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Abstract

The stability of typical INTOR equilibria with respect to localized ideal and resistive
instabilities is investigated. Configurations which are stable to ideal ballooning modes (and
are therefore also Mercier stable) are shown to be unstable with respect to resistive bal-
looning instabilities, and the corresponding growth rates are calculated. A useful relation
is given which allows calculation of the resistive growth rate at the ideal ballooning limit.

This relation is also valid for three-dimensional equilibria.




1. Introduction

The ideal MHD stability propertities and beta limits of tokamak plasma configura-
tions which model INTOR equilibria have previously been investigated by several authors,
e.g. [1 —7] . These calculations describe the behaviour of the plasma with respect to both
external and internal modes and lead to the conclusion that the beta limit is approximately
given by the well-known scaling law (8] 8.(%) = g¢Jnv , JN = woJp / aBo. Here, S,
is the critical beta, po is the permittivity of the vacuum , J, is the total plasma current,
a is the horizontal minor plasma radius, By is the magnetic induction on axis and ¢ is a

constant which takes a value in the range of approx. 3 to 4.

Up to now, most attention has been devoted to the investigation of ideal MHD
modes, and dissipative effects have largely been neglected . Nevertheless, it is known that
the presence of electrical resistivity can deteriorate the stability properties of an otherwise
ideally stable plasma [9 — 11]. In particular, the calculations done near the magnetic axis
for a very simple model of a tokamak with a circular plasma cross-section [12,13] show that
high-n resistive ballooning modes appear in the first region of ideal stability and shift the
stability boundaries toward lower values of beta. In this model, resistive interchanges and
resistive ballooning modes also appear in the second region of ideal stability. This makes it
somewhat uncertain whether advantage can be taken of the good stability propertities at
high beta values in the second ideally stable region. Using a different model, other authors
[14] believe that resistive ballooning modes are of no importance in the second ideally stable
region. However, it should be considered that these conclusions are obtained by employing
the usual method of matching asymptotic solutions of differential equations, and that this
method, in its usual form (which takes into account only lowest-order expressions in a

certain expansion), is in general not applicable in the second region of stability (12].

Here, attention is limited to the first region of stability, in which the properties of a
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typical INTOR plasma with respect to localized resistive modes are studied.

It should be noted that, although the calculations are done with equilibrium param-
eters appropriate to INTOR conﬁigurations, the results are relevant to other tokamaks as
well, the main feature being the reduction of f. as a consequence of resistive ballooning
effects. This had already been established in [12, 13]and was also verified later by other
authors using different numerical methods [19]. The following result has an even wider
range of applications, including three-dimensional configurations: if the equilibrium is at
marginal stability for ideal ballooning modes, it is unstable with respect to resistive bal-
looning modes. The corresponding resistive growth rate is given by a simple expression
already derived in [10,11] and introduced here in Section 3.2. This fact agrees with obser-
vations made in ASDEX discharges, where resistive ballooning instabilities at the ideal g

limit are believed to be responsible for enhanced energy losses [20].

Section 2 describes the geometrical parameters and the two arbitrary surface func-
tions which enter the equilibrium calculations. Section 3 presents the stability calculations,
and Section 4 the conclusions. Finally, in the Appendix, useful expressions are given for

the surface quantities which appear in the stability calculations.



2. Equilibrium

2.1 Description of the geometry

Let R, ¢, z be the usual cylindrical coordinates. The axis of symmetry of the system
is then described by R = 0. In addition to these coordinates, a poloidal coordinate € is
introduced on the planes ¢ = const. and the shape of the plasma cross-section at the

surface is taken as

z = easind (2.1)

and

R/a = ro + r1cos @ + rp cos 26

+ 73 cos 30 + 14 cos 40, (2.2)

with e the ellipticity, a the horizontal minor radius and

Ry, 6 63
ro="7"3%1" (2:3)
52
ry = 1 — —8—, (2.4)
5 &2
=5 T 1o (25)



rg = — (2-6)

and

= — . 257
W= (2.7)

The parameter § describes the triangularity of the boundary and R is the radius of the

geometrical centre, i.e.

Ro = (R(6=7) + R(6=0))/2 . (2.8)

Thus, the frequently used expression for the radius, namely

Ro ;
= e + cos (0 + ésin@) (2.9)

and equation (2.2) can be shown to be identical up to terms ~ 6% . For our purposes, this

guarantees perfectly sufficient accuracy in the identification of equations (2.2) and (2.9).

For the calculations, the aspect ratio Rg/a is taken to be 4 , the elongation e is

1.6 and the triangularity é is 0.3.

2.2 Magnetic field and equilibrium profiles

In the axisymmetric systems considered here , the magnetic field B is given by

1
B =__VéxVx+[Ve, (2.10)
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where x is the poloidal flux and

f=U -1I)/2r , (2.11)

I being the poloidal current inside the particular surface, and Iy the total current flowing

in the 2z-direction through a surface encircled by the magnetic axis.

The two arbitrary surface functions chosen here to describe the equilibrium further

are - in contrast to other INTOR calculations - not the pressure p and the safety factor ¢,

r
but the rotational transform ¢ = 1/¢ and the adiabatic invariant m = P( 4,1rz ﬁ—tj) )

both as a function of the normalized toroidal flux s, withs = ®/®; , ® being the toroidal
magnetic flux, which takes the value ®; at the plasma surface. v is the volume enclosed by

the surface s = const. and I is the ratio of the specific heats, which is taken to be 5/3.

The mass function profile m(s) is given as

— =14 ¢15 + e28% — (4 + 3¢ + 2¢3)s°
mo

+ (3 + 2¢1 + ecg)s* . (2.12)

This form ensures that both p and dp/ds vanish at the plasma surface, as is the case
for proposed INTOR pressure profiles [1]. The choice of the constants ¢; and ¢, allows
some freedom with the form of the mass profile. The other constant , mg , turns out to

be - roughly - the average beta value.

The rotational transform profile is expressed as

t = ap + a1s + azs? + azs® + agst (2.13)
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with the appropiate choice of the coefficients ag — a4 , so as to resemble INTOR profiles

closely.



3. Stability calculations

3.1 Description of the method

For given profiles m(s) , t¢(s) and a given shape of the plasma boundary, the
equilibrium is calculated by using the axisymmetric version of either the VMEC code
[15]or the FIT code (16 |. Mercier stability and ideal ballooning stability are investigated -
on each surface - with the help of the JMCBALV code [17]. We then proceed to compute,
again for each surface, all the average quantities which enter the resistive interchange
criterion [9]and the resistive ballooning instability calculations [10-12]. Expressions for
these quantities, appropriate to axisymmetric systems and to the coordinates that we use,

are given in the Appendix.

The quantity A’ , which is decisive for ballooning stability, is calculated from the asymp-
totic solution of the ideal ballooning mode equation. For simplicity, equilibria with up-
down symmetry are considered here and A’ is determined from the even solution of the
ideal ballooning equation. Calculations done previously for a simple equilibrium [12|showed

that even solutions were more unstable than the corresponding uneven ones.

The resistive ballooning mode criterion is evaluated in the relatively simple form
derived for the case of large G (G is a quantity given in detail in the Appendix), care being
taken not to run into inconsistencies. This means in particular that the growth rates of the
instabilities beeing looked for must be larger than a certain critical minimum value. More
details about this are given elsewhere [10-12]. In this simple form, the resistive ballooning
mode criterion states that there are resistive instabilities with real positive growth rates
if the quantity A’ is positive and exceeds a critical value A, . To calculate A, ,
one must make assumptions concerning the resistivity and also the degree of localization

of the perturbations (which can be described by the mode number n in axisymmetric
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systems). Here, we use the Spitzer resistivity , with atomic number Z = 1. We take
the temperature at the axis to be 15 keV and assume the ion mass to be 2.5 times the
mass of the proton, thus corresponding to an ion mixture of 50% helium and 50% tritium.
The exact relation between the temperature T' and the pressure p is not important for the

calculations. We assume here p ~ T3/2 .

As stated above, the value of A, also depends on the mode number n , for which
different arbitrary values are taken. The maximum mode number is also assumed to be
limited by the magnitude of the ion gyroradius p; and, for each surface, a maximum
allowed mode number is calculated, nmqz = r/gpi , where r is a mean radius and ¢

is, again, the safety factor at the surface under consideration.

The stability of several INTOR equilibria has been calculated, the results for three

different, typical cases being shown here
3.2 Resistive growth rate at marginal ideal stability

If a particular surface of the equilibrium under consideration is marginally stable to
ideal ballooning modes, then the large asymptotic solution of the ideal ballooning mode
equation just vanishes and |A/| — oo . From the dispersion relation derived in [10,11]
for sp < % , which is valid in any geometry, it is easy to see that this corresponds to a

normalized resistive growth rate given by

Q= (1 + sy — H)? (3.1)

where sps (the Mercier exponent) and the quantity H are given explicitly in the

Appendix. Thus, the actual growth rate ~ scales with resistivity to 1/3 , since Q is
defined as
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Q = 7/Q0 ) (3'2)
with Qo given by equation (A.13).

For an equilibrium which is optimized with respect to ideal ballooning modes, i.e. in
which the profiles are such that the ideal ballooning mode equations are marginal at each
surface, equation (3.1) is valid over the whole plasma cross-section and allows very easy

computation of the resistive growth rate. If only one surface is marginal, equation (3.1) is

valid on that surface.

As an example, let us consider an equilibrium calculated with the following profile

coeflicients:

ap = 0909, ae¢; = —-0.630, az = 0.270, a3 = 0.131, a4 = —0.357, (3.3)

c; = —0.305, ¢ = —2.39. (3.4)

The other parameters which describe the equilibrium are given in Fig. 1. Taking different
values of mg , we find that the equilibrium becomes unstable at the surface ¢ = 2 when
mo = 0.029 and (B) = 3.01%, (B) being as defined in equation (A.15). The profiles
which characterize this equilibrium are given in Fig. 2. The shear and the local poloidal
beta are explained at the end of the Appendix. Since the surface under consideration
has spr = 0.06342 and H = 0.0859 , the corresponding normalized growth rate
is @ = 0.9849 . With the parameters given in Fig. 1, the normalization growth rate of
equation (A.13) is Qo = (27n)*/® 0.665-10%s~1 . With the help of equation (3.2) it is

then easy to calculate the corresponding growth rate ~ for different mode numbers n .
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If, for instance, n = 10 ,one gets y~! = 0.951- 10~%s. By contrast, the resistive diffusion

timeis 7 = 1.37- 10%2s and the Alfvén transit time is 74 = 1.106 - 10~ %s.
3.3 Resistive growth rates below the ideal limit

Below the stability limit to ideal ballooning modes, the parameter A’ assumes a
finite, positive value. The normalized resistive growth rate Q is then obtained from a

dispersion relation of the type derived in [10,11], namely

A' = AQ,n,n%,..) (3.5)

where A is a function of Q , of the resistivity 7 , of the mode number n , and also of
other surface-averaged quantities such as spr, H, etc... The actual form of A depends
on the model which is appropriate to the range of @Q-values in which one is interested.
Thus, if the growth rates we are looking for become very small (i.e. if @ << 1), it
is indispensable to take into account the stabilizing effect of the sound wave propagation.
This leads to a particular form of A with -in general- complex solutions for the growth
rate Q . For simplicity - and also because it is an interesting situation - the equilibria
considered here are not too far away from the ideal marginal limit. More precisely, the
growth rates Q of interest are in the approximate range of 0.1 — 1.0. This is substantially
different from other calculations, e. g.those carried out in [18], in which it is assumed that
Q << 1. Thus, Q can be calculated from the relatively simple form of equation (3.5)

which is valid in the case of large G , as already explained above.

The procedure is illustrated by considering an equilibrium calculated with the profiles
given by equations (3.3) and (3.4). This equilibrium is known to be marginally stable at
() = 3.01% , when mo = 0.029 . With all other parameters left unchanged, but

with a lower value of mg , namely mo = 0.026 , an equilibrium is calculated which
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has (8) = 2.70% and which is stable with respect to all localized ideal modes and
with respect to resistive interchanges, since Dr < 0 everywhere, as can be seen in Fig.
3. Also shown in these diagrams are the Mercier exponent sps , the magnetic Reynolds

number S = rg/r4 (with 74 and g given by equations (A.11) and (A.12) respectively)

and the stability parameter A’.

As can be seen in Fig. 3, the equilibrium is unstable with respect to resistive bal-

looning modes (A’ > A,(n)). For instance, for a mode number n = 100, there is a
radial region between s = 0.68 and s = 0.8 which is unstable. Typical growth rates
are ¥ = 2.5-10% s~!. If one takes the maximum mode numbers which are compatible

with the size of the ion gyroradius (n = 150 typically), the radial region of instability

becomes even larger (from s = 0.55 to the surface), the growth rates being in this case

v 24 3.6 -10° 571,

Fig. 4 shows the profiles and the relevant parameters of another equilibrium. The

rotational transform profile is again given by equations (3.3). The mass profile is defined

by

¢y = =01, ¢z = 0.0, (3.6)

The corresponding pressure profile is more peaked near the surface than in the preceding
examples. The calculations are made with mo = 0.0155 and (8) = 2.0% . This
equilibrium is stable to all localized ideal modes and to resistive interchanges. As can

be seen in Fig. 5, this configuration is also unstable with respect to resistive ballooning

modes.
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4, Conclusions
The main results of the calculations are now summarized.

For all the cases considered (which are in the first region of ideal stability) resistive

interchanges do not appear, since Dg < 0 everywhere.

The Mercier exponent sps is less than 0.5 . The condition for the applicability of a

simplified theory of asymptotic matching is thus satisfied in our case.

The results are obtained without the restriction that the normalized growth rate @
be small. This makes it possible to study equilibria which are near ideal marginal stability.
At the marginal ideal ballooning limit, the equilibria are always resistively unstable, with a
normalized growth rate given by Q = |1 + sy — H |2/3 . For INTOR configurations,
the corresponding inverse growth rates are in the range of milliseconds and are thus faster

than resistive processes by a factor of ~10°.

Below the ideal marginal limit, the equilibria are also unstable. The corresponding
resistive ballooning modes have still considerable growth rates (y~! also of the order of

milliseconds) at values of (3) that are 80 - 90% of the critical value.
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APPENDIX

Equilibrium quantities and scale factor needed to
evaluate the resistive ballooning mode criterion

in axisymmetric systems

There are several surface-averaged quantities, namely H, E, F*, Dpg etc., which
enter the resistive ballooning mode criterion and which are defined in detail elsewhere,
e.g. in [10, 11]. Here, appropriate expressions are given to calculate them in axisymmetric

systems and in the coordinates used in this paper.

Let s be the normalized toroidal flux introduced in Section 2 and let 8, and 0; be
appropriately defined poloidal and toroidal coordinates, respectively. If ,/g denotes the
corresponding functional determinant of this coordinates system, then the surface element
dS, of a surface s = const. is given by dS, = ,/g(s,0p)d0,d0;:. Because of the symmetry,

there is no dependence on 8; . The surface average (W) of a quantity W is then given by

[ fwas,

J [ ds,

[ Iw/a(s,0,) db,db,
= [ (s, 0,) do,de, (A.1)

W) =

The quantities H, E and F* can then be expressed as

"= q;'):"‘* wt [<|v13|2> ) (7912—)<|5:|2>] ’ A2

Iy! B2 9 T Y B
_ P L MY e sk 1.0 (4.3)
qrx13 |Vs|2 (BZ) qrxrz
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r = () [ () + ) ] - 00

Here, v is the volume enclosed by the surface s = const. and primes denote derivatives

with respect to s. In particular, because of the definition of v, one has

o = f f Ja(s,0,) do,db; (4.5)
o / f Wdapdat . (4.6)

The quantity Dg, which determines the stability with respect to resistive inter-

changes, is calculated from the relation

Dr = F* + E + H? . (A7)

The Mercier exponent sps , which is crucial for Mercier stability, and which also

plays an important role in describing the asymptotic behaviour of the ballooning mode

equations, is given by

By = == g \/(——H)2 — D (A.8)

The quantity G of Section 3 is given by

_ (B?)
== pI‘—M ’ (A'g)
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with

v - (EE) - G - aal] - oo

The evaluation of the resistive ballooning mode criterion also requires calculation of
the normalizing growth rate Qo and the scale factor yo , which depend on the resistivity

n and on the mode number n . If the Alfvén transit time is defined by

pop \?
TA = Roq((Bz)) ) (All)
and the resistive time by
poa®
TR = 1 3 (A.].Z)

Q3 R ’X! 1 !
= | 2tn a A3
0 09 v! M(B2/|V812) TRTAz ( )
and
2 2 1 ROQX’ ? _1_ (A 14)
Yo M(B?) \ v'ryq @ ’
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Further quantities which need specification are the mean plasma beta (f) , here

defined as
J ] p/gdbpds
J J(B?/2u0)\/gd0,ds

B) =

(A.15)

The local poloidal beta fB4r and the shear S, are defined as in reference [1], namely

!0/
p'v v
= —2po—,/
Bar o 7\ 2Ry

and

(4

2v g
g v

19
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Fig.

Fig.

Fig.

Fig.

Fig.

Figure Captions

Plasma cross-section and equilibrium parameters of the ideally marginally stable

INTOR plasma described in Section 3.2.

Safety factor g, pressure p and pressure gradient dp/ds for the equilibrium of Section

3.2. Also given is the shear versus poloidal beta diagram.

Stability diagram A’ > A.(n) , Mercier exponent sz, resistive interchange param-
eter Dp and magnetic Reynolds number S/S(0), S(0) = 2.08-10° corresponding
to an equilibrium with (8) = 2.70% , calculated with the same parameters as in

Fig. 1, ezcept for mo, which is here mg = 0.026.

Profiles and parameters of the equilibrium defined by equations (3.3) and (3.8), with

mo = 0.0155 and (8) = 2.00% . The plasma cross-section is similar to that in
Fig. 1.

Stability diagram A’ > A.(n) , Mercier exponent sps, resistive interchange pa-
rameter Dp and magnetic Reynolds number S/S(0), S(0) = 2.66-10° for the

equilibrium of Fig. 4.
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