1} fg
= eVEy 8Teo/8H — ieky( 9 VA, ) 8foo/ 8Py (4.14)
The expansion of fg; in a Legendre series :
fe1 = Z by Pr(€) (4.15)
where the Legendre polynomials, Py(£), satisfy [19] :
/68 (1-£2)(8/8E P(E)) = -n (n-1) PH(E) (4.16)
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allows recurrence relations for the by, to be obtained [20]. From :

an expression for oy may then be found [5] :

-8i 2 (- W,a(Temgls? - 3/2))
e = —— Wpe? &g | ds 54 exp(-s?) (4.18)
3/ o iw(iow - v(s)) (T+ot)) + k2ve2s2/3

where s = v/vg and Mg = Ly/L,. The term, «;, is given by a continuous fraction :

(k"V)2 (n+1)2 (]+0(n+1)‘]
O(n = (4]9)
(2n+«1)(2n+3)(iw-(n+1)(n+2)v/2) (iw-n(n+1)v/2)

Assuming a single ion species plasma, Z = 1 and Ty = T; then the

expressions for C and of, may be written in the following form :

8 wpe?pi? I‘” (W - (T+mgels2 - 3/2))
C - il

oy ds s4 exp(-s2) (4.20)
3/ c2 iW (iW - v,/53) (1+aty) + U252/3
0 1

(US)2 (n+1)2 (]+O€n*‘|)’1
Blis B (4.21)
(2n+1)(2n+3)(iW-(n+1)(n+2)v,/(253)) (iw-n(n+1)v,/(2s3))

where U = k2ve2/ w42 = 4 (Mj/mg) (Ly/L)2 X2, The value of v, is found from
equation ( 4.2 ) and the definition of w,g in equation ( 2.8 ). The term wpe2pi2/c2
may be simplified to (8/2)(M;/mg). The solution of the coupled second order
differential equations then require that B, Lp/Ls, Me. kypj. amd Mj/mg be specified.

In a plasma containing two ion species, the collision operator on the right
hand side of equation ( 4.4 ) must be summed over the two species of ions. The
value v, may then be found from equation ( 4.2 ) by replacing ni Zj2 with ng Zgs-
The expression for C must be altered as :

C‘)pez p12 M NeTi M T fe

= z — —— (4.22)
c? Z222mg  Bg2/(2py) mg 2,2
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The expression for K must also be altered :
K = kVa1/@ee = 2 (Ly/Lg) ( T/(T5B0) )17/2 X (4.23)
When Tg = Tj and Zgr = 1, then 8 = 28,, T = 1 and 5 = 1. The equations above

are then consistent with equation ( 2.15 ).
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5. SOLUTION OF DIFFERENTIAL EQUATIONS

The coupled second order differential equations are solved by the invariant
imbedding method [16]. Details of the algorithm necessary for the coding of this
problem are outlined in this section. A comprehensive description of the
algorithm may be found in Ref. 16.

Consider the coupled second order differential equation in the form :

{Au"J £ (an a12 ) Ay

¢ az1 322 ) (9 )

= A ol (5.1)

L ¢

The two linearly independent solutions of these equations may be represented by :
A A
and (5.2)
¢ $2
A matrix R is introduced with :
A Ar M1 M2 A Az
N = = , , (5.3)
$1 4’2 &3 BRE ¢ 2

= R M

, (A Ap
and M:{ " ”2]= AN (5.4)

$17 ¢

The two matrix equations above may be combined :

M=R'"M:+:RARM (5.5)

Assuming M to be non-singular yields a set of 4 first order differential equations
in the complex components of R :

R=RAR (5.6)
As the matrix A is singular at the origin, the components of the matrix R grow

in the vicinity of the origin. By introducing a matrix S which satisfies :
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{A,,]' A J [511 S12 } {A,” A J
K = - ot A (5.7)
‘i’t ‘1’2 521 S22 ‘1’1 ‘1’2

=5 L

a set of 4 first order differential equations in the complex components of S when

the matrix equation above is combined with equation ( 5.1 ) :

. 1 0 0 0 0 R ) 1 0
St 58 228 + S + S (5.8)
0 822 321 0 0 0 0 822

The initial conditions Aj(e) = ti>(oo) = 0 are used at some finite value of X
( typically X = 30 ). This requires that the initial values of the components of R
are : |

M1 =l2="ro; =Top =0 (5.9)
The first order differential equations are then solved over a finite extent in X
until | rqq 1> 1 ( typically X = 25 ). At this point the relationship between the
components of R and S are used to provide the initial values of the components of
S :

s11 = 1/rq2 S12 = -M2/Tqg

n
1]

S21 = M21/T22 Sp2 = T2 - T21T12/T 17 (5.10)
The first order differential equations in the components of S are then solved over
the remaining extent in X. The solution of the differential equations are halted at
X = £ = 10-5 as there exists a singularity at the origin.

Satisfying the boundary conditions of equation ( 2.17 ) at the origin is
equivalent to the requirement that det S - 0 at X = £ [16]. The procedure to
determine the eigenvalue, W, satisfying these boundary conditions begins with an
initial guess, Wi,. The system of first order differential equations are solved
using this eigenvalue. Then :

(detS )y=(Sp,. Sia) (5.11)

is evaluated at X = £, where ( x , y ) represents the complex number X + iy.
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Two further eigenvalues are tested :

Wip = Wia + (8W,, 0)

Wic = Wig+ (0, 8W;) (5.12)
and typically §W, = 0.002 and §W; = 0.001 were used. The value of ( det S ), and
( det S ). are then calculated.

The change in the eigenvalue ( AW, AW; ) estimated to yield det S = O is

found from :
AW,
=D (5.13)
AW,

The components of the matrix D are derived from the 3 values of det S. The
estimate of the new eigenvalue is then Wo, = Wiz + ( AW, AW ). The iteration
halts when det S < £ is satisfied ( typically & = 10-4).
The eigenfunctions corresponding to the eigenvalue W are found by
considering the differential equations for the components of Q = M-1 .
Q=QAR (5.14)
The initial values for the components of Q are chosen with the restriction that

the vectors comprising M are linearly independent. Choosing :

1 0
Q= (5.15)
0 1

at X = L and storing the components of Q at regular intervals while "shooting” the
differential equations toward the origin allows M and N to be calculated in the
interval where R is known. The linearly independent vectors, formed from the
components of M, are therefore also known.

The differential equations for the components of P = L-1 are considered in

the interval where S is known :
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1 0 0 O
P i= =P S+ (5.18)
0 doo do 0

The initial values of P are a function of the components of M and N :

A A n n
L= [ n1‘ ”2. J=£ 11 M2 J (5.1)
4’1 ‘1’2 Ma1 Ma2

The components of L and K are therefore the components of the linearly
independent vectors. The solution is in terms of Q and P rather than their
inverses M and L since the matrix components decrease when "shooting” towards
the origin.

On the first shot towards the origin the values of the normalising

coefficients c¢q and c, are determined from the components of K and L at X = § :

c1 = -koo / (kap 112 - koo 197)

g = -ka1 / (k21 ly2 - ko2 197) (5.18)
The eigenfunction is then able to be constructed on the second shot towards the

origin :

p
Ay (ny1mp2 ) (o) , _
= in the region where R is known

\ N21 N22 ) \C2

i1 iz ) (1)
= in the region where S is known (5.19)
\ K21 k22 ) \c2
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6. NUMERICAL RESULTS

Confidence in the programming of the algorithm to determine the eigenvalue
which satisifies the boundary conditions, is founded on a comparison of the
obtained eigenvalue with those published in the literature.

Two references give eigenvalues for the microtearing mode using the set of
parameters Bo = 0.005, ky pj = 0.1, Ly/Ls = 005, Mg =1, =1,2=1and v, = 10.
In Ref. 5 it is found that W = 2.22 + i 0.063, and in Ref. 8 it is found that

2.215 + i 0.062. The eigenvalue obtained by the author is

1]

2.220 + i 0.0623. The eigenfunction corresponding to this eigenvalue is shown

in Fig. 1. On a CRAY XMP-2, approximately 5 seconds of CPU time is required to
test an eigenvalue and evaluate det S.

It is also of interest to compare the eigenvalues obtained when either a
one or two ion species plasma is assumed. Taking Z; = 3, Zgrr = 3 and the other
parameters as above, then for a one ion species plasma an eigenvalue of
W = 2.183 - i 0.234 is obtained. Taking Zgr; = 3 and Z, = 1 then for a two ion
species plasma an eigenvalue W = 2.213 + i .0593 is obtained. It is evident that
the assumption of a single ion species leads to the instability of the mode being
underestimated. For a deuterium plasma ( Zgf = 3. 25 = 1, Mo/ My = 8 and
M{/me = 3672. ) an eigenvalue of W = 2.177 + i .0619 is obtained. The stability
of the microtearing mode is then not very sensitive to this change from hydrogen
to deuterium.

An investigation of the stability of microtearing modes in ASDEX require
that the radial profiles of ng, Te. Tj, and q(r) are available, so that the set of
parameters Bo, Ly/L1, T, kypi. Me., Vs and Zopr may be specified. These radial
profiles were obtained from the BALDUR code [21]. Experimental measurements of

of Ne. Te and T; show that the radial profiles predicted by the BALDUR transport
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code are within experimental error. Away from the separatrix, the radial profiles
and T; may be parameterised in terms of the normalised radius x = r/a :
f(x) = otg + o (1 - x3 )2 (6.1)
The radial profile of q(r) may be parameterised in the form :
T(x) <oty (1194 g xX3 )2 (6.2)
It has been noted that mode stability is strongly dependent on the radial
position of the mode rational surface and the peakedness of the radial profiles [S].
In Fig. 2 the radial profiles of ng, Te, Ti, and q(r) in an ohmic discharge are
displayed. The values of o, olp, ofz and oy, that yield a least squares fit to the
radial profiles in the ohmic, L and H discharges considered, are listed in Tables 1
and 2. In Figs. 3, 4, 5 and 6 the real and imaginary part of the eigenvalue, w, for
modes with m = 5, 8, 10 and 15 in these discharges are plotted. For ohmic
discharges, unstable modes are positioned towards the plasma centre. In contrast,
unstable modes are located closer to the plasma boundary in L and H discharges.
The variation in these calculated eigenvalues with respect to changes in
the starting point of the numerical solution of the differential equations and the
number of terms retained in the continuous fraction was tested. The eigenvalue
was changed by less than 1% when the starting point was altered from X = 30 to
X = 60. The eigenvalue was changed by less than 1% when the number of terms

retained in the continuous fraction was varied from 8 to 12.
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7. DISCUSSION

Recent experimental observations of turbulent magnetic fluctuations on
Doublet III, TFTR, and JET [22-24], indicate that modes with m =~ 10 may be
responsible for the observed broadband spectrum of magnetic fluctuations.

Qualitatively, it would be expected that a given unstable mode is
responsible for a particular frequency component of the turbulent spectrum. This
simplistic view is obscured to some extent by the non-linear coupling of a finite
number of unstable modes [25], which gives rise to a broadband spectrum rather
than a spectrum consisting of a number of delta functions. It is difficult to
quantatively apply linear microtearing mode theory to an experiment. Predictions
of saturated amplitudes and the generation of a broadband spectrum may only be
described by non-linear theories [26,27].

The capacity of the magnetic probe system installed on ASDEX to scan
8 cm in the radial direction in 150 ms, provides the opportunity to obtain an
estimate of the poloidal mode number, m. Away from the mode rational surface, the
amplitude of the mode decays as r-(m+1) ip cylindrical geometry. Because of the
strong radial dependence on m, such measurements are strongly weighted to the
lowest unstable m number present.

Previously, the m number has been inferred from the radial decay of the
magnetic fluctuation amplitude as measured by a number of probes located at
different poloidal angles around the plasma and at different radii from the
plasma [22]. It is not clear that these measurements would be in agreement with
those made by a radially scanned probe, since the effects of toroidal geometry
should influence the former measurements to a greater extent.

A correlation between the predicted unstable mode numbers and
experimental measurements is not straightforward. However, recent experiments

providing estimates of m could be improved by obtaining radial decay




23

measurements as a function of frequency. It could be expected that the higher
frequency components would be dominated by those modes with a larger m number.
The employment of narrow bandpass filters ( or a "frequency comb” [24,28] )
would allow these measurements to be obtained in a single discharge.

The interpretation of an increase or decrease in the amplitude of broadband
magnetic fluctuations during L and H discharges must be interpreted with caution,
since the amplitude observed is strongly dependent on the radial position of the
instability. A comparison of the location of unstable modes in Fig. 4 and Fig. 6
shows that the zone of instability moves toward the plasma edge. An increase in
the amplitude of magnetic fluctuations may either be due to a change in the radial
position of unstable modes or an increase in the saturation level.

The change in the real frequency of the modes upon transition from an O to
an L discharge, as shown in Figs. 3 and 4, suggests that a broader frequency band

of magnetic fluctuations should be observed.
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8. CONCLUSIONS

The linear stability of microtearing modes in typical ASDEX discharges
have been calculated. In the case of Ohmic discharges it was found that unstable
modes are predicted to be located towards the centre of the plasma. For L and H
discharges the zone of instability shifts towards the plasma edge. The
interpretation of an increase or decrease in the amplitude of broadband magnetic
fluctuations during L and H discharges must be interpreted with caution, since the
amplitude observed is strongly dependent on the radial position of the instability.

Although a comparison of theory and experiment is not straightforward, the
capability of the magnetic probe system on ASDEX to determine the poloidal mode
number from measurements of the radial decay in amplitude of the magnetic
fluctuations at one poloidal location means that such measurements could be of
value. An increase in the experimental database concerning broadband magnetic
fluctuations in tokamaks is necessary for deciding whether the destruction of

magnetic surfaces is responsible for anomalous electron transport.
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Fig. 1. The eigenfunction for A, plotted versus radius X = x/p; for B, = 0.005,
kyPi = 0.1, Lp/Ls = 0.05, Mg =1, T = 1, Zggg = 1 and v, = 10.
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Microtearing mode stability in an Ohmic discharge with B - 1.846 T and
Ip = 320 kKA. Letting @ = wr + 1%, then the real part of the eigenvalue, w,
versus normalised radius is plotted in Fig 3(a). The imaginary part of the
eigenvalue, ¥, is plotted versus normalised radius in Fig. 3(b). The mode is
unstable when & > 0.
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Fig. 4. Microtearing mode stability in a L discharge with B - 1.846 T and
Ipb = 320 kA. The real part of the eigenvalue, w,, versus normalised radius
is plotted in Fig 4(a). The imaginary part of the eigenvalue, ¥, is plotted
versus normalised radius in Fig. 4(b).
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Fig. 5. Microtearing mode stability in an Ohmic discharge with B - 2.154 T and
lp = 380 kKA. The real part of the eigenvalue, w,, versus normalised radius
is plotted-in Fig 5(a). The imaginary part of the eigenvalue, ¥, is plotted
versus normalised radius in Fig. 5(b).
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O-MODE

Zefr = 3

ne (1018 m-3)

Te (eV)
Ti (eV)
q(r)
L-MODE

ne ( 1019 m-3)
Te(eV)
Ti (eV)

q(r)

SHOT NO. : 18041

lp = 320 KA

0(] 0(2
3.512 1.649
829.1 2.437
747.3 2.151

0.9095 0.8304

SHOT NO. : 18041

Ip = 320 KA

L oty
3.723 1.206
1405. 1.637
2363. 1.391

0.9127 0.9152
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=

Bo

1:1.01.5ec

= 1.846 T

o3
2.418
2.496
2.638

3.216

t= 1.200 sec

Bo

=1.846 T

o3

1.257

2.468
1.908

2.703

n=3.29 x 1019

o4
1.090
95.0
82.8

2.727

n=-287x 1019

olq
0.954
344.4
287.9

2271

TABLE 1 : Best fit parameters for discharge 18041.




0-MODE

Zeff = 3

ng (21018 m-3:)

Te (V)

Ti (eV)

q(r)
H-MODE
Zetf = 3

Te (V)
Ti (eV)

q(r)

TABLE ¢ :

SHOT NO. : 18310

Ip = 380 kA

oy ol
51278 2.235
920.8 3.047
697.2 2.378

0.8632 0.6206

SHOT NO. : 18310

Ip = 380 kA

e g
5.132 1.106
2097. 1.399
3940 1.173

0.8825 2.2177
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t= 1.097 sec

Bo = 2.154 T

o3
3.078
2.668
3.014

3.660

t - 1.418 sec

By = 2.1545T

o3
1.240
1.973
1.716

2.034

n=3.49 x 1019

o4
1.400
113.9
81.8

5.126

n=-368x 1019

olq
0.949
361.0
1191

0.621

Best fit parameters for discharge 18310.
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