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Abstract

Parficle motion in random electric fields is considered on the assumption that orbit stochas-
ticity causes the velocity increments at different times to be independent random events
with Gaussian probabilities (Wiener process). The resulting resonance broadening term
is substantially different from the one derived by Dupree /2/. The diffusion coefficient
D is found to be a function of t/tq, where tq is the average diffusion time across the
resonance region in velocity space. For t/tq << 1 the diffusion is quasilinear. Dupree’s
high-amplitude case (autocorrelation time >> trapping time) with D ~ (< E? >)% turns
out to be inconsistent with a diffusion process: the particles are lost from the resonance

region before diffusion is established.



1. Introduction

One of the standard topics in plasma physics is the motion of charged particles in random

electric fields. In one dimension the equations of motion are

o(t) = % E(z(t),1) -

z(t) = v(t) .
For E(z,t) = Y. Ere!**—wt) where the phases of Ej are random, quasilinear theory
k
/1/ predicts that the average particle motion in velocity space is described by a diffusion

process, < vZ(t) >= Dot/2, with diffusion constant

Do(v) = = i—"; > |Ex|? 6(kv —we) . (1.2)
k

Equation (1.2) is derived on the assumption that in E(z,t) the orbits z(¢) can be approx-
imately replaced by the unperturbed orbits z(0) + vt . Obviously, the assumption breaks
down for sufficiently strong fields. Dupree /2/ was the first to suggest a diffusive process

for weak and strong fields, with diffusion constant Dp,, implicitly determined by

1
v—wg)t — gkzDDura

92 r 2 ':(k
Dou(v) = L / dr 3 |Eil? e (1.3)
0 k

The last term in the exponent reflects the average effect of deviations from the unper-
turbed orbit and acts as a broadening of the wave-particle resonance at kv = wg. The
theory was later generalized /3/ to plasmas with magnetic fields. In this case there is
also diffusion in configuration space, orthogonal to the magnetic field. This diffusion has
a strong destabilizing effect on drift wave turbulence and transport /3/, particularly in
sheared magnetic fields /4/. |

Dupree’s result, eq. (1.3), has been rederived by other authors /5 - 7/ by different meth-

ods. Benford and Thomson /6/ and Molvig et al. /7/, in particular, start by assuming a
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Markov process with Gaussian probabilities, i.e. a Wiener process. In /7/ this assump-
tion is justified by the “mixing” property of the particle orbits in fields with overlapping
island structure /8/. Particles which are initially arbitrarily close together are separated
exponentially fast and end up in totally different orbits.

Dupree’s result, on the other hand, has also been criticized from several points of view
/9 - 14/. Cook and Sanderson /9/ claim that Dupree’s result is not valid in the regime
where it differs markedly from the quasilinear value. In /10/ it is stated that trapped
particles are misrepresented. The numerical experiments performed in /11 - 13/ yield
results that disagree with eq. (1.3). In /14/, while the Markovian nature of the particle
motion is supported by numerical experiments, it is pointed out in a special context that
the derivation of eq. (1.3) in /7/ is erroneous and that the correct treatment leads to a

breakdown of the diffusion scenario in sufficiently strong fields.

Resonance broadening theories and even the quasilinear diffusion coefficient in the do-
main where it used to be considered valid have met with another type of criticism in /15/,
/16/, where it is claimed that selfconsistency between particles and field is not properly
treated in the case of, for example, Langmuir or drift wave turbulence. Selfconsistency
effects on diffusion are taken into account in, for example, renormalized theories and in
DIA turbulence theory: see /17/, /18/. It is argued in /7/, however, that such theories
are essentially expansions in the Eulerian field amplitudes and that their convergence is
doubtful when the stochasticity of the Lagrangian fluctuations along the orbits is essential.
Future selfconsistent theories will certainly have to incorporate both orbit stochasticity and
the reaction of particle motion back onto the fields.

In the following, particle diffusion in given stochastic fields will again be considered. As
in /6/, /7/, /14/, it is assumed that the increment Av of particle velocity is a Marko-
vian quantity and is distributed with Gaussian probability. The consequences for particle
diffusion are discussed without further a priori approximations. As in /13/, /14/, a time-

dependent diffusion coefficient D is obtained. It is derived here in a more general framework
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than in /14/, and the interpretation of the time dependence is made clearer than in /13/.

In Section 2 an equation for the diffusion coefficient D is derived from the Wiener
process assumption for a simple model of Eulerian field correlations. In Section 3 D and
in particular its deviation from the quasilinear value Dy are numerically studied. The
results and a resonance broadening term in a version obtained from first principles are
interpreted in terms of particles leaking out of the finite resonance region. As in /9/, it
is further concluded that Dupree’s result, eq. (1.3) say, is invalid in the regime where
D substantially deviates from Dg. In this high-amplitude regime particle motion is so
intense that the particles leave the resonance zone before a diffusion process has time to

be established.




2. Diffusion coefficient for a Wiener process

We consider the average motion of particles with charge ¢ and mass m, in an ensemble of

waves
+0o0 +oco
E(z,t) = Y. Y, Emnexpli(kmz—wnt)] (2.1)
m=—o0 n=-—0c0

with kpm = 27m/L, w, = 27n/T where L and T are some fundamental periodicity intervals.

With the definitions
z(t) = z(t=0) + vt + Az(t),

(2.2)
v(t) = v + Av(t)
the equations of motion for the deviations from straight-line orbits are
Az(t) = Av(t),
) q (2.3)
A = — E t] ;
v(t) ™y (z(t),t)
The diffusion coefficient D will be defined as
D(v) = LE [Av(2)]? > . (2.4)
2dt

The averaging operator < > refers to the realizations of the chaotic orbits mentioned in
the introduction. Since this stochasticity results from “infinitesimally” small variations
of starting positions, mode amplitudes, etc., < > commutes with all Eulerian quantities.
One thus obtains

D = % (q )2% <jdt’ E(a:(t’),t’)jdt" E(z(t"),t") >

mp
0

— (i )2 jdt’ < E(z(t'),t')E(=z(t),t) >

n (2.5)

— (Hr%p) Z Z EmnEn o €xp [i(km — km)2(0)] exp [i(wnr — kmrv)t]

m,n m!,n!

- f dt" exp [i(wn — km0)t] < exp{ilkmAz(t’) — ks Az(t)]} > .



For a Wiener process with < Az >= 0 it holds /19/ that for all a, b
1
< exp{i[aAz(t) — bAz(t')]} > = exp{—i < [aAz(t) — bAz(t))? >} . (2.6)

The probability density for finding a particle at time ¢ with velocity increment Av when
at ¢ = 0 it had Av = 0 is given, in conformity with eq. (2.4), by

M] ; t>0. (2.7)

1
Tt Y [— 4Dt

The joint probability density for finding the particle at time ¢t/ with Av’ and at a later

P(Av,t) =

time ¢ with Av is the product
P(Av,t;Av',t') = P(AV,t') - P(Av— Av',t - t). (2.8)

From Az = Av and straightforward application of egs. (2.7), (2.8) one obtains /14/, for
r=t—t'>0,
< [kmAz(t') — kpe Az(t)]? > =

2

. , (2.9)
= 2D [(;cm, = k) '+ Sl (bt = k)27 + 3K22'7% + K270

For given fields egs. (2.5), (2.6) and (2.9) implicitly determine D. If it proves to be
(approximately) time-independent over an extended time intervall the assumed diffusion
process is confirmed, while for strongly time dependent D particle motion consists of
another type of process whose exact nature is then unknown in general.

For times ¢ which are large compared with the autocorrelation time t, =
max {Aw™!, (Ak v)~'} of the waves the terms m # m’, n # n' in eq. (2.5) phase mix away
when averaged over the initial position (Aw, Ak = width of the wave packet in wy, k),

leaving

. _
2
D(v) = (;’%p) Z 1Bl /dt' exp l:i(kmv —wp)t' — %Dkfnt'z(Bt - 2t')] . (2.10)
m,n 0

Before being damped away, the omitted terms are rapidly oscillating on a typical time

scale wy . It is useful to normalize time, distance and velocity with wol, kgt, (wo/ko) ™t

7




respectively, where ko and wo are the centre of the wave packet in k- and w-space. Going
over to a continuous spectrum and keeping the old notation for the normalized quantities,

one obtains

+00

D) = o? /dk (kio)z wa s(k,w)

- (2.11)
t k 1/ k\?
! wf e WA o =f2 Ayl oyl
fdt exp[z (kov wo)t . (ko) Dt'" (3t — 2t )] ,
0

where D = k2D /w3 , E = —98,%(z,t) and

2 Lk 4
o = (i ) (—0) <>, (2.12)
mMp Wo

+oco0 +co
sk,w) = |@(k,w)2/ [ [ dkdw |®(k,w)|* . (2.13)

o is the normalized, dimensionless field amplitude which uses the space-time average

< &% >, of ®2. An alternative representation is

+oo
) —" ' 1 (:c—vt)z 92
D = NG /dt /da:;exp [— o } ang(:c,t), (2.14)
0 —o0o

where 72 = zl,’-f)t'z (3t — 2t') and

g(z,t) = J]oodk Taaw s(k,w) exp [i (%x—%t)] . (2.15)

g(z,t) equals the correlation function < ®(z,t)®(0,0) > / < ®(0,0)% > provided
< &(z,t)®(z',t') > depends on |z — z'|, [t —t'| only, where the averaging is done over the

Eulerian wave phases.



3. Numerical results and interpretation

The expressions (2.11), (2.15) for D can be evaluated further for simple wave spectra such

0 = e ol (52 ol (222)).

where the sum extends over all four combinations of + and - in the exponents. The

as

corresponding correlation function is

dle ) = cos:c-cost-exp[—- (f—;’-)z] exp [— (52?-)2] . (3.2)

Equations (3.1), (3.2) correspond to a symmetric wave packet with relative width Aw /wo =
Ak/ko ~ € ,where e < 1. €' is the dimensionless autocorrelation or coherence time
to of the field. For comparison, Appendix A presents results for a monochromatic and
unidirectional wave packet as considered in, for example, /12/, /13/.

As a result of the w- and k-quadratures one obtains

¢
A e2v2t!? 4 4r2 % 2 t! t!
D(v) = o? /dt' exp(—L) exp(— 5 ) -cost'-(Asinv— + Bcos 1)—)

4c c c
(33)
with A = —e2vt’/c? , B = (4 + 2¢%¢c — e*v2t'®)/(4c?) and
¢ =1 + €r? 5
(3.4)

1.~
r? = th’2(3t — 2t").

The quasilinear diffusion coefficient Dy is obtained from eq. (3.3) by setting D =r =0 in

the integrand and extending the t’-integration to infinity. This yields

b -t | [155) w [2

2¢ (1+02)3 El +v?)
[ 5] o lanem] )
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A

D(v) was numerically determined from eq. (3.3) by a standard integration routine and
a simple iteration process: starting with the quasilinear value Do an improved D was
evaluated and reinserted in r until convergence was achieved.

A typical result for D/ Do as a function of time for different values of the field amplitude
o is shown in Fig. 1. Up to a few times the autocorrelation time to = € ! (marked
with a circle) the diffusion coefficient builds up from zero. In this regime terms have been
left out which damp away at later times (see Section 2) so that details are not to be
taken seriously. For later times D/Do strongly depends on the amplitudes: for “small” o
D equals its quasilinear value Do for a very extended interval of time. For “medium-sized”
o the quasilinear value persists for a shorter time interval, while for “large” ¢ no steady
value is achieved at all and D declines without having reached Do. In order to interpret
these results properly, it is useful to consider additional time scales involved.

In a seemingly naive picture a particle diffuses in velocity space until at a critical “diffu-
sion” time tq it reaches the boundary +vq of the wave packet’s interval of phase velocities
A(w/k) and drops out of resonance. With Aw/wo = Ak/ko ~ € and v = O(1) one has

vq ~ €, and with < AvZ >= 2Dt the order of magnitude of ¢4 is

ta = €2/D. (3.6)

A

For the quasilinear value Do of D, eq. (3.5), one has tq = e3/o%. Fort >> tqa D

should then go to zero since more and more particles reach the boundary of the resonance

region, where the probability of diffusing back inwards is much smaller than that of dif-

fusing outwards from the inside. In Appendix B it is proved that D indeed goes to zero
1

asymptotically. The estimate D < ct—% is confirmed by numerical results (see Fig. 2).

The role of the parameter t4 is evident in the integrand of eq. (3.3). The ratio

4r? 4D(3t — 2t' t
eZy2t! 3e2v? tq
is small in relation to one for ¢ << t4. In this regime one has €’r? = O(e2Dt'*t)

= O(Dt) << € < 1 so that ¢ ~ 1. Hence, provided ¢ is not too small either, the
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difference to the quasilinear case r = 0, ¢ = 1 should be small. This is confirmed in Fig.
1, where the time ¢ = ¢4 is marked with a dash. (For ¢ = 1073 and 0 = 10 ¢4 is to the
right and to the left, respectively, of the t-interval shown.) At ¢ = tq there is already a

substantial decrease of D/Dy, while for to <<t <<tq D is close to Do.

Figures 3 and 4 show the role of ¢/tq very clearly: D/Dg is completely determined by
t/tq independently of whether o is large or small, provided ¢t >> ¢o. In Fig. 3 D/Dy
is plotted at ¢ = ¢4 as a function of the wave amplitude ¢. In the second abscissa the
values of t4 = €2/0? corresponding to the o above are indicated. o is made to vary by
three orders of magnitude and ¢4 by six orders, and yet D/Dy does not change, up to
the regime where ¢t and tq become comparable. D/D, depends somewhat on velocity and
ra.ngés from 0.67 to 0.92 for v = 0.85 - 1.15 and ¢ = 0.8. In Figure 4 D/Dy is plotted at
t = 0.1tq, i.e. at t << tq. Indeed, D/Dg is much closer to unity now, ranging from 0.89

to 1.04, and again these values are independent of o.

In Figure 5 D/Dyg is shown explicitly as a function of ¢/tq for a case with tq/to ~ 103.
Initially, the deviation from the quasilinear value develops differently for different v, while

at later stages the trend is the same for all v.

The fact that the deviation of D from the quasilinear value is not a function of ¢ as
such but of the ratio ¢/t4, and the above discussion of t4 suggest the interpretation that
the “resonance broadening” term in the exponent of eq. (2.11) describes nothing but the
loss of particles from the finite resonance region in velocity space in conformity with the
original naive picture. The loss process begins as soon as the field is switched on since there
is a finite probability at any time for a particle to jump to the border of the interaction
region. For t << tq the probability of having “escaped” is still small. It increases with
time until at ¢ = ¢4 the particle loss is substantial. Therefore, if the observation time
tob is much smaller than tq (with to, >> #o), an apparently steady- state quasilinear
diffusion is obtained, while for t,;, comparable to tq the diffusion coefficient becomes a

(decreasing) function of time, in conformity with Fig. 1. This effect has indeed been
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observed in numerical particle simulation /13/. Ishihara and Hirose /13/ also presented
time-dependent D /Dy based on analytic expressions similar to egs. (2.11), (2.14), but the
universal nature of the dependence on ¢/tq was not recognized.

We finally compare the present theory with that of Dupree /2/ and others /5 - 7/. A
major role is played there by the Kolmogorov (or trapping) time ¢k, in which a particle
diffuses over one wavelength kg 1. Its order of magnitude according to eq. (2.9) with, for

example, k,,r =0 is

W=

txk = D75 . (3.8)

(In Dupree’s high-amplitude case /2/ one has D ~ 0%, yielding tx ~ o~3, which is the
oscillation period of a particle trapped in a single wave of rms amplitude o, hence the

name.) From the definitions it follows that tx and tq are related by

3

Z_j = (i—‘;) : (3.9)
In the resonance broadening theory /2/ D substantially differs from the quasilinear value
in the high-amplitude case only, characterized by tx << to (equivalent to o >> €?). This
then implies tq4 << to. In this regime, however, according to the results above, D varies on
a time scale comparable to to (see Figs. 1 and 6). Additional variations on this time scale,
omitted from the figures, originate from the terms m # m’, n # n' of eq. (2.5). Figure 6
shows D/Dg as a function of o in the region tx < o and its rapid time variation. (For
comparison, Dupree’s result Dp, /Do is also shown. D and Dp, are close to each other
at the instant ¢ ~ tk only.) Consequently, in the high-amplitude case the assumption of
(almost) constant D, made in eq. (2.7), is not satisfied and the particle motion is not a

diffusion process. This is also confirmed in the particle simulation studies /11/.
Dupree’s diffusion coefficient Dp, is obtained formally from eq. (2.5) if < [Az(t) —
Az(t")]? > is replaced by < [Az(t —t')]? > in the resonance broadening term (with

km = kpn) and the time integration is extended to infinity. This is done explicitly in
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/5 - 7/ (and applied to obtain Dp, in Fig. 6). Equation (2.9), shows, however, that this
approximation is not valid, i.e. is not consistent with the assumed diffusion process.

The present theory, in contrast, keeps the resonance broadening term in its original
selfconsistent form. In conclusion, it essentially describes the fact, that owing to diffusion,
particles stay in the resonance zone for finite times only. This causes a time-dependent
deviation of the diffusion coefficient from its quasilinear value. Furthermore, if the wave
amplitude is very large, particles get out of the interaction region so fast that a regular

diffusion process is not established, and Dupree’s theory, constructed specifically for the

large-amplitude case, does not seem appropriate.
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Appendix A

For the wave spectrum

v = g ol (522 e ] (52 )

(A.1)
the expressions corresponding to eqgs. (3.2), (3.3) and (3.5) are
(z,t) = cos(z—t (ex)z A2
g(z,t) = cos(z —1t) exp 5 ; (A.2)
A t 22! + 4r? v—C v—c
D(v) = o® /dt' exp (———) - (Asin t' + Bcos t') (A.3)
4c c c
0
and
2
h e ¥E 1 | (v-1
Do = " P ‘“”‘p[ ( & ) ] ' (4-4)
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Appendix B

If the absolute value in eq. (2.11) is taken and 3t — 2t’ is replaced by ¢, the integrand is

increased. Replacing the upper limit of integration by infinity, one obtains

pes [a (k) [emean [wel-1 (L) s

- (B.1)
:"2 3”/dkfdw )‘

so that

2,4\ 3
D<(‘”) : (B.2)

t
where a is the factor coming with 62/v/ Dt in eq. (B.1) and depends on ¢ only. For the
wave packet (3.1), for example, a reduces to

+oo
@ = ﬁ / dz exp(—z?) (|1 + ez| + |1 — ez|)

4
oo (B.3)

()]
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