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ABSTRACT

Experiments on the maximum attainable beta values of ASDEX discharges show
that the limits for this parameter lie in the range of theoretical predictions. In a
previous publication we have attempted to theoretically identify the corresponding
instabilities. While no significant correlation to global plasma instabilities could
be found, the two-dimensional MHD equilibria calculated on the basis of ASDEX
experimental parameters turned out to be close to the marginal ideal ballooning
limit. In the present work we extend this investigation to resistive ballooning
modes. Separatrix bounded as well as limiter controlled plasma equilibria are con-
sidered. Because of the small aspect-ratio of ASDEX (A =~ 4) all equilibrium as
well as stability calculations are performed in full toroidal geometry. After the
formulation of a system of four equations describing the resistive evolution of ve-
locity and magnetic fields in the high-m stability limit in coordinate-invariant form
and its Fourier approximation in the neighbourhood of a localization field line, we
solve the resulting quasi-mode equations applying methods of finite-element dis-
cretization. We find complex growth rates o4 with positive real part for values of
the toroidal mode number n below 100. Calculated values of Re{y} < 1073/74 571
(with 74 being the Alfvén time) are small and therefore in agreement with the ex-
perimentally observed non-disruptive behaviour at the fp- limit. Thus we believe
that the characteristic signatures which govern ASDEX high-fpdischarges can be
explained by resistive ballooning modes.




I. Introduction

Studies of ideal ballooning modes of MHD equilibria reconstructed from ASDEX
experimental data have shown that in a plasma configuration with relatively small
aspect-ratio (A ~ 4) toroidal effects play an important role. The large differential
displacement of the magnetic surfaces at high fp and the effects of increased
inverse rotational transform q and of shear in the neighbourhood of the separatrix
require very accurate, genuinely toroidal reference equilibria and a correspondingly
careful treatment of the stability equations. Detailed stability analyses under this
aspect [1] prove ASDEX equilibria to be close to the beta- [2] as well as to the
marginal ideal ballooning stability limit. However, the destabilizing potential of
ideal ballooning modes turns out to be too small to account for the so-called “hard
Bp-saturation” observed at ASDEX. The approach to the fp-limit found there
has been termed “hard saturation” because it is distinguished by the absence of
both sudden disruptions and of gradual deterioration of confinement time over
an extended range of beta. Rather, the confinement time deterioration sets in

abruptly at beta-values only about 20% below the critical one.

In this paper we extend these investigations to resistive ballooning modes. We
present, in coordinate-invariant form, a closed system of four equations describ-
ing the resistive evolution of velocity and magnetic fields in the high-m stability
limit. Subsequently the Fourier approximation of this set, leading to the resis-
tive ballooning equations of reference (3|, is numerically solved. We formulate a
variational approach to this boundary value problem in four dependent variables
with real and imaginary parts of the growth rate as parameters. Stationary val-
ues of the corresponding Lagrangian L are associated with resistive modes. The
resulting growth rates will be represented as functions of the dimensionless radial
parameter r/a defined by r/a = (V/Vg)Y/2, the toroidal mode number n and a
pressure gradient scaling factor dpy/dp. Here V is the volume enclosed by the
magnetic surface under consideration, Vg the total plasma volume, p the equi-
librium pressure and py the marginally-scaled pressure. py is introduced for the
study of pressure effects without calculating new MHD equilibria. For given pres-
sure gradient scale factor dpy/dp the actual values which we obtained for these

functions are uniquely determined by the following computational input:




e Radial profiles for pressure p and toroidal current I as functions of the volume
V. They are calculated using experimental data in TRANSP code interpre-
tation;

¢ Resistivity distributions with respect to the variable V which we calculate
using radial profiles for inverse rotational transform q, electron density ne,

electron temperature Te and Z.g [4].

All equilibrium as well as stability calculations are performed without any restric-

tion on the aspect-ratio. We use MKSA units throughout.

I1. Theory

For sufficiently large values of the poloidal mode number m the resistive MHD
equations predict the following linear evolution of the velocity field ¥ and the

magnetic induction B from their values in the equilibrium state:

¥= Blz (#-BB +Bx (Bx(V&x Vo)) (1)
B= g;( BB + Bx (Bx (VAx V0))). 2)

Here o is the coordinate along the equilibrium magnetic field B with do = ds/B, s
being the field line arc length. ¥B/B is the parallel velocity, ® the electric potential
of the perturbation, A a vector-potential like quantity of dimension AVs / m? and
the pressure perturbation. The evolution of these four field scalars is determined

by the solution of the following closed set of equations:
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B is a local beta value and k the curvature vector:
Ho(Cp/Cv)P

p = tolealce k = (B-V(B/B))/B; (7
A is the Laplacian, cp/cy the ratio of the specific heats, n the resistivity and p the
mass density. Assuming a time-dependence ~ exp{~t} of the perturbed quantities
with complex growth rate -y, and Fourier representing them in the neighbourhood
of a localization field line leads to the stability criterion formulated in [3]:
The plasma is unstable with respect to resistive ballooning modes if there are
square-integrable solutions u and v of

(1+82?)
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on that line with Real{«} > 0. Here kg and ky are the projections of k in geodesic

and normal directions, respectively, and
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U is the poloidal flux of the magnetic field vanishing at R =0 in (R,p,z)-
coordinates with R being the radial distance from — and ¢ the angle around the

axis of symmetry in z-direction. S is the local shear, a secular quantity given by

de’

iveR 2 1)
B-VO/ g

S(¥,0,0q) = B flV;|4(BxV\II) -rot(Bx V¥)

where © is any angle-coordinate along B. @ is an arbitrary start value represent-

ing a free parameter in the stability investigation.

Prior to the solution of the stability equations (8-9) the equilibrium problem

R”dwE + o2 (¥) + 4n2ugR2p (¥) = (12)



]
33'(2) = /Ry (G - () (13

for given profiles p and I as functions of r/a = (V/VB)I/ 2 must be solved for ¥
and J, where J is the poloidal current (the equivalent of ¥ with respect to the
current density field j). (...) denotes the usual flux surface average so that
3
(1/R?) = % ‘;—;‘. (14)
v

Introducing an external conductor system with M currents {Iy }y—; M at positions
{xx = RxVR + 24 Vz}y_1 M the free-boundary solution of (12-13) consistent with

this system can be brought into the form
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where W¥* is the solution of (12-13) satisfying the boundary condition ¥*|dR = 0
with R being a region with rectangular poloidal cross-section enclosing the plasma.
The integrals entering the expression for Green’s function G of the vacuum solution
require integrations along toroidal circular lines C and C’ through x = RVR +zVz
and x' = R'VR + z/Vz, respectively.

The magnetic field B then follows from the representation
1
B= E(V‘I’ x Vi + podVe) (17)

thus, except for the growth rate ~, all quantities entering the coefficients of the
stability equations (8-9) are determined. Furthermore the poloidal Alfvén transit
time

(18)

is given, where p and J are to be taken on the considered magnetic surface; Ry
denotes the radial distance of the magnetic axis from the axis of symmetry. In what
follows we refer to a normalized growth rate -y which is obtained by multiplication

with 74.




The equations (8-9) can be seen to be equivalent to the stationarity conditions of

the quadratic functional

+o0
L(1,%,00) = [ L(1¥,0,00,u(®),1(6))do (19)

—Q00
with respect to u, with the Lagrange density

1
=§(ﬁT-P-ﬁ—uT-Q-u). (20)
u = (u',u? u* u*) comprises real and imaginary parts of u and v in equations
(8-9) (so that u* = (u',u?) and v* = (u%,u*)), and @t = du/d© the components
du*/d®, k = 1,..,4. P and Q are equilibrium determined real symmetric matrices

with nonlinear dependence on the the complex growth rate 4. They have the

structure
Py P2 O 0 Qun Q2 Qi3 O
P2 -Py; O 0 Qiz —Quu 0 —Qi3
P: 3 Q= ] (21)
0 0 P33 P3y Qizs 0 Q33 Qs
0 0 P34y —P33 0 -Qi3 Q34 —Qss3

and the matrix elements can be obtained by comparing the four Euler-Lagrange
equations of (19) with real and imaginary parts of equations (8-9). Explicit ex-
pressions for these dimensionless quantities are given in the Appendix. The homo-
geneous boundary conditions on u of the corresponding two-point boundary value
problem read

lim u(©) =0. (22)

0—+oco

Thus unstable resistive ballooning modes u satisfying (22) are those stationary
points of L with Real{~} > 0.



III. Computational Procedure

On a given magnetic surface ¥ = ¥(R,z) we define along the localization field
line © := /(VR, (R — Ra)VR + zVz) and, according to the up-down symmetry of
the ASDEX plasma configuration, ©y = 0. Let us consider the Lagrangian (19)
on the finite interval [—©y, +©Mm| with sufficiently large ©y > 0 and N + 1 grid
points on [—©p,+©Oy|. Then, representing u by the 4(N + 1) function values
{x*}u=1,4(N41) = {{u*(©;)}k=1,4}j=1,N+1, finite element discretization of (19)

leads to 4(N + 1) homogeneous equations for x
S'x=0, S =8(v) (23)

with the real symmetric system matrix S, depending non-linearly on the com-
plex growth rate 4. S is block tridiagonal, the 4-by-4 blocks consisting of linear
combinations of the matrices P and Q (21), evaluated at certain ©-values accord-
ing to the chosen finite element discretization. The boundary conditions (22) are
taken into account by dropping the first and last four columns and rows of S,

respectively.

In order to find those values of 4 for which S -x = 0 has non-trivial solutions x,

we have applied two methods:

The first one, which we preferentially used for ideal ballooning calculations, is
based on LDLT-decompositions of S [5,6], i.e. nonsingular congruence trans-
formations of S(y) into diagonal matrices D(v), which preserve the number of
positive and negative eigenvalues A. If at least one element in D(+) changes sign
at ¥ = qp, then the eigenvalue of S of smallest absolute value has passed 0, so that
det{D(70)} = det{S(y0)} = 0. One has to keep in mind, however, that the en-
tries in D correspond to four real eigenfunctions. Therefore D has to be analyzed
in an ordered structure according to the four equations and eigenfunctions under

consideration.

The second method uses inverse vector iteration [7,8]. In resistive calculations,
especially in overstable situations, it turns out that this iterative determination
of the eigenvalue of smallest absolute value is more efficient. However, since
min{|)A| : A eigenvalue} is not a smooth function of 7, it is somewhat difficult to
automatize the search for a solution of the system (23) — in other words : initial

~-values close to the final solution are necessary for an iterative search.




For both methods sparse matrix techniques [6,9] as well as buffered I/O opera-
tions have been applied in order to optimize the memory and computational time

requirements with respect to the parameters N and Oy.

For an accumulated mesh in regions, where eigenfunctions vary strongly, i.e. at
{Ox = tkm V k < Op/7}, we typically need about N = 300 — 500 grid-points for
©Mm = 150. In some situations, e.g. marginal cases with small growth rates v <

1073 or small resistivity, the necessary ®y-value can be as large as 500.

IV. Numerical Results

All results which will be discussed in the following are for the high-beta discharge
#17005 at the time when fp has reached its maximum value. Corresponding

TRANSP-code determined pressure (p) and toroidal current (I) profiles are shown
in Fig.1.
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Fig. 1: Pressure and toroidal current profiles for the equilibrium of #17005 at the
time when fp has reached its maximum.

These profiles serve as input for a subsequent two-dimensional equilibrium calcula-
tion and determine — together with the ASDEX conductor system — the magnetic

flux ¥(R,z) according to equation (15).

Fig.2 shows equilibrium contour lines for separatrix-defined and limiter-controlled



z-direction

R-direction R-direction

Fig. 2: ASDEX equilibrium flux surfaces corresponding to the profiles of Fig.1 for a
separatrix bounded plasma (left) and a limiter controlled configuration (right).

plasma configurations, respectively. To produce these results and all data required
for the stability investigations, we have used a special version of the Garching
flow equilibrium code NIVA for the calculation of static, toroidal-current profile
determined plasma equilibria.

Ideal ballooning stability results are shown in Fig.3, where the pressure multipli-

1/2

cation factor gPM /dp is plotted as a function of r/a = (V/Vg)"/“ at the maximum

attained value &”ﬂ::wlt can be seen that the discharge is ideally ballooning stable
on all flux surfaces, i.e. dpm/dp exceeds 1 throughout, with a minimal value of
~ 1.15 in the case of a separatrix-defined equilibrium (short dashed curve). A
comparison with results for the limiter-controlled equilibrium (solid line) proves
the latter to be more ballooning unstable, especially at larger radii where the

stabilizing influence of shear is larger in the separatrix-bounded case.

The destabilizing influence of resistivity is demonstrated in Fig.4 for the partic-
ular magnetic surface at r/a = (V/Vp)1/2 ~ 0.67 with q =~ 2, where dpy/dp is
plotted versus the purely real growth rate . Short dashed curves represent ideal
ballooning results for the first stable regime (left scale) and the second stable
regime (right scale), respectively, and have to be compared with resistive calcu-
lations (solid lines). The n-value of 3.32 x 1078 Vm/A for this surface and the
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Fig. 3: l_’repgurel__gra.dignt multiplication factor dpy/dp versus normalized radius
r/a = (V/Vg)/?due to ideal ballooning modes. The dashed line represents results
for the separatrix defined equilibrium of #17005. For comparison calculations for the

corresponding limiter controlled equilibrium are given by the solid curve.

relatively high ideal ballooning stability of ASDEX (see Fig.3) require an anoma-
lously large toroidal mode number n > 300 to make resistivity effects significantly
reduce dpy/dp. It is interesting to note that for small growth rates a minimum
in dpm/dp versus Re{~} is observed. Due to the stabilizing influence of compress-
ibility, which increases with increasing resistivity, this minimum in dpy/dp moves
to even smaller values of 4, when n is decreased. The stabilizing influence of
compressibility is separately demonstrated by the dot-dashed \c_l_gye__in Fig.S\j rep-
resenting a case with vanishing ratio of the specific heats, cp/c: —»0 In this
region of parameter space, i.e. at small growth rates or small resistivity, we find
the corresponding eigenfunctions to be largely extended in Fourier space. As has
been pointed out in [10], the increasing extension in Fourier space with decreasing
importance of destabilizing terms can be explained by the larger region which is
necessary for the mode to overcome the influence of the stabilizing terms.

The scaling of the growth rate with toroidal mode number n is presented in Fig.5

for two different values dpy/dp = 1.5 (upper curve) and dpym/dp = 1 (lower curve),

10
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Fig. 4: dpy/dp versus real part of the normalized growth rate on the 14th flux surface
(out of 32) at r/a = 0.67 (q = 2) for resistive ballooning modes. The neoclassical
parallel resistivity on this flux surface is 3.32 x 107 m. The solid lines represent
resistive ballooning results with a toroidal mode number n = 360 for the first (left
scale) and the second (right scale) stability regime, respectively. For comparison ideal
results are given by thin short-dashed curves. The thin dot-dashed line corresponds
to a resistive calculation with vanishing compressibility. A result for smaller mass

density (p is reduced by 90%) is given by the dot-dashed curve.

respectively. Since a case which is ideally stable for dpy/dp = 1 requires a certain
threshold in n for positive growth rates to exist, the scaling at small toroidal mode
numbers strongly depends on the chosen dpy/dp value. Even for large toroidal
mode numbers (n > 500), where both curves approach each other, no simple power
scaling law can be found. The central curve curve in Fig.5 again corresponds to
the limit of vanishing compressibility, where the growth rate scales like nl/ Z in the
high temperature region and differences between compressible and incompressible
results decrease with increasing 4 (or increasing n), i.e. when modes are more

localized in Fourier space.

11




Re{~}

\

dpyp/dp=1.5 /

-1
10 Cp/Cv = 5/3 Y

dpyp/dp = 1.0
Cp/Cv = 5/3

1072

/

dppm/dp = 1.0
CP/CV = 10_5
103 |
10 102 108 104 n

Fig. 5: Scaling of Re{y} with toroidal mode number n for Im{<} = 0. Results for two
different pressure multiplication factors dpy/dp = 1 (lower curve) and dpy/dp = 1.5
(upper curve) are shown. The solid line in the middle represents a calculation with

vanishing compressibility and dpym/dp = 1.

From the experimental point of view interesting is the radial dependence of the
growth rate for different values of n. This is shown in Fig.6. As in the case of
ideal ballooning modes (Fig.3), the most unfavourable flux surfaces with respect
to stability are those with r/a-values of about 0.88. Fig.6 illustrates that in the
considered range of growth rates Re{y}€ [0.005;6.1] and resistivity values only
modes with very large n (n > 150) show significant effects. For these n-values we
don’t expect the MHD treatment to be valid, since finite Larmor radius effects
should be non-negligible. With an ion Larmor radius of about 0.01 m at ASDEX,

acceptable values for the toroidal mode number are n < 100.

So far our results are for purely real growth rates. It is now interesting to investi-
gate overstable cases and especially the question whether unstable solutions can be
found for realistic values of the toroidal mode number n (n < 100). It is sufficient

for this analysis to consider Im{~}> 0 only, since all results are invariant under

12
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Fig. 7: Branches in the complex « plane for the 14th (r/a =~ 0.67) and the 7th flux

surface (r/a =~ 0.88). The latter surface corresponds to the ideally most unstable one.
Numbers at the curves label the various toroidal mode numbers.
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sign reversal of Im{~}. Our calculations confirm the results of [10] which states
that below a critical value for n the modes become overstable. Examples for the
14th and the ideal ballooning most unstable 7th flux surface, are shown in Fig.7,
respectively, where branches in the complex «-plane are plotted for dpy/dp = 1.
The numbers specify the corresponding values of n. The bifurcation to oversta-
bility occurs at ne ~ 396 for the 14th surface and at n. =~ 135 for the 7th surface.
Fig.7 demonstrates that for these flux surfaces the n-values can be significantly
decreased to n =~ 140 and n =~ 60, respectively, before the ballooning stability limit,
i.e. Re{7}=0, is reached. The latter result agrees well with our expectations for

reasonable n-values in the context of a hydromagnetic approach.

Our calculations show that the critical n-value strongly depends on the compress-
ibility. So we find that for n < n. the compressibility term in equation (9) domi-
nates, whereas for n > n. the resistivity terms take over. Accordingly we find that
with decreasing cp/cy the critical n decreases. Actually this behaviour corresponds
to the dependence of the minimum in dpy/dp versus Re{~} (see Fig.4) on cp/cv,
which also indicates the position of the bifurcation point to overstability.

Finally we show typical examples for resistive ballooning mode eigenfunctions in
Fourier space. In our notation eigenfunction 1 and 3 are the real parts of the func-
tions u and v, respectively; the labels 2 and 4 correspond to the imaginary parts.
Note that in the case of purely real growth rate real and imaginary components

of u and v are identical.

Results for the overstable solution near the origin in the complex ~-plane for the
7Tth flux surface are presented in Fig.8, (a) and (b). In this region of parameter
space case both components of the complex normalized growth rate are of order
10~%. Correspondingly the eigenfunctions are largely extended in Fourier space
and one has to choose a ©-interval (© € [—400,400]) in order to achieve reasonable

convergence.

We conclude that for resistivity effects to strongly destabilize ideally stable bal-
looning modes one has to consider overstable situations. In these cases we find
ASDEX discharges to be resistive ballooning unstable even at realistic values of
the toroidal mode number n. On the other hand corresponding growth rates are

uite small Re{y}< 102 - in agreement with the experimentally observed non-
q————q’—h A ——
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disruptive behaviour at the fB-limit. We therefore believe that the fp-saturation

without confinement deterioration at ASDEX, can be explained by resistive bal-

looning modes.
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APPENDIX

Using the short notation (Re{z}, Im{z}) = z for a complex quantity z, we obtain for
those elements of the real symmetric matrices P(y) and Q(v) which are different

from zero the following expressions:

— ] hR.
(Pll’ P12) = DlV‘I’Iz (1 +S )B Ve (Al)
2 2
= n“n 7aB 2
D=14+— 1+S A2
Pl )
_ 2p0p'(¥) woJRE
2 2
BopYe podRY 2
= 1+8S A4
(Q11,Q12) = Qus+ r}{|V\Il|2B-V9( +§°) (44)
(P33, P34) = ol B.ve (A5)
? vB?
_¥pn ' (46)

=T i
HoYRZ  po(rap'(¥)Ra)?

1[n2n 75 popy? poJRE 2y HopYE pod 1+ﬁ}
(Qs3, Qa4) u{poqni( 13- Zvgppve t ) r2B? B-VO ﬂ( :
AT

17




REFERENCES

[1] O. Gruber et al., “MHD Stability and Transport of Beam Heated AS-
DEX Discharges in the Vicinity of the Beta Limit”, 11th International
Conference on Plasma Physics and Controlled Nuclear Fusion Research,
Kyoto 1986, paper IAEA-CN-47/A-VI-2.

[2] F. Troyon et al., “MHD-Limits to Plasma Confinement”, Plasma Phys.
and Contr. Fusion 26 (1984) 209.

[3] D. Correa-Restrepo, “Resistive Ballooning Modes in Three-Dimensional
Configurations”, Z.Naturforsch. 37a, 848-858 (1982).

[4] S.P. Hirshman, R.J. Hawryluk, B. Birge,“Neoclassical Conductivity of a
Tokamak Plasma”,Nucl. Fusion 17 (1977), 611.

[5] O. Axelsson, V.A. Barker, ”Finite Element Solution of Boundary Value

Problems”, Theory and Computation, Academic Press 1984.

[6] A Jennings, “A Compact Storage Scheme for the Solution of Symmetric
Simultaneous Equations”, Comput.J.9 (1966) 281-285.

(7] J.R. Bunch, L. Kaufman, “Some Stable Methods for Calculating Inertia
and Solving Symmetric Linear Systems”, Math.Comput. 31 (1977), 163-
177.

[8] H.R. Schwarz, “Methode der finiten Elemente”, 2nd revised edition, B.G.
Teubner Stuttgart 1984.

[9] A. George, J.W. Liu, “Computer Solution of Large Sparse Positive Defi-

nite Systems”, Prentice-Hall Series in Computational Mathematics, 1981.

1 [10] T.C. Hender et. al., “The Effects of Compressibility of the Resistive
q Ballooning Mode”, Phys.Fluids 27, 1984, 1439.

18




	IPP_5_16 Deckblatt
	IPP_5_16 Text.pdf

