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Alternative Constraints in the Entropy Principle

for Tokamak Profiles Applied to Cylindrical Plasmas

Abstract

The recently proposed variational principle called the “entropy principle” /1/ is now
applied with alternative constraints to cylindrical plasmas. These alternative constraints
are that the pressure balance relation and Ohm’s law with Spitzer conductivity and con-
stant electric field should persist during the variations, replacing the constraint of fixed
relations between the plasma pressure and density profiles used in /1/. This leads to a
one-parameter family of slightly paramagnetic equilibria, the parameter being the internal
plasma . The safety factor ratio is found to be about 2. The corresponding plasmas are
close to isentropic and their profiles agree reasonably well with Coppi’s profile consistence

formula for the temperature profiles /2/. A modification of Coppi’s formula which greatly
improves the agreement is given.




Introduction

In a recent paper /1/ we proposed a variational principle called the “entropy principle”

which aims at yielding relations between the density profile n(Z) and pressure profile p(Z)
We showed by comparison with experimental findings that tokamak plasmas in many cases
have a tendency to relax to states in which these relations hold, being given by

p = n7 e(1-1/n) (1)
with the normalization
p(Zo) = n(Zo) = 1 Ty : plasma center . (2)

Here ~y is the adiabatic coefficient and a > 0 is a constant which remains undetermined.
In deriving these relations we assumed fast relaxation processes such that the entropy

§ = / &z (n(f) In (p(n(iz’)) n(z)-”f) 4 oY By n(i:’)) . (30)

plasma

where sp is the entropy constant, no longer changes when the plasma performs arbitrary
internal motions which are slow enough not to alter the relation p(n) between the pressure

="
.

profile p(Z) and the density profile n(Z)

In /1/ it was found that in the case of plane geometry relation (1) can also obtained in the
following “alternative” way, which replaces the constraints of fixed p(n) by “alternative”
constraints:

The starting point is the entropy expression in the more general form

B o= f &z (n(f) In (p(:z) n(a‘:‘)_") + (v—1) so n(i’)) . (3b)

plasma

which does not contain any relation p(n).

Let Bi(z) be the “toroidal” field and By(z) the “poloidal” field, and let B; >> B, .

The alternative constraints are then given by assuming that Spitzer’s law or some similar
law

g ~ T(z)** (4)

and the pressure balance relation

o(z) + %(Bf(:z) 4 Bg(z)) . (5)

2



also hold during the slow variations. Then relation (1) follows from extremalizing the
entropy (3b) by doing all the variations via § By(z) with 6B, = 0 at the plasma surface.
If, in addition, B¢(z) is varied, « is found to be equal to zero.

This alternative way of extremalizing the entropy is pursued somewhat further in this
paper. We treat a cylindrical plasma with circular cross-section; we do not require By >>
B, ; we assume that Spitzer’s law (11) for the current density parallel to B and the
pressure balance relation (9) also hold during the slow variations of B(r) and B,(r). All
the varaions are subject to the constraints of fixed external magnetic field, fixed toroidal
plasma current and zero pressure at the fixed plasma radius a. The resulting equations
for By(r) and Bp(r) are solved for v = 5/3 and different values of the plasma . It turns

out that the numerically obtained profiles roughly agree with relation (1) and with the
relation

2 r2 _
76) = exp(-2 @ =5 ) ©
proposed by Coppi /2/ in the context of profile consistency. The main feature of our results
is that the profiles for small plasma f correspond approximately to isentropic plasmas, i.e.

T = n?/3. In sec. 3 we present modifications of relations (1) and (6), which almost exactly
describe our results.

2. Derivation of the equations for the magnetic field from the entropy principle

From Ampere’s law
-

7 = curl B (7)
and the equilibrium relation
gradp = J X B (8)
one finds for axisymmetric cylindrical configurations the pressure balance equation

r

p(r) + %(Bﬁ(r)Jng(r)) + fﬁ?ﬂ

!

&' =1+ 3BE, (9)

where r, ¢,z are cylindrical coordinates and By = B,(r = 0) is the “toroidal” field at
r = 0 . The normalization is such that

plr =0) = alr=0) = L (10)

Equation (9) is one of the four relations (9), (14), (24) ans (25) between p(r), T'(r), By(r)
and B(r). A second relation is obtained from Spitzer’s law for the current density parallel
to B:

Ey = ny5 ~ T35, (11)




where E) is the component of the r-independent external toroidal electric field parallel to
B:

- B B.
By = BE— = §——. 12
I B B (12)
Similarly, we have
. . B, _ . B
= o ntt el 13
n=dF twnp (13)
Such a normalization can be used so that egs. (11-13) can now be written as
B 10 B, 0B
T%% = j, + j, =2 = = —(rBy) — =X == 14
T 3 B, r Br(r 2 B, oOr ()

This normalization together with

Tir=0) = jlp=0) = L (15)

Equations (9) and (14) allow us to express 6p and 6T, and hence our whole variational
expression, in terms of § B, and 6By. With v = 5/3 and with A being the Lagrange
parameter for the constraint of fixed total number of particles, the variational principle
can be written as

a a
oL aL
5 "o g — non (92 6 i -
fLr r /dr r (ap p+aT5T) 0, (16)
0 0
with
p {5 2
= £ {2 — 2
L T(gln 3Inp+}\>_ (17)
and a = plasma radius. Equation (9) yields

.
§p = Bo 6Bo— By 6By — B, 6B, — 2/

0

By(r') 6By(r')

!

dr' . (18)

The constraints of fixed external magnetic field, fixed toroidal plasma current and zero
pressure at the fixed plasma radius ¢ mean

6B.(a) = éByg(a) = ép(a) = 0,

which with eq. (18) for r = a gives

By 6By = 2 f dr' (19)
0



and therefore

a

By(r')éBy(r')

op = — B¢ (SB¢— B, 6B, + 2 f - dr' . (20)
Equation (14) yields
2 [1d 6By dB, d (6B,
6T = ———Sﬁ ;E(T 6B¢) et Bz dr e B¢ E( Bz )jl . (21)
We can now evaluate eq. (16) with
§By(f) = 6By 6(f—r) , 6B.(f) = 6B 6(f—r), (22)
where § B} , 6B are arbitrary constants; # can be 7’ or r” . It follows that
5/LT" i == B /drll " % B¢(1‘) 532 +
opl T
0 0
oL
—r (B4 6B+ B, 532)—— +
( ¢ ¢ dp
2 r 0L 1 dB
e e L 2 T
3T oT B, dr ¢
2 df 1 9L i
‘5"5(%%) 6By +
2 d 1 0L 1
= —(rBy —= — | — 6B2. 23
+3dr(r¢\/f3T)Bz 2 )

This expression must be zero for any choice of 6Bg and 6 BY and therefore the following
equations for By(r) and B,(r) must hold:

.
oL 2 oL 2 0L 1 dB d( 2 oL
SImy o~ By | = el BE o B Y g,
8p¢ r2 ¢,/ err,,+3T6 B, dr+dr(3\/TBT) 5 (24)
0
oL, 11 d 2 oL\ _ 95
ap °  r B, dr\| "¢ 3 /ToT (25)




3. Numerical results and comparison with relations (1) and (8)

Equations (24) and (25) have to be solved with the boundary conditions at r = 0 (see

egs.(9), (10), (15)): a5

B, = By = 0, (26)
dr
dByg 1
= ). 2 _ = -, 27
By : dr 2 ( )

There are therefore two constants, By and A, in the problem. However, A is determined

by Bg with the relation

5 2
4+ B
_ 3 0
/\ﬁ‘l*“—jLé—Bza (28)
2 Y0

which follows from eq. (25) at r = 0 and the boundary conditions (10), (15), (26), (27).
On the other hand, Bg is related to the internal plasma 3 defined by

= APEE B )

which is therefore the only free parameter.
Equations (9), (14), (24) and (25) were solved numerically for the following set of values:
Bo= 25 3 ; 5 ; 8,

which is equivalent to
B; = 0.5; 0.22; 0.08; 0.031 .

Figures 1 show the toroidal field B, (solid) and the poloidal field By (dashed) as functions
of r together with the approximations B, (crossed) and By, (rhombuses) given by

Zz ?‘2
B, =~ B,, = By — . 30
© 7 1 0035 (1+0.08r2) (30c)
with
Bi
Zy = 0.1 : 300
2 1+ B; L#08)
and 5
T QSQ i
By ~ Bga = = (1 — : 30
B ¢ 2 ( 1 + (0.063 +0.14 ;) 1'2) (30¢)
L 0.028 + 0.1 8
0. + 0.1 5
%2 = T T osp (30a)
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The approximations (30) hold for §; < 0.22 and r < a. The safety factor ratio

% _ @ DBia) (31a)
0 2Bo By(a)

is related to f3; by
I~ 18 + B (31b)
do '

for 8; < 0.5.

Figures 2 show the corresponding density n (solid) and temperature profiles 7' (dashed)
and, in addition, the temperature profiles (crossed)

P = n2/3 e(1-1/n) ; (320;)

which follow from the numerically obtained density n and relation (1), with

0.2 f;

1T 2582 ° Bi < 0.5, (320)

chosen such as to get optimum agreement between T' and Tg. The agreement between
T and Tg is excellent for small §; owing to the smallness of a. With increasing 3; dis-
agreement caused by a/n in the exponent of eq. (32a) arises in the plasma edge region
and becomes serious there for, say, § > 0.2. In the interior plasma region the agree-
ment remains fair. According to eq. (32b), all & values occurring in this model are small
in relation to 1 and describe almost isentropic plasmas, which are often realized in large
tokamaks with ohmic heating.

Figures 3 show the numerically obtained density n(r) (solid) and temperature pro-

files T'(r) (dashed) together with the temperature profiles Tc(r) (crossed), obtained from
Coppi’s formula

To() = eon(-5 @ 5 ) ()

and the numerically obtained densities n(r), with
Q ~ 0.066

chosen such as to get optimal agreement between T' and Tc. There is fair agreement,
except for small §; in the plasma edge region.

It is found from the numerical results that a temperature-density relation similar to
(32a), namely

T ~ Tp = n?/3 gan=o (33a)
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with
5 = 280 (33b)
1+ B;

is satisfied excellently for 8; < 0.5 and fairly well (a few per cent) for up to 8; = 2.
Relation (34a) follows from (32a), if « is replaced by o = an .

Furthermore, the density profile can be approximated by np(r), which we write in the
inverse form

!
r = 4/-n% nC;P , (34a)
with
Q = 0.0564 + 0.056 S; (34b)
V1 + 0.8 p?
and

e = 0.39 — 0.06503; — 0.8+/B;in. (34¢)

Relation (34) is excellently satisfied for 8; < 0.22 and, furthermore, for g; = 0.5 and
n > 0.3; serious disagreement arises for #; > 0.5 in the plasma edge region. Relation (34)
can be interpreted as a combination profile which is obtained by combining relation (33a)
with Coppi’s relation (6), by having € instead of 1 /5 in the exponent, and by negelcting
&. From eqs.(33) and (34) we find a modified Coppi relation

2 Qr?

Tq = ea:p(+— - + &(n — 1)) i (35)

which holds instead of eq.(6) in our plasma model. The difference between the tempera-
tures T' and Tg is relevant only for §; = 0.5 and, say, T < 0.2 and causes disagreement
between the numerical density profile and eq.(34).

Figures 4 show once more the temperature profiles T(r) (dashed) and density profiles
n(r) (solid) together with the approximations Tp (crossed) for the temperature and np
(thombuses) for the density.

4. Conclusions

In this paper we have evaluated the entropy principle for a cylindrical plasma in a way
different to that in /1/. The difference between this paper and /1/ is in the constraints:
-in /1/ we assumed p(n) to be unaltered during the variations;

- in this paper 6p(r) and 6T (r) are obtained by assuming that the equilibrium pressure

balance relation (9) and Ohm’s law (11) with Spitzer conductivity also hold during the
variations.



These variations are expressed in terms of §By(r) and 6B.(r); see egs.(20) and (21).
There was then only one free parameter left to characterize the different solutions of the
problem: the internal plasma § (named £; ; see eq.(29)).

The difference between the results of this paper and those of /1/ might be characterized
by the exponent in the T'(n) relation:
- in /1/ this exponent is a(1 — 1/n) ; see eq.(32),
- in this paper we have &(n — 1) ; see eq.(33).

For all B; the plasmas turned out to be paramagnetic. The safety factor ratio ¢./qo
is about 2 and is related to f; according to eq.(31b). A comparison with the entropy
principle used in /1/, which leads to relation (1), shows fair agreement for ; up to 0.2
and excellent agreement for, say, #; < 0.1 , except for the plasma edge region, where the
difference between eq.(32) and (33) becomes serious. The values of & in eq.(1) are about
0.2 B; (see eq.(32b)) and are always small in relation to one. The model plasmas obtained
by our alternative entropy principle are therefore close to isentropic, a situation which
seems to be realized the better the larger the machines are. There is also more or less
reasonable agreement with Coppi’s relation (6).

Equations (33) and (34) represent good approximations for the n(r) and T'(r) profiles re-
sulting from our alternative entropy principle - except for sufficiently large 3; in the plasma
edge region, as discussed in connection with figs.(4). A comparison of the experimental
profiles presented in /1/ shows that eqs.(1) and (6) can be used to fit the experimental data
just as well as egs.(33) and (34) - except in cases like pellet injection, where neither egs.(1),
(6) nor egs.(33),(34) can be used. The reason is that the difference between egs.(1),(6) and
egs.(33),(34) is mainly in the edge region, where no sufficiently exact data are available.

Whereas the alternative form of our entropy principle allows only plasma profiles close
to isentropic, the original form with fixed p(n) leading to relation (1) also allows large
deviations from isentropic. This means that the “old” constraints with p(n) allow lower
entropies of the plasmas than the new ones do. The entropy resulting from eqs.(3) and (1)
is

S = soN — = (noV — N) ; (36)
F=1

where N is the total number of particles, no the central plasma density and V the plasma
volume. Since noV > N , large a values mean small entropies.

Two time scales might therefore exist, as already mentioned in /1/:
- a faster one describing relaxation towards states where « is not necessarily small, which
might have to do with the constraint of fixed p(n) ;
- a slower one describing relaxation towards states with e << 1 , which might have to do

9



with the equilibrium constraints used in this paper.
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