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Abstract

A computer code has been developed which solves the full compressible resistive magne-
tohydrodynamic (MHD) equations in cylindrical geometry. The variables are expanded
in Fourier series in the poloidal and axial directions while finite differences are used in
the radial direction. The time advance is accomplished by using a semi-implicit predictor-
corrector-scheme. Applications to the ideal m=1 ideal kink saturation in the nonlinear
regime and the subsequent decay of the singular current layer due to resisivity are pre-

sented.




1. INTRODUCTION

In magnetic fusion research the magnetohydrodynamic (MHD) equations are widely used
and successful in describing the macroscopic behavior of fusion plasmas. The MHD fluid
model is used for studying the macroscopic stability, the equilibrium properties and the
gross nonlinear dynamics of the plasma fluid.

Progress in computertechnologie and in the numerical methods allow to solve the full MHD
tokamak problem in cylindrical geometry with approximatly the same effort as was com-
monplace when the reduced tokamak equations were the only possible set of equations
which could reasonably be treated with. Thus large scale MHD calculations involving up
to eight coupled nonlinear partial differential equations are usual today.

In magnetic fusion research it has been established that instabilities tend to develop sin-
gularities or large gradients in radial direction nonlinearily, so using Fourier expansion in
poloidal and axial directions, finite differences in radial direction have proven to be an
efficient method. This is because of the periodic nature of poloidal and axial directions in
most fusion devices.

In this paper we describe a computer code solving the full set of MHD equations as an
initial-boundary-value problem using such a Fourier decomposition combined with finite
differences. The geometry used is cylindrical (r, 8, z) but because of the periodic boundary
conditions in z the cylinder is topologically equivalent to a torus. All effects which are not
correlated to toroidal curvature can therefore be treated with our code.

This code is based on an earlier and preliminary MHD code which was written by Biskamp
and co-workers. The code described here is an extended and refined version of this Biskamp
code.

The paper is organized as follows. Section 2 presents the mathematical model and dis-
cusses various assumptions which have to be made. In section 3 the numerical method is
explained and section 4 discusses the performance of the code by doing some test calcula-

tions. Section 4 also presents a nonlinear physical application.



2. MATHEMATICAL MODEL

2.1 The Equations

On the macroscopic scale the plasma may be described as an electrically conducting fluid
in a magnetic field. The behavior of the plasma in this model is adequately described by

the single fluid resistive MHD equations. In suitable nondimensional form they read:

av

p(5+V-VV)=-VP+(V xB)xB, (2.1)
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V-B=0 (2.5)
nj=E+V xB. (2.6)

With the definitions: p: density, V: velocity of the fluid, B: magnetic field, P: Pressure, j:
plasmacurrent, n: plasmaresistivity, v: adiabatic coefficient.
To obtain this nondimensional form of the equations the following transformations were

made:
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with 74 = 7~ (Alfvéntime) and V4 = »\/%)a (Alfvénvelocity). This means that the time

is measured in units of 74 where a is the minor radius of the torus.

For JET parameters a = 1.23 m, B* =2.9 T, n = 1.6 - 10!° one obtains 74 ~ 0.15us .

2.2. Physical Assumptions

2.2.1. Density p

In this paper we make the following assumptions:
p=s (2.7)

which means that we drop the equation (2.3).

2.2.2. Resistivity n

The resistivity # is not considered a fully dynamic variable which is dynamically evolved
through an extra equation. It is assumed that 7 is just a function of the radial coordinate

r and especally not a function of time:

n =n(r)
The main feature of n # 0 is the fact that some topological constraints are no longer valid.
The assumption 1 # 0 creates qualitativly new physics ( tearing modes, reconnection ).

For most applications the assumption n = n(r) is therefor fully justified.

In this work n is defined as
n°
n=n(r) =,
Jo

with j§ being the equlibrium current in 2-direction.

2.2.3. Dissipation

The plasma with n # 0 defines a dissipative dynamical system. The qualitativly new

physics mentioned in paragraph 2.2.2 enters via equation (2.2) and the Ohmic heating
nj*=n (V x B)?
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in equation (2.4) can be neglected in lowest order in the fluid picture

VIVEi=v << 1

E=ac << 1.
B

One obtains

i’ = (V x B)? ~ E? + v*B? + 2E - Bu.

which means

i~ (@® + v® + aw)BL

This second order term is neglected in the further study.

2.2.4. Geometry

Our code solves the MHD equations (2.1)-(2.4) in cylindrical geometrie (r,#,z). In fusion
theory this is only an approximation to the large toroidal devices such as ASDEX or JET.
Due to the periodic boundary conditions in z-direction we can simulate these devices and
the physics involved as long as problems are treated which do not depend on toroidal
curvature.

Another argument for choosing the more simple cylindrical geometry is the fact that nonlin-
ear physics is still a vast field where intense research is necessary and effects very carefully
have to be examined in order to provide sound material for futher analytical studies. For
this purpose the geometry should be as simple as possible. Cylindrical geometry thus pro-

vides both the possibility of simulating experimental devices and an easy enough geometry

where nonlinear analytic results may be possible.

3. NUMERICAL METHODS
3.1. Spatial Discretization

Due to the periodic nature of the poloidal and axial directions in most fusion devices we
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assume the following expansion of all variables:
fr.0,58) = ) fmnlrst) SmotE2) (3.1)

In radial direction we use finite differences. The Fourier coefficients fyu,(r;t) are then

advanced in time. The discretization in r should fulfill two conditions:

1. The origin (r = 0) and the outer boundary conditions (r = 1) should be easy to imple-
ment.
2. It should be possible to impose the divergence condition V - B = 0 as an initial-value

condition.

3.1.1 Grid
The easiest way to fulfill conditions 1., 2. is to use a staggered mesh. There, some quantities

are defined at the gridpoints z; (cellboundaries), the others are defined at the cellcenters

Tit1/2-

At the gridpoints z; one defines:
B ¥V 3% 5% (3.2a)
At the cellcenters z; /7 one defines:
B, B, VP v pP,g". (3.2b)

Normalising in r-direction one obtains

for the cellboundaries
D=mcr<exn=1, (3.3)
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and for the cellcenters

O<$1/2STSIN_I/2<1, (33)

with N the number of gridpoints.
Quantities which are defined at the cellboundaries z; (the cellcenters z;,, /2) can be cal-

culated if needed at the cellcenters z; /5 (cellboundaries z; ) by simple averages as in the

following example:
BT is defined at gridpoints z;, B"(r = z;) = B} and if B"(r = z;,/,) is needed one

averages

B'(r =z;41/2) = - (B] + Bl,,) (3.5)

1
2
To calculate averages like (3.5) at the boundaries r = 0, r = 1 one needs two additional
points z_, /2 and Ty 12 which are defined analogous to (3.5):
1
2o = 0= (z1/2 +2-1/2)
1
ry =1= §($N+1/2 +ZN_1/2)

The variables at these points are defined according to the proper boundary conditions.

3.1.2. Boundary Conditions

The origin r = 0: the requirement that all physical quantities are single-valued at the origin
imposes some conditions. For any quantity u with an expansion like (3.1) this requirement

writes

Ju

20 _ =

0

Together with expressions like (3.5) this leads to the following boundary conditions at
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r = 0 for the um,n(r;t):

The outer boundary r = 1: in this work we assume that the boundary at » = 1 is an

electrically conducting metal wall. This together with expressions like (3.5) results in the
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following conditions:

IN-1/2
B m>0)= B¢ m >0
N+1/2( > 0) N 1/2( 7 IN11/2
Bf\r+1/2(m >0) = Bi—l/z(m > 0)
Viim>0)=0
IN-1/2
¥ m>0)=V5_ >0
N+1/2( = ) N 1/2( TN11/2

3.1.3. Divergence Condition V-B =0

The grid as defined in paragraph 3.1.1 allows to identically fulfill the vectoridentity

V- (Vxu)=0

if one defines the divergence and curl operations as follows

ru” u? u®
(V'"):(%a(ar) & %3599) & agz))m/z
u? u?
(Vxuy=(;75 - 25
(Vxu)?=( 3‘(;:.;) - Bgf] )it1/2
u? u”
(qu)"'=(%agr) - %aga))ﬂ-l/z

If this is done V - B = 0 can be implemented as an initial-value condition because the

evolution equation for B has the form

JB
+ét—_V><u



which means

B 0V-B
- —_— = = . :0
v = = V- (V xu)
and
V-B=0

always if this condition holds for ¢ = 0. That is the way we handle this condition in our

code.

3.2. Temporal Discretization

3.2.1. TheAlgorithm

The temporal advance of the MHD equations is performed through the Fourier coefficients
as assumed in (3.1).

In our code we use the semi-implicit predictor-corrector scheme of Harned et al./1,2/.
This scheme allows to circumvent the CFL conditions of explicit schemes for the fastest
timescale, the fast compressible modes, without doing the timeadvance fully implicit. Thus
we are not limited to a too small timestep typical of explicit schemes. Neither are we lim-
ited through the large matrix manipulations inherent in implicit schemes. The central idea
is to make the fastest timescale implicit,/1/.

The algorithm is as follows,/2/:

B. = B, + aAtF(B,,V,) (3.6)
P. = P, + aAtFy(P,, V) (3.7)

Vil = Vo + AtF3(P.,B.,Vy,) (3.8)

Vi, —S(Vii) =Vi+ AtF(P.,B.,V,) —S(Vy) (3.9)
B.. — B, + AtF,(B., %(vth +V.)) (3.10)

Bpi1 = B..+ AtF5(B..) (3.11)
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1
Pn+1 = Pn + Ath(Pg., -

5 (Vat1+Va)), (3.12)

n, n+ 1 characterize the times t,, t,4+1 and (*,**) defines the predictor time in between.

Furthermore we have:

F;, = Vx(VxB)
F, = —4PV-V-V.VP
F3 = (-V-VV -VP+ (V xB) x B)?
F, = (-V-VV-VP4(VxB)xB)t
F; = -V x (nV x B)

Without the semi-impliczit operator S(V+) and the special treatment of v* the algorithm
(3.6)-(3.12) would simply be a second order accurate predictor-corrector scheme if & = 0.5.
In general one choses a = 0.5 4 € because one needs some numerical damping in order not
to enhence numerical noise.

The operator S is chosen to make fastest timescale implicit but leaving the rest explicit.

As S is not uniquely defined, we choose the following form ,/2/:
S = (At)24iv(V-Vvi) (3.13)

This form of the operator allows a large enough timestep and is extremely well suited for
the staggered mesh as this operator just introduces a tridiagonal matrix problem to be
solved. This can be done very efficiently.

In tokamak physics where a set of reduced equations exist which do not contain the fast
compressible modes the semi-implicit method allows to treat the full MHD problem with
the same amount of computing time once needed for the reduced equations. And the full

MHD equations have to be solved because they contain more and important physics than

the reduced equations.
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3.2.2. Numerical Smoothing

The MHD equations allow singularities which have to be calculated on a finite numerical

grid. Therefore one is forced to add some terms to the equations (2.1)-(2.4) to smoothen

the singularities. The n-term helps to solve the problem for the magnetic field B but to

solve the problem for the velocity V an additional viscosity term

uwViv

is used. If p is kept small enough p ~ “136 then this viscosity is just a numerical smoothing

operator and it does change the physics qualitatively.

3.2.2. Equilibria and Perturbations

The simplest start configuration is an instable one-dimensional ideal equilibrium which is

slightly perturbed. Such an equilibrium is defined by

f(r,ﬂ,z;t) = f(r]

This leads to the following equation for the equilibrium quantities

Z

or _  B°9(rB’) . 0B
ar r Or or

One can choose two profiles and the third one is defined through (3.14).

equilibrium current in z direction j§ and the safetyfactor ¢(r)

= 13(7’39)

° T r or
BZ

q(r) = rk45

(3.14)

Defining the

one has various possibilities to define a suitable start configuration. The equilibrium is

then perturbed
V ~ € f(r)
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with f(r) an arbitrary function and |e| ~ 1078,1077.

4. NUMERICAL TEST CALCULATIONS

In this chapter we do some calculation to demonstrate the performance of our code. Before
doing some nonlinear calculations the following points have to be cleared.

1. It must be shown that V - B = 0 as a function of time is in fact valid.

2. It must be demonstated that the code does not numerically dissipate energy.

3. It must be demonstrated that the code is able to reproduce the linear MHD theory very

accuratly.

4.1. Numerical Performance
First we estimate the CPU-time necessary for a nonlinear run. For a first estimate of the

CPU-time with a given number of gridpoints Ng, of Fourier modes Ny and of timesteps

Nz the following formula applies
t(CPU) ~ Ng Nz (Nr)®,

where b is an empirical constant with b ~ 1.6.

For a typical nonlinear run the history of V - B(t) is shown in Fig.(1). The deviation of
V - B from zero is small enough to be acceptable. As V - B is of order O(10711) it is
at least four orders of magnitude smaller than the smallest parameter involved, namely p
which is of order 10~8 — 107,

The time evolution of the total energy for the same testcase is shown in Fig.(2). The total
energy is constant in time at least on the time scale we usually work on. The figures (1),(2)
prove that the code indeed satisfies the divergence condition and energy conservation which
are some of the most important requirements one has to fulfill.

In paragraph 3.2.2. we introduced viscosity as a pure smoothing operator. Here we

demonstrate that this operator indeed acts as numerical smoothing operator, if y is small
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enough.

It is well known /3/ that the instable ideal equilibrium
B* = 1.

i* = jo(1—r?)?

with mode numbers (m,n) = (1,1), jo = Z—:, k = %, go = q(r = 0) = 0.73 saturates into a
nonlinear stable state with a singular current sheet, Fig.(3).

If we use this state as an initial configuration for a run with g = 0 then numerical errors
are not dampened but tend to grow and the stable state is destroyed, Fig.(4). Setting
p = T-107 the stable initial configuration can be kept for quite a long time without
changing the physics, Fig.(5). Fig.(4) corresponds to a time ¢t = 10007, Fig.(5) to a time
t = 10007,.

4.2. Linear MHD
4.2.1. Linear tdeal MHD

Our code is tested by comparing results with a well established linear eigenvalue code,
/4/. This eigenvalue code can be used as a reference to numerical accuracy at least in the

linear regime. The first test is ideal MHD. We consider the following ideal equilibrium

Bf=1
rkB?
gl{r) = go — D= const.

with modenumbers (m,n) = (2,1) and k£ = 0.2. In radial direction 200 gridpoints are
used. If one plots the linear growth rates A against g(r = 0) = go this testcase can be
used to establish how sensitiv the nonlinear initial value code is in the neighbourhood of
the marginal point. We try to answer the question how large a growth rate must be to be

resolved by our code or how accurate the marginal point can be resolved.
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The marginal point is go = ¢, = 1.9221 with
go < gm — stable

go > qm — instable

The results are presented in Fig.(6). The growth rate A is plotted against go with
g0 € [1.9222,2.03]

and the marginal point is indicated. This results show that we can resolve the marginal
point . The deviations between the eigenvalue code and our code are so small that in

Fig.(6) no error bars can be seen. The percentual deviation A is

0.001% < AX < 0.65%.

The resultes of both codes match to a very high accuracy.

4.2.2. Linear resistive MHD

In this case we consider an equilibrium which allows to demonstrate two different mech-
anisms for driving instabilities namely pressure and current driven modes, /4,5/. We

consider tokamak like profiles

?.2

) =5(1- ),
Bre=1],
p=1

with % = 2 and r*¥rfec¢ = g = 1 . If one guaranties ¢ > 1 the (m = 1)-tearing mode
q

is stable and the (m = 2)-tearing mode is the most dangerous instability. This mode is
the unstable for 2.20 < g(a) < 4.0. In Fig.(7) the growth rate XA is plotted against ¢(a).

For ng(a) < 2.3 one has pressure-driven modes and for ng(a) > 2.3 the modes are current-

driven. The transition near ng(e) = 2.3 is clearly visible.
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As in paragraph 4.2.1. no errorbars are plotted because the percentual deviation A\

between the codes is too small

A) < 0.5%.

We used 200 gridpoints and the resitivity n is 7o = const. = 1075, in the eigenvalue code

and in the nonlinear code 7(r;) = 10~% where r, defines the singular surface.

4.3 Nonlinear resistive MHD

After demonstrating the performance of our code in the well known linear regime we con-
sider now a nonlinear application as a nonlinear testcalculation.

As a first step we reproduce the well known nonlinear saturation of the ideal (m=1) in-
ternal kink, /3/. Fig.(8) shows the contourplots of the plasma pressure and the current
and Fig.(9) shows the radial profiles of the pressure and the current obtained by a quasi-
nonlinear calculation, where just the (m=1,n=1) and no higher harmonics are retained.
Figs.(10,11) show the result of the same calculation with 10 harmonics. It is obvious that
the quasinonlinear calculation in this case is an excellent approximation.

Due to the singular current sheet this ideal nonlinear equilibrium should be extremly unsta-
ble to resistive modes. So we use this configuration as an initial configuration for resistive
(m = 1) calculations. We expect the decay of the singulla.r current; layer and we follow the
evolution of the (m = 1) instability.

Furthermore this calculation models Kadomtsev’s picture of the sawtooth crash,/6/, es-
pecially the final step of the reconnection process. Our two-step calculation illustrades
the different steps which finally lead to the reclosing of the lines of force. Kadomtsev’s
argumentation is as follows,/6/. Starting with the nonlinear analysis of the ideal inter-
nal kink /3/ which shows that the weak ideal instability leads to the formation of a thin
layer with fields which are opposite in direction, i.e. between which there is an infinite
current density, Figs.(9,11), Kadomtsev argues that such a singular layer cannot exist in

medium with finite resistivity. Finite resistivity leads to fieldline reconnection. Kadomtsev
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estimates the total time for the reclosing process as

t ~ n_l/z.

The n~1/2 scaling can be verified if we use the nonlinear ideal equilibrium, Figs.(8,10), as
an initial configuration for the resistive calculations. Fig.(12) shows a double logarithmic
plot of ¢ = t(n). Assuming t ~ n® we find a = —%. Having shown the validity of the
Kadomtsev picture in the above model with monotonic current profiles we conclude that
the code described in this report can be considered a valuable tool to solve the resistive
MHD equations in cylindrical geometry. Problems in fusion theory which can be handled

in the framework of the straight tokamak model can be solved numerically with this code.
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FIGURE CAPTIONS

Fig (1)
V - B as a function of time for a typical nonlinear calculation. The time is measured in

units of 7.
Fig (2)
The total energy as a function of time for a typical nonlinear calculation. The time is

measured in units of 74.

Fig (3)

The nonlinear equilibrium according to Ref.(3),

(a) pressure, (b) current density.

Fig (4)

Further evolution of the nonlinear equilibrium of Fig.(3) with x = 0, i.e. without viscos-
ity.

Fig (5)

Further evolution of the nonlinear equilibrium of Fig.(3) with u = 7-1077, i.e. with vis-
cosity.

Fig (8)

Testcase ideal MHD.

Growth rate A vs go. The marginal point is indicated.

Fig (7)

Testcase resistive MHD.

Growth rate A vs go. The transition point with ng(a) ~ 2.3 is indicated.

Fig (8)

Contour plots of the quasinonlinear calculation.

(a) Pressure, (b) Current density

Fig (9)
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Radial cuts along the symmetry axis

(a) Pressure, (b) Current density

Fig (10)

The same as Fig.(8) but with 10 harmonics.

(a) Pressure, (b) Current density

Fig (11)

The same as Fig.(9) but with 10 harmonics.

(a) Pressure, (b) Current density

Fig (12)

Double logarithmic plot of ¢ = (n) to prove the Kadomtsev theory of the sawtooth.

n =10"%,1075,1074, ¢t =reclosing time.
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Figure (1)
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Figure (3)
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Figure (5)
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Figure (8)

PO C

T

0T *0"1

- 01%0°6

25



Figure (7)

(S8

26

Ol*" 2l



(8)

Figure

A N
e ,
= vv
=
R Zz
=z

(9)

Figure

27



)

igure (10

)

re (11




Figure (12)
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