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Abstract

An attracting system of r nonlinear oscillators of an extended van der Pol type was
investigated with respect to Hamiltonian formulation. The case of r = 2 is rather simple,
though nontrivial. For r > 2 the tests with Jacobi’s identity and Frechet derivatives are
negative if Hamiltonians in the natural variables are looked for. Independently, a Liouville
theorem is proved and equilibrium statistics is made possible, which leads to a Gaussian

distribution in the natural variables.




I INTRODUCTION

A class of systems of r nonlinear oscillators of an extended van der Pol type has already
been introduced by the author!!l. The interaction between the oscillators was given by
matrices containing cubic nonlinearities. Investigation of the Lyapunov stability resulted,
under certain conditions, in defining an attracting system (2,3] in which the driving and
damping of the van der Pol oscillators exactly cancel out. The attracting system is of the

form

¥+ ()Mo + (LTINa = Pa] ¥ + X =0, (1)

where Y is a real vector of arbitrary length r and Ma, No and P, are antisymmetric rxr
real matrices. In Ref. [2] it was shown that system (1) is completely integrable for r=2,

and in Ref. [3] strong arguments for nonintegrability were given for r > 2.

This contribution is essentially devoted to the Hamiltonian and variational formulations
of system(1) for r > 2. The r=2 case is given in section IT and a discussion of the r > 2

case is the topic of section ITI. Section IV is on the statistics of system (1).



II HAMILTONIAN FORMULATION FOR r=2

If M,, P, and N, are deﬁﬁed more explicitly as

then system (1) becomes

U1 + [m@yl + v3)+ n@] + 93) + 0] 42 + w1 =0, (3)

Y2 — [my] + ¥3) + n(@ + 93) + p] 91 + v2 = 0. (4)

Let us first check whether the Frechet!?] derivative F of system (3,4) is a symmetric oper-

ator. Perturbing y; — y; + v and y2 — y2 + v, we have

o (30 ), [ [m(vi+v2) +n(i} +303)+p] &
0 3722 —[m(vi+v2)+n(393+93)+p| & —2ny192 2 )
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The Y-independent part of F is obviously symmetric if the scalar product is taken as
a combination of matrix scalar product and time integration with zero values for the

perturbations u and v at the integration limits. The other part reduces to testing the

expression

f dt v’ {2ng1 g2 & + [m(y] + v3) + n@ + 393)] 9} +
[de v {=m(s? + ) + n(it + )] @ - 20000 +
[ @t mlu@unis v+ 20a0a0) — V' Cunin v + 20 ). (6)
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F is symmetric if expression (6) is invariant with respect to the interchange of the couples
(u',v') and (u,v). This is obviously not the case if n # 0 because the invariance is violated,
particularly with respect to interchanging of (u,0) and (u,0). For n=0 after integrating

by parts the first m term, expression (6) becomes

- / dt m(y? + y2)i'v+v'd) + / dt [2m (y192u'v — y2U1 v'v)] — / dt 2m y 91 (v'v + uwv'),
(7)

which is obviously symmetric.

This means that in terms of y; and yz there is a Lagrangean for system (3,4) only if

n=0. It is given by

E:/La
1

:/[f (93 + 93) - %(yf+y§)+

- w + vl — )]

(8)

m . .
5 W2 + v — 92) +

B |3

The canonically conjugate momenta to y; and y are

oL
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The Hamiltonian can be obtained from

2
H=) ps—-1L.
i=1

This is a rather long expression if written in the p; and y; but becomes very simple if

written noncanonically in terms of y; and y;. It is then

1. .
H=>-@@ +94) +

5 (vi + v2)- (10)

BN | =

Note that a quadratic expression of the type (10) is a constant of motion in a very general
way even for system (1). This can easily be seen by forming the scalar product of system

(1) with Y, the contributions of M,, N, and P, being null because of their antisymmetry.
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This suggests that a noncanonical description be sought for egs. (3) and (4). Writing

them as first-order equations in terms of z; where

Ty = Y1, T2 = Y2, T3 = Y1, T4 = Y2, (11)
we obtain
) 0 0 1 0 g_H
iq o o0 0 1 o
. = a3 12
I3 —1 0 0 — A ( )
. 5H
T4 0 -1 A 0 EEN
with
1 4
2
H = Y. (13)
1=1
and

A =m(z2 + z2) + n(z3 + 23) + p (14)

Equation (12) can also be written symbolically as

H . oH
z 7 6.’1‘1]' or A = ax ( )
It can easily be seen that det (A) = 1 and
o -A -1 0
A 0 0 — 1
-1 _

A= o 0o 0 (16)

0 1 0 0

Equation (15) is a Hamiltonian system only if the A;; can build up a Poisson structure

of 9g

[f,g] = Fy Asj B ° (17)

In this case the A;; are quadratic in the dynamic variables and the bracket (17) is not of the

Lie-Poisson type. So we have to check Jacobi’s identity, which reduces to the condition(®!
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for all i,j,k. In our case it reduces to
R
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The first 2 conditions are identically verified but the last 2 conditions require n=0.

We find again that n=0 is needed even for a noncanonical Hamiltonian formulation.
This is proved for expression (13) taken as Hamiltonian. In fact system (3,4) is completely
integrable!?! even for n # 0 and owing to theorems of dynamics(®l it should have a Hamil-
tonian formulation. But the Hamiltonian introduced in that proof contains all constants
of motion and possibly variables other than the z;. The situation for r=2 is now clear. For
n=0 we have rather simple canonical and noncanonical formulations for system (3,4). For
n # 0 we have to invoke complete integrability!?! to prove the existencel®! of a Hamiltonian,

but we know in advance that it is going to be cumbersome.




III CASE r > 2

For r > 2 and n # 0 we cannot expect to apply the previous theorems of dynamics

of Ref. [6] because we know from Ref. [3] that system (1) is in general nonintegrable.

However, integrability is sufficient but not necessary to have a Hamiltonian formulation.

The easiest approach is therefore to try a noncanonical formalism for N,

quadratic Hamiltonian of the type (13). As in the case r=2, we introduce

Ty = Y1y Tr = Yr; Trgl = Y1y--T2r = Yr -
System (1) becomes
gt 0 - .- 0 1 0 0
0
iy | QT 0 0 0 1
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(20)

(21)

(22)

(23)

Where m;; and pi; are the elements of M, and P,, respectively, N, being taken equal to

zero. System (21) can be written symbolically as

oH

# = A ox;
j
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It is easy to see that det (4) = 1 and

0 g P B ~10 -0
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We now prove that conditions (18) cannot be verified by checking, for example,

dd N dAs N Az’

= (). 26
0z3 0z LD (26)

The three terms are proportional to z3, z; and z2, respectively. They cannot cancel each

other.

A Lagrangean formulation in terms of ¥ is not possible either. One arrives at that
conclusion after calculating the Frechet derivative of system (1). It is very similar to the
calculation done in section II, but it is lengthier. It turns out that the Frechet derivative
cannot be symmetric unless all nonlinear terms of system (1) are identically zero. This is
more restrictive than in the case r=2 where only the n term had to be zero. Note that for
N, # 0 the previous calculations would be even more complicated and the answer would

be negative, as can already be seen from the case r=2.



IV STATISTICS AND FINAL REMARKS

System (1) is the attractor of a driven, damped Van der Pol type system introduced in
Ref.[1]. The latter system, if linearized, would give unstable eigenvalues for all oscillators.
In this respect it cannot model a successive onset of Hopf bifurcations (7] for which only
one oscillator at a time becomes unstable by changing a bifurcation parameter. But it can
model the situation where all or most of the eigenmodes are linearly unstable and saturate
at a level which is given by system (1). In this respect the situation is similar to turbulence
with large Reynolds numbers and not to a gradual increase in disorder. The statistics of

system (1) is somehow similar to fully developped turbulence, but is far easier to do.

Conventional equilibrium statistics would require a canonical Hamiltonian for system
(1). A noncanonical Hamiltonian would also be sufficient, as noted in Ref. [8]. But in the
case of system (1) we were not able to find any Hamiltonian at all for r > 2. The case

r=2, which has a Hamiltonian, is obviously unsuited to do statistics.

A way out of the situation is first to look for a Liouville theorem independently of
Hamiltonian formulation and secondly to have some positive definite constant of motion.
The positive constant of motion has already been mentioned, and is given by expression
(22). The Liouville theorem reduces to proving incompressibility in phase space. This also

is easily seen from the definition (20) and system (1)

2r 2r

Z gz: = Z 2.’1:,' Ny T; = 0, (27)

i=1 t,7=r+1

where n;; are the elements of the antisymmetric matrix N,.

This together with an ergodicity assumption allows us to introduce a microcanonical
distribution centered at a particular value of expression (22). The passage from a micro-
canonical to a canonical distribution requires the exchange of fluctuations of H (given by
expression (22) and is not the Hamiltonian) with a "heat bath” in such a way that the

average value of H is a given constant. A remarkable result is that despite strong nonlin-
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earities in system (1) there is equipartition among the oscillators amplitudes due to the

quadratic form of expression (22).

Let us finally note that if system (1) happens to have a Hamiltonian formulation in
variables other than the z;, it is to be expected that it will be very cumbersome (we know

this for the case r=2) and it will not readily lead to a simple result concerning the statistics.
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