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Abstract:

The two-fluid transport model of Braginskii is applied to the case of
a moderately large tokamak. By estimation of the order of magnitude
of the various effects and omission of small terms a somewhat simpler
reduced two-fluid Braginskii model is obtained. The model applies on
a time scale of order Temi/me, where Te is the electron-electron
collision time, and energy confinement time is of this order. With
electron and ion flow velocities no larger than is necessary to obtain
the correct equilibrium currents, classical parallel viscosity becomes
a dominant dissipative mechanism. The model allows for the slow
evolution of equilibrium states. The equilibria, which include static,
ideal magnetohydrodynamic equilibria as a special case, are described.
Generally the number density, electrostatic potential, and flows are
not constant on a flux surface. The procedure for determination of

the slow time evolution of the equilibrium is sketched.




I. Introduction

One of the earliest studies of plasma transport in a toroidal plasma
configuration was carried out by D. Pfirsch and A. Schliiter /1/.
This study is based on the classical fluid model. By taking appro-
priate averages on a flux surface they obtained a simple expression
for particle flow across a flux surface with an enhancement factor
of 1 + 2 q%, where the safety factor q = gg-is defined as the inverse
of the rotational transform. This calculation contained one of the
first neoclassical type of transport corrections of order (B/BP).
Throughout the years Pfirsch has continued to consider transport in
plasmas based largely on fluid representations of plasmas, although
the fluid representations have often included terms derivable only
from kinetic theories /2-6/. In this paper we follow a very similar
path. We use a classical two-fluid model of a plasma, but we carry
out a systematic expansion in a small parameter in order to obtain
the flux surface averaged transport properties implied by the model.
In the process we repeat many of the arguments and use the general

approach of Pfirsch.

We choose the simplest two-fluid model, which can be relevant to

tokamak transport. Specifically we select the Braginskii two-fluid
model, since it is relatively simple and self-contained / 7/ . A rigorous
treatment is applied to this set of general two-fluid equations with
flow included. Thus our approach is complementary to a phenomeno-
logical model, where anomalous transport coefficients are fitted to
match experimental results. Since in the derivation of neoclassical

transport coefficients /8 / the flow in the basic equilibrium is




neglected the form of transport coefficients commonly used in
simulations is questionable. When flows are present relevant
quantities such as density, pressure and electrostatic potential
vary considerably on a flux surface and this dependence strongly
influences transport. We address some of the questions as to

the relevance of such a model in the discussion section. Suffice
it to say here that we expect that for a plasma state near local
thermodynamics equilibrium the Braginskii model allows realistic
simulation of a tokamak and contains many of the effects of a
more desirable and ultimately essential kinetic model. We believe
that the model we have chosen should at least illustrate and give
rough quantitative estimates of basic physical phenomena. We
tailor our analysis closely to transport in a moderate sized, hot
1014 -3

em T, B o= 4T, T, = T =2.5 ke¥

tokamak with parameters n = i

and minor radius 50cm. We then scale all transport coefficients
and relevant dimensionless parameters to the small parameter e,
where € = me/mi. We then expand the system systematically in €.
One essential element of this analysis is that we must have small
particle flows in order to generate the currents required to form
an equilibrium. The large parallel heat conductivity coefficients
and the large parallel viscosity coefficients induce major effects
on the possible steady states of the system and on the energy
transport. In this respect we agree with a recent study based on
neoclassical transport coefficients on the importance of the in-
clusion of parallel viscosity / 9/. However, that model omits
velocity gradients and does not allow substantial ion flow. The
ion mass flow in our model is finite; i.e. at least one order of

magnitude larger. A simple-fluid model including flow but



neglecting transport has been derived by Zehrfeld and Green /10/
and solved numerically later by Refs./11-13/.The poloidal flows
necessary to generate a significant poloidal asymmetry are larger
by an order of magnitude than the flows in our model. This again
indicates that our scaling includes realistic features of a
tokamak. We comment in the discussion on the relation between

the large parallel viscosity coefficient in the model and the more

common neoclassical results.

We find that the expansion in € gives successive conditions for a
steady flow state in successively longer time intervals. We start
on the fastest time scale, Ty where T is the classical electron-
electron collision term. We find a steady state in the T time
scale, and with more conditions imposed we may extend the steady
state to Te/s ~ T.. Finally, we are able to extend the lifetime

to Te/€2, at which point sources are necessary to maintain a steady
state or the system evolves on a time scale of order TE/EZ. In
principle it appears possible to maintain a steady state with energy
sources only. We find that the usual ideal magnetohydrodynamic
equilibria of Grad, Shafranov, and Schliiter are possible, but that
more generally the lowest order steady states have electron and ion
temperatures constant on flux surfaces, but density varies on a flux
surface. The overall determination of the energy dynamics is ex-
tremely complicated as it involves higher order perturbations of

the steady flow state and the details of our scaling hypotheses.

Our analysis is most likely not consistent with the general idea of

simple macroscopic scaling laws for tokamak energy confinement times.




In the next section we present our scaling assumptions and the
reduced Braginskii two-fluid model we study. In section III we
look at the lowest order system which characterizes the slowly
evolving steady state. Section IV continues with the next order
perturbation of the lowest order steady state and the deter-
mination of its time evolution. The final section contains a
brief discussion of the use of the Braginskii model and of our

results.



II. The Scaling Assumptions and the Reduced Two Fluid Model

In this section we introduce our scaling hypotheses concerning
the many variables appropriate to a two—fluid description of a
tokamak. We start with the relatively simple and explicit two-
fluid model of Braginskii. We believe that it would be highly
desirable to use a kinetic model without reduction to a fluid
model, but we expect that many relevant phenomena should be
describable within the simpler fluid modelling. Our scalings
lead to the conclusion that parallel viscosity and the small
particle flows necessary to maintain plasma equilibrium currents
together play an important role in tokamak dynamics. The re-
mainder of this paper explores the consequences of this approach
to the study of tokamaks. In this section we give a qualitative
discussion of the effects of viscosity and flow and we also

present our reduced, two-fluid, Braginskii plasma model.

In order to present and to justify our scalings we give in Table I
a set of parameters for a "typical' tokamak with hydrogen ions,

= 1014 cm_3, B = 4T, Ti = Te = 2.5 keV, minor radius a = 50 cm,
and Coulomb logarithm 15. We assume that the plasma beta is
relatively low and in the range 1-5%, and that the safety factor ¢
is on the order of one. Obviously tokamaks vary considerably, but
these parameters seem reasonable and somewhat typical. 1In Table I,
T is the species collision time, Wiy is the species thermal speed,

and V is the species flow velocity necessary to generate a current

B/L, or non-dimensionally

T/c= (De/wp) ¢ /(@ wp)




where Qc is the species cyclotron frequency and wp the species plasma

frequency
Table I
Tokamak Parameters
parameter
species T Vih QCT vthT/a v/vth
e 351028 3. fxi0culs 2%10’ 1.3x10° 1.9x10°
i 1.8x10 s 5%10 cm/s 6.8x10° 1.8x10° 8x10”!

We scale all parameters in terms of e, where

e2 = m /m,
e 1

1/2

so that in our case g? = 1/1836, € = 2.3x10u2, and € =.15. Table II presents

our hypotheses concerning the parameter scalings. We assume that the plasma 8

is of order €, and we introduce the major radius R and aspect ratio R/a, which

we take to be of order 8-1/2.

1/2
€

With B of order &, we take Bp/Bt to be of order
, where the subscripts p and t refer to poloidal and toroidal components,
respectively. Such scalings of aspect ratio and magnetic field automatically

lead to safety factors of order one. In a low beta system we assume that the

1/2

toroidal current is of order e times that generated by v, while the
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poloidal current is smaller by an additional factor of € . We assume

comparable relationships for the toroidal and poloidal components of flow

velocities.
Table II
Parameter Scalings
_ ’ e _]/2
Beta = 0(e), Aspect ratio = 0(e )
parameter
species Qt vthT/a V/Vth vt/Vth v /vth
o €—9/2 5—3/2 €3/2 52 55/2
i 5—7/2 5—3/2 E1/2 - E:3/2




Although we have scaled the aspect ratio in €, we do not, in fact,
make an aspect ratio expansion. We carry along in our equations

1/2

in any order, the toroidal corrections of order ¢ higher. It
is easy to verify that in the systems of equations given the

toroidal corrections are larger then the terms omitted, and hence

physically relevant and significant.

The scaling hypotheses of Table II are moderately reasonable,
although a scaling vthr/a " 5_2 would seem more appropriate. Other
variations in scalings are equally possible. At the level of the
present description it is quite difficult to distinguish different

hypotheses. But, for instance with v_ 1/a v 8_2 and all velocities

larger by a factor 5—1/2, a different characterization of the slow

th

evolution of tokamaks appears. The system of equations is similar
to what we present here, but significant differences occur. Related
to another question, if the flow velocities are substantially larger
than our estimates, then the tokamak steady states become quite
complicated as the ion and electron flows must approximately cancel
each other, in order that an appropriately small current may appear.
This additional constraint of approximate velocity cancellation
greatly complicates the system of equations. Thus, we take the
scalings of Table II as reasonable and as a set that generates

interesting steady states.

In any study of transport one is often asked: "What is the
confinement scaling law?". We believe that within the Braginskii
two-fluid model this question has almost no meaning. When we impose
scaling such as Table II, we are greatly restricting the class of

tokamaks studied, and we may or may not be able to scale from one




set of tokamak parameters to another. As we commented above,
shifts in the scaling do have quite significant consequences

for the representation of tokamak steady states and consequently
for confinement scaling. Thus, we view the work presented here
as an initial exploration of the exceeding complex field of

tokamak dynamics.

Based on the scalings of Table II, we can now begin to
construct our reduced Braginskii two-fluid model. We do not
write out explicitly the full form of the Braginskii model; we
employ the form as given in the NRL Plasma Formulary of David L.
Book, as revised in 1983  /14/. The system has equations of
conservation of mass, momentum, and energy for each species, and
in addition to the usual pressure and Lorentz forces, it includes
frictional forces, thermal forces, and viscous forces. The viscous
forces are given in covariant form in, for instance, W. Kerner and
H. Weitzner /15,16/.The energy balance equations contain the effects
of these forces, as well as ion and electron heating, ion heat
flux, and electron heat flux, the latter consisting of the usual

thermal gradient terms, plus a frictional heat flux.

If we were to ignore the viscous forces, then we could take
the difference of the two momentum equations and obtain a more or
less standard Ohm's law. From this form of Ohm's law we could
recover Pfirsch-Schliiter diffusion, which is generated by the
frictional force terms. The frictional force terms in the energy

equation are of the form

E‘F*= rJ’-:/ G‘.L + 'l: /U_n



where G'“= 9\0._1_: 1'\162’t¢ /’MQ_

and with our scaling
L & b 3
Eﬁ’-‘-' Pee’/Te ~ P&/, ~ p: € 1%

Thus, the frictional forces generate evolution of the energy on

b

a time scale of order Te/sq yv Ti/Es. As a standard of comparison
we note that the ion or electron heating associated with the ion
and electron temperature difference is

aT— % @"e/"ﬂ;) 'nﬁ(r'_ -T{) /?:C )
so that EOT ~ PC e‘l/ r(:"e
corresponding to a time scale Te/Ez. Thus, the temperature
difference heating occurs on a much faster time scale than the
frictional heating. If we were to try to make the frictional
heating comparable with the temperature difference heating, we
would have to increase the currents and hence the velocities by
a factor of 1/e, which would make the velocities much too large.
Thus, in our model we will find frictional heating negligible.
We see also from this scaling analysis a reasonable time scale

for the evolution of the system is Te/Ez.

We next turn to the contribution of parallel viscosity. If we
calculate the force on the ions coming from the poloidal flow,

we find

t e 3/ .
. - z
while the force on the electrons is
Ty ~ Pete € " [a® ~ Pe&/a ~ EP/a,
We have calculated the forces based on the poloidal flow; if one

calculates the viscous forces based on the toroidal flow and

the explicit Braginskii form, see below, one obtains exactly the
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same estimate since the toroidal flow occurs in the form

R [ (@_V] (U_l_{ﬂ)]/B and BP/B &R, Thus, ion parallel
viscosity affects lowest order pressure balance, while electron
parallel viscosity appears in first order. The various perpen-
dicular viscosities appear in much higher order. In the energy

equations it is easy to see that

E, ~ Pe/t; ~ P/oe ~ EP/Te

2

Thus, ion viscosity affects energy balance on the T, =T /e time scale
(=

while electron viscosity affects energy balance on the Te/€2 time
scale. The viscous forces are then significantly larger than the

frictional forces, and we examine the effects of the viscous forces.

We are now prepared to formulate our reduced Braginskii model. We

assume the scalings of Table II, and we look for solutions for which

we assume that the time dependence is slow and on the time scale
Te/e2 v Ti/E. Further, if we examine the energy equations and take

into account the large parallel heat conductivity, we find easily

T. = T;tyt) (4 + 06Ce®))

[

Te= Tegt) (4 +0CH))

In fact the electron temperature is a flux function to higher order
than €2, but €° is adequate for our analysis. Finally, we add
momentum and energy sources of order e’ times the variables in
question. We do not include mass sources, but we allow mass out-

flow.

If we now write the Braginskii system correct to 0(e?) we find

easily that with our scaling conservation of mass is

(1)
(2)
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% + Vimy,) = 0

5 T Viw,) =

conservation of momentum 1is

mim (e V) et Voo = en(Esuendre)- V[I-382 ]
+ P
VPQ = fe - en (_E,.+9¢"§/C)“V[u 388;:]

where__F_’i and Ee are the 0(e?) ion and electron momentum sources,
; 2
the mass flow term is of order (pi/a)esl , and hence an example of

a toroidal correction retained, and

‘¥¢ - 410 '§ /EBZ ) o= ;}8

¢ e

where Ne= 036 mAQT; T M= 073 mb&T: T

and the strain matrix W is

L Dui Qu: K
Whg" et T = J&e V-u

Z
X, X 3

Conservation of energy, to the order we treat it,is

2o [ (0 O] 4 pr P = V(X0 EGTIRT)

(3)

(4)

(5)

(6)

(7

(8)

(9)

(10)

AAANUEAALS b R RN IR TR AN

+ E.

- ""‘z[ BTC _'_(gc. )TE] P

V-
*V-[K._ﬁlVTc] ~ 3 4
tEe + Ve[0FmA Te(ue V)8 ]

1Oy
—_—
o <5

= V- (K,

u 7)kTe J (11)
E\‘_j,g - *';"h‘ttﬁ;-l )/Le
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where Ei and Ee are the external ion and electron sources,

B = B/B
Kiz= 3.3 m kT 0 fm;  KC= 3.2 whTe Te /e (12)
and

K L5 ATIT: )R] KE o= L5aATe Sefme) fle2e) (19

The electromagnetic equations coupled to this system are

V.- 8B= 0 (14)
Vx8 = b4iem (Ur-ue)/c (15)
and V)(E — - L3 g_,e- (16)

c 9t

In the system (3), (4), (5), (6), (10), (11), conservation of
mass, (3), (4) is exact, conservation of momentum, (5), (6) is
correct through terms e’p/a and conservation of energy (10), (11)
is correct through terms ezp/re " Ep/Ti. This system mixes

terms of different orders in €, and in the next sections we shall
undertake a systematic expansion of this system. In preparation
for such a systematic expansion we can simplify the system
slightly and we also restrict it to the special case of axisym-—
metry as appropriate to a tokamak. We employ cylindrical

coordinates r,0,z, with @ being the toroidal direction.

We may reduce the electromagnetic equations (14), (15), (16) of
the system by the introduction of flux functions

A A “
B= =% Ya/r+0x/v +2y, /v )

where

;(ﬁyzz - 45 €L ©m 04:-—({;-) (18)

Xyv = 4% €/c vm (uf-- u:)

and

A*T - * (\l“)\*/f)lv t q’,i_lg — - q'-l.l- e/c ’H((-L‘.B-uee) ¥,



13

(19)

A vector potential associated with B, V x A = B is

P é lP/“r - '?'A't?/r'l' E\A‘,q" /\" (20)

where A‘JL - . X (21)
and A = 0 on the boundary of the domain. We may then easily

express E from (16) as

A 22
E““V‘P"Ea—{ GVft)/zr, (22)
where Y(t) is the loop voltage, assumed 0(e?), and %{6 ~ é gt/ﬁ:e .
We may then use the set (17)-(22) instead of (14) - (16). We

may also simplify conservation of energy if integrate (10) and

(11) within the flux surface \P (vz2) < g) , and we find
of = "}e

j.d-V{ 2 M&(DT‘+ u V)-]:) 4= F‘_ V'g‘ + l{%l-é"WA'é (23)

vEy =
- @.l. "'E,g} — 0
where Qe = -~ Q; - 3(""‘:/4:;‘) nh (Tc ..7:) //L\e (24)

We use conservation of energy only in the form (23).

We can also simplify the form for conservation of mass. We observe

that given.ELﬂIQt we may introduce a function p such that

In
a PV (kVe/py) = O

and then

(25)

MU = =T Ay e +0woen 2 hov e AR TY 17y, 26)

We may then finally complete the characterization of the magnetic

field and, see (18), (19)

€ = A+ 4% & (Li-Le) @n
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A*sp = _ 4y ¢/ +tm (W:-we) | (28)

We add the simple additional explicit forms

A

“U, xB= @RQ'V)L‘]/'I‘ - Kl Vi s mu, Ty (29)

-

-~

-0 riv [VY| + px VyxVO/ | 7y|

8Wob= [ B V), = hug By [ne + 4 B (kana = ke o))

30)

i_ B..z[Lu,e [tm ]1f+8733 E [L"J"/*”]\*—[L"Z /¢MJ‘2 1

B; ['Ltfv/"‘"L;i +§ B B V)(K the/17yr) + Bz(B_'V](h Y /lvw)
Bo Wy /(s bel) + /3 Ym B2 PN/t

With (29) the 0 component of momentum conservation reduces to

r-:’_‘:['l't:\* ("twl:)li-" L"s! (“1wt')r'f] ten [ V(t)/&ﬁ' 3 wrf /C ]
+ Ty ~0«P; = BV (%A, 38, {:/8"]

(31)

~en[Vit) (e + W fe] - %'1 Vy] — 5*& = E-V(‘%Lcﬁa’f&,}, /3’) (32)

We have written (31) and (32) such that all the terms on the left

hand side are 0(e?). Exact consequences of (31) and (32) are

{f‘\f 5 T lhoewede= by 6ta),) +en Vit *\ele ]
+e - 8.P. -
ek VY] - 8P { =0

(33)

SdV 5&?7 (Vi) fox +‘ﬂ¢[c]+ e |yy] + 6 - PeTg = 0 (34)
Ve

so that

(35)
JdV kiye Gfug), = dgp 6% uoy) ] fe(P-.Pe) d vV
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From (35) it is clear that momentum sources are needed to main-

tain an ion flow.

We summarize the model we use. We take conservation of mass
in the form (25), (26), conservation of momentum in the form
(31), (32) plus the r and z components of (5), (6), conservation
of energy in the integral form (23), and the electromagnetic
equations in the form (17), (27), (28) for B and (20), (21) and

(22) for E.
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III. The Lowest Order Expansion

As was noted in the preceding section, the reduced Braginskii model
contains terms of different order in € and is extremely complex. It thus
seems useful to apply a consistent expansion in e to the system. In this
section we study the system to lowest order in e. This study constitutes
the major part of this work and is directed to the characterization of
physically and mathematically well-posed problems for the system. In the
next section we sketeh the analysis to the next order in e and we give

equations for the time evolution of the system in the Tefez time scale.

In our system to lowest order in e all external source terms, plus all
time derivatives, are 0(e?) and hence ignored. Furthermore the
contribution of electron viscosity in momentum balance is 0(e), that is fe
= 0(ep), and hence is ignored. Finally, the many terms in the expression
for strain, see (30), proportional to B:, B.B,, and B; are all 0(B) = 0(e)
times leading order terms, and hence dropped. We may thus finally write the

lowest order model as:

conservation of mass

A

s A A (36)
'hg:("-"’ i L‘)z_/f % e T(JJ‘M + Z L“,*/T
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conservation of momentum

-% Li + ngf‘i /?(. —F,;(‘j') (37)

I

B _%A'e = T (y) o
R e (39)

Vei=-eaVd - 24 yi+ €0y Vg — vy
- 5:1" 'ft-/d' (40)

Vi9e= en Vd + —ec—l‘ V,[, -c— M, V¢
i (41)
T B W8 = o 80) 0y + A (e e ki) f30t
s ke /v X=i,e (42)
fez 12V, 8.8 /gt
and conservation of energy

Te=Tilel s T.= T.(g) -
J- YoV )Te * P Ve + ' £ B W8 1gY dV = P
j‘ g, %"‘&" UeV)Te * Pe Voue = © (45)

We note that (U4l4) and (U45) represent energy balance on the re/g - Ty time

scale, Maxwell's equations are just

B= - Tqulr +0%/s +3 ¢ /¢ (o)
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A = ,xo_‘_ O (¢) (47)

Aqtlf = - Ywe/c ~ra ( Ww; — w,) (48)

I

E —Vfb : (49)

Our lowest order model consists of the definitions and equations (36) -

(49).

We now start the analysis of this system with an examination of the
electron equations. From (38) Ae is eclearly a function of y, and hence

momentum balance reduces to

, (50)
VFe: en VqS ¥ -E(%{ Le(tr)—-nwc) Vy
Thus [
w(®BV)pe= BV T £un) = e BV
n = Ny) ex?(eqﬂk‘l;) (51)
= pe = fely) exp(e¢/4T) o
If we insert (51) or (52) in (50) we find
Felv) _ e#> Lly) e (?CoLe)(w) _ w) (53)
c \ ~'n €/

N(y) Tely)



_]9...

In addition we note that

’
Mo = hely) B oofp ke ) VO ow
PeVlde= -k Te UeVm = - LT A, B-V &ng (55)

so that (45) is trivially satisfied. Hence, in lowest order the electron

equations reduce to the relation (51) (or 52) between n (or P,) and ¢ and

the relation (53) for W, It is useful to carry out one subsidiary

calculation before we turn to the ions. From (53) we see that

g_v wc'}" x. (L?)"’ n]i‘ 'LG)E W,f)/‘f‘nt - 2 7;, 'LP)Z /an = -:- ]?.Tc’ §~V&v

so that, see U1,

L g\
2_§ e.@':-‘

]

' b] ey

3 bW R, [BVn] /¥ 0 = B x, L) o
+ £

e

T, 8-V Lun . (56)

We shall be able to obtain a final system that does not contain ¢

expliecitly.

We next turn to the ions. When we insert (37) into momentum balance we find

easily

?
V = — _ £ ‘xn _@_ L 70}:('*)
R=-enVh- L X gL +(&wy- 22 7y
1 (& X, - 7_‘_?) o

3( 1-3 ‘£ 3_‘,5
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We can simplify the system somewhat if we add the electron and ion momentum

equations and introduce total plasma variables

Tly) = T; () + Tely)

FlY) = Fily) + Fe () (58)
A = i = ke ly)
so that W = wl: _ we

v?:__.’-_i % VL.;_(%T,Q_ ﬁﬁlw) Vy -

3¢t

s 5 (ElTm) 6o

and from (41), (42), and (43)

g-v w + xn (‘L,Tn,e - L,z-’n,q-) /3""3171 —'A—IE?(‘/V‘*"

= X (Fy)- £4) y 87, L Lex, ¢ o (69)
31; . 'tf.w?. en ‘eﬂ. e g
+  Be%e Lo ty)
T‘ry
Finally, the Grad-Shafranov-Schliiter equation is just
Oy = - < 10 (61)

Thus, our lowest order steady states are characterized by (59), (60), and
(61). The electron flow can then be found from (51), (52), and (53), and
the ion flow from (58). Although we do not yet know what data is
appropriate for (59) and (60), we see that so far there are four arbitrary

flux funections that appear Ti(w), Te(¢)' F(y) and Ae(w).
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Before we continue our examination of (59), (60), (61) it is useful to
observe that static ideal MHD equilibria are possible solutions of our
system. It is easier to show this directly from the original system (36)-

(49). We take Fi =0, Ay, =0, ¢ = ¢(y), n = n(y), w; = wi(w) and we find

cmw = ply) - L 1" ke () (62)

so that (61) becomes exactly the Grad-Shafranov-Schlilter equation and

g-'(lf) = - en cfltt,v) 4 % " W, (63)

We now return to the system (59), (60), (61). We see that (61) essentially
decouples from (59), (60) in that with nw given we may solve for y
directly from (61). We might even hypothesize an iteration scheme in which
we solve (59) and (60) for n, nw, and XA, assuming B given and then we
solve for B from (61).‘The structure of (61) as an elliptiec equation for
which boundary data in ¢ is given is quite clear and we concentrate on
(59) and (60), assuming B as given. The system (59), (60) is far from
standard and we must modify it considerably before we can proceed. We
observe that (59), (60) is a set of first order partial differential

equations for n, nw, and A, but the system is not quasi=linear as the

terms A,r n,Z - A,z n;, appear in (60). We may rewrite (59) as
RT ¥ te % Fy)
N = I8 V'i, A3 _ Koy _ 2
e 1—(an o kT (4)) Py sn)

3

and we may use (64) to eliminate Vn from & . Vi x Vn and we find
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Although (65) is more complicated than the equivalent form (60), the former
has the advantage of being a quasilinear equation in w, A and n. We then

take our basic system as (59) and (65).

Now (59), or (64) has problems in that it is not a standard equation and,
in fact, involves integrability constraints. We may obtain a more standard
system from (59) by the following procedure. We denote the r and z

components of (59) as
S.= © (66)

Se= O (67)

and we wish to construct an equivalent, but more obvious system. Clearly,

consequences of (66), (67) are

Sea —Se,= o (68)

We must determine under what additional conditions, if any, are (68), (69)

equivalent to (66), (67). We see easily that (68) is equivalent to

(Se+ 8:Sarp.) .~ (B:VSe) /8, — 5,(8,/8,) = O (70)
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or to [BV 5]/ B BefB))e o ( SE+BB_*; Se)e=0 . (M

Thus, suppose we consider a tokamak, see Fig. 1.

B

24
W

Fig. 1

and in the segment AB from this magnetic axis to edge we give Sr = 0 and we

assume that (68) and (69) hold everywhere. From (71) we conclude that Sr =0
up to a curve on which B, = 0. Furthermore from (69) we infer that S, = 0 up
to that curve also. Thus, see Fig. 2, we infer Sr = sZ = 0 in a sector shown

C'AC .
B

-

Fig. 2
On C'AC Sz = 0 and we then apply (70), so that by the same argument we get

S =8 =0 in a sector D'AD which contains Ac', AB, AC.

B
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A final application of (71) then gives S.=5 =0 everywhere. Thus, the
system (66), (67) is equivalent to the system (68), (69), together with the

condition that on z = 0 from the magnetic axis to the edge Sr = 0

When we apply the preceeding analysis to (59) we conclude that (59) is

equivalent to

O=~%%:‘-,;+<—B-V(-‘?—Emw)+§%?ﬂ (72)
J _— K4 e Xo o B"KD £ -
%.T.B_Vfr e '5 ;—;?. @_V/L + ?- (-E L -‘F(‘y)) ) (73)

and the constraint

)
Pre = 8Ky +(_e€ e x;tiw)q,]ﬁ 3.'75_3 (% L=Fly))  aw
h 2
holds on the curve z = 0 from the magnetic axis to the outer edge. Hence,
we have reduced the conditions for momentum balance to the three first
order quasilinear equations (65), (72) and (73), together with the
constraint on the solution (74) on a particular curve. We recall that in

this analysis we take B as given.

A complete analysis of (65), (72), (73) and (74) is for beyond our ability,
but we can give some qualitative, plausibility arguments to hypothesize
what might be a reasonable, well-posed problem for the system. As a guide
to the nature of the problem, we observe that for the original system in
the form (41), (42), if fi + 0 then solutions of definite parity in z ,

corresponding to up-down symmetric solutions, do not exist. For, if li'
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w., n and {y are all even functions of z, an up-down symmetric state, then
B = Ei * B is odd in z while f,, given by (37), is even, and (42) fails.
As an aside, we conclude that on physical grounds fi should not be too
large. In the general, non-symmetric case we find that the construction of
single-valued solutions of (65), (72), (73) and (74), is intricate, but
straight-forward, when viewed correctly. Symmetry greatly simplifies the

problem, but in general we lack symmetry.

If we consider the system (65), (72), (73), and (74) we observe that we
have three quasiliner partial differential equations, whose characteristic

surfaces v(r,z) = const satisfy

LB-Val® [ v, Ao (F9) - 2 L) + 8-vy 3] w+R(T'-T) v
(75)

+H(Flg) rweg bep)v § ] =0

We see that the characteristics are the flux surfaces counted two times
plus the surfaces corresponding to the vanishing of the second factor.
Several very different possibilities appear depending on the nature of the
second type of characteristics. The simplest case, and finally the one that

we analyze is the one in which these characteristics are simple curves that

enter and leave the region in which we construct an equilibrium, see Fig. 4.

Fig. 4
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If we look at the magnetic axis, where Bp = 0, we conclude from (65) that
A,z and F(y) - e/ck are either both zero or both non-zero. We then infer
that for these characteristics the magnetic axis is either a center, with
closed characteristics nearby, or a node with all characteristics entering
and leaving the magnetic axis. Other critiecal points of these
characteristics are also possible. The different types of characteristics
do indeed affect the physical properties of the lowest order steady state,
but we concentrate on the simplest case given by Fig. 4. One additional
property of this system is that if we denote the first order differential

operator in (75) which generate the second class of characteristics by L,

Lv = 0, then A satisfies the equation
L A= (Lym,w,~, B) (76)
so that ) alone is associated with those characteristics.

We can now address the question "what is a possible well-posed problem for
our system?". We start with a simpler question, we ask "what is a well-
posed problem in the domain DABCD, where A is the magnetic axis and DAB is

z = 0?", see Fig. 5. In figure 5 we alo indicate

-

Fig. 5
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by dotted lines some of the characteristics of the two families. We can
consider this problem as a mixed initial-value boundary-value where we give
initial data on AB and boundary data on AD, see Courant Hilbert Vol. II, p.
471 ete. On AB we must give three pieces of initial data, while on AD, when
one characteristic enters the domain, we give one piece of data, which
considering (76) should be ). The general theory does not apply as we have
the magnetic axis, & singularity at A, and we want solutions in the large,
but qualitatively it seems that we have a plausible characterization of a
well-posed problem. We have indicated that the solution depends on four

funections; three functions on AB and one function on AD.

However, we recall that the data on AB must satisfy the constraint (74).
Hence, we coneclude that three arbitrary functions determine a solution of
our system in the domain DABCD. We have answered the second question, we
can now return to the first. The data on DAB would equally well determine a
solution in DABED. In the symmetric case fi = 0 these solutions would
coincide on DAB, but in the non-symmetric case we have no guarantee that
the solution in DABCD agrees with the solution DABED on the segment DA. By
construction these two solution have the same value of A on DA. Thus, in
order to construct an acceptable solution to our system we must impose the
constraints that the two methods of computing n and w on DA agree. If we
impose these two constraints then it is easy to see that n, w, A and their
derivatives are continuous across DA. Since our solution depended on three
free functions and we must impose two constraints we conclude the solution
of the system (65), (72), (73), and (74), and hence (59), (60) is expected

to have unique well-posed solutions when one free function is specified.
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Finally, we expect the lowest order equilibrium system to have unique, well-
posed solutions when the four functions Ti(w), Te(w), Fi(w), e/c Ae(¢) are
given, when one function in the electron equation is given, at (51) and (53),
either N(y) or the flux surface average of me(w), and when one function in
the ion equations is given. Thus, the solution depends on six free functions,
and the boundary value of . When we impose the integral constraints in
energy balance (44), (45), we conclude that solutions on the L time scale
exist and depend on five arbitrary flux functions. In the next section we

examine the system in higher order.
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IV. The First Order Expansion and the Time Evolution of the System

In this section we discuss the expansion to next order and we examine the
slow evolution in time of the steady state decribed in the previous
section. We treat these topics even more briefly and speculatively than we
consider the corresponding topies in the previous section. We wish to show
that it is a reasonable hypothesis that in next order the system of
equations possess solutions and that from these solutions one can determine
the slow evolution in time of the steady state of the preceding section.
For the most part, our arguments reduce to the qualitative description of
the next order system of partial differential equations together with the
enumeration of data necessary to specify solutions. Finally we apply the
integral constraints coming from conservation of energy and momentum in

order to obtain the time evolution of the system.

We return to our original system of equations: conservation of mass (25),
(26), conservation of momentum (31), (32), (5), (6), conservation of energy
(23), and the system of electromagnetic equations for B, (17), (27), (28)
and for E (20), (21), (22). We expand to one higher order in e, and since
a/9t ~ 52/18, and sources are also 0(e?) we find that the system of first
order equations is essentially the same as (36)-(49), our lowest order

model, with inhomogeneous terms involving only lowest order flows added to

many of the equations. Conservation of mass is essentially unchanged
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(M u,

" a0 A @ A ™ (

77)
} = - 7T L,_,f/f + 6 \T'G'HDO“) +Z A'Ulf /"l'
where the superscript (1) means the first order terms. Conservation of
momentum involves the integration of (35), (36) and the # and 2 components
of (5) and (6). The sources on the left hand sides of (35), (36) are order

€? and dropped in this calculation, so that on integration we obtain

8, §. \

e n e J¢

- A+ 3¢ (L———Bt ) — D (78)
Bo fe )(ﬂ

()
e s
and c e . 3"" B2

Il

C) (79)

In (78) and (79) we have not added an arbitrary function of flux on the
right hand side, as we did in (37), (38). Any arbitrary function of flux

that might appear in (78), (79) is added into the lowest order functions

Fi(w), Fe(w) that appear in (35), (36). In general, we do not introduce
any new arbitrary functions in first order; we assume that they are all
absorbed in the lowest order functions. If we were to carry this process
beyond first order we would have to take into account these modifications,
but to first order no problems occur. If we expand out explicitly (78) and

(79), we find

e W 2 . 0) -
L) w30 = I, )
)
e (81)
S ’l'e = Iz

where I, and I

1 , are some expliecit inhomogeneous terms that depend on lowest

order variables only. To obtain (81), we recall that fe is automatically of
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order ep, so that only lowest order electron variables appear in fe. The

remainder of conservations of momentum is

V‘;’:__e(nv(‘)) _81 VA. +e(,"w ng) (82)
Vfi —3-:-{2’-’/*4-1'3

and - (83)
m

) e 0
VR=e@ve)”- Ll vy) + I,

where we have used (81) to obtain (83), and I4 + 0, and

m

. 2
fl: — ﬂe i I' g.vwi +Io(A’;)¢ n]? == ;.,?’n;\r)/S‘rsnz
M —
-L"’,_x:'/.,.‘f” } +J‘S

(84)

Consistent with our comments we do not expand Ti((w,t) and Te(w,t) in

powers at e. Maxwell's equations are essentially unchanged, and

A O A m A )
-1 P,z2/r + 0 X /[v +2 lf",r/ﬂr (85)

vy
Il

A\?—-H—Fe/cfzm(w—w)SO) (86)

)
and E:—V¢I‘ (87)

The integral constraints of conservation of energy are (23) for ions and
for electrons expanded one order beyond (44) and (45). These two equations

(1)/Bt and

are in the time scale Te/E and include the time derivatives 9T
BTél)/at. In addition conservation of momentum in the © direction adds the
two integral constraints (31), (38), which relate the partiele flows, the

momentum sources, and the electromotive forces.



- 32_

It is clear that the structure of the system (71) - (87) is not
substantially different from our lowest order system. We treat this ystem

just as the lowest order system and we start with electron momentum

(n
balance, (83). We may use (83) to determine (nme) provided the

(0)

component of (83) perpendicular to Vy is satisfied. That is we require

(o)

- (1) P °© o) (1 { ° -
RTe B8Vn" = en” B Vo' en" B V" 801, , @B

—

or to) (o)

kT (o) @!:IV ("ﬂb}/mm) = e §,V(p(ll N gmi LV/’h .

(89)

Thus, we must impose the additional constraint

(o) _
_( B '%_q» /’hh) cdyV = O ) (90)

(1) (1)

and provided (90) we may determine ¢ from (89) if n is known. Now

o (1) is determined up to an arbitrary funection of flux, and we normalize
our solution, as discussed before, by the requirement that the flux surface

(1) (1) )(1)
e

average of ¢ is zero. We can then determine ¢ and (n w in terms

of n(1).

The analysis of momentum balance exactly follows the pattern of the last
section in the reduction from (39) and (41) to a form analogous (59) and
(60) to the final forms analogous to (65), (72), (73), (74) with added
inhomogeneous terms. The analysis of the hyperbolic system should then

apply directly, so that solutions of ion momentum balance would exist,
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dependent on one free function. We can obtain a unique first order solution
if we add the constraint, just as before, that A(1) averaged over a flux
surface is zero. Again, such a constraint only trivially affects the lowest
order solution of the last section. Thus, in the abstract we can construct
a unique solution of our first order perturbed system provided the
constraint (90) is satisfied.

We may finally determine the slow time evolution of our lowest order state
when we recognize that our lowest order solution depends on five free
functions, see the discussion at the end of section III, and we have the
five integral constraints (23) for electrons and for ions, (44), (45), and
(90). With this system the time derivation BTi/Bt, aTe/Bt, ay/dt, and
on/at are related and the slow time evolution is determined. It should be
noted that in order to apply (44), (45) it is necessary to evaluate sy/3t.
We obtain this quantity from the time derivative of the Grad-Schlilter-
Shafranov equation. For this latter equation we must also differentiate the
three equations for n, A, and w. A similar analysis has been described in
Ref. /16/. We note in passing, that with energy sources, but no momentum
sources, a steady state with 5/9t = 0 is in principle possible, provided

the sources and special functions are appropriately chosen. Such & system

is a steady state current driven tokamak.




V. Discussion

Before we discuss the implications and significance of the work presented
here, we must comment on our use of the Braginskii model in comparison with
neoclassical models. We do not assert that Braginskii transport is entirely
adequate to represent tokamak physics. Rather, we believe that in view of
its relative simplieity, it is a useful starting point for the exploration
of various transport effects. We explain shortly why it should be a rough
approximation to better models, but first we caution the reader as to the
nature of the proper comparison between Braginskii and neoclassical models.
Typically, in neoclassical theory one starts with a kinetic equation and by
several approximations one arrives at a system of flux surface averaged
equationgjiﬁm should not compare the coefficient derived in neoclassical
theory that relate the flux surface averaged strains to the flux surface
averaged forces, or stresses, to the coefficients of the local Braginskii
theory. Thus, following Braginskii we take a very large coefficient of
parallel viscosity, but the flux surface average of the momentum transport
from parallel viscosity is identically zero in the toroidal direction and
small in the direction of the magnetic field. It is these latter two
quantities which are calculated in neoclasical theory. Hence our large
parallel viscous coefficient is not automatically inconsistent with

neoclassical ideas.
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Next, we turn to the question of the approximate validity of the Braginskii
model. Its usual derivation argues that enough collisions have occurred to
bring the system near local thermodynamic equilibrium, and then one inserts
into the Boltzmann equation a distribution funetion which is a loeal
Maxwellian plus small corrections and one solves iteratively for the small
corrections. There is no question as to the validity of this formulation
when collisions are strong. However, if the system is for whatever reason
in local thermodynamic equilibrium - e.g. as a result of instabilities, or
contact with an exterior thermodynamic equilibrium (heat bath), or method
of plasma production - and if the "strains" - the gradients of equilibrium
density, temperature, and velocity - are not large, then the same iterative
procedure to calculate the perturbed distribution function in Braginskii
can be used in our case. One will then find the "stresses" - the
generalized forces generated by the "strains" as moments of the perturbed
distribution funetion and they will be essentially the same as Braginskii.
In our use of Braginskii transport we have carefully adjusted the
"strains", corresponding to parallel viscosity, for instance, to be small
enough that the associated '"stresses" are compatible with the other usual
thermodynamic stresses, such as pressure gradient or Lorentz force. If our
viscous stresses were much larger than the other forces, then the
applicability of Braginskii would be questionable. Thus, we expect that the
Braginskii model is a fair first approximation with which to start a study
of plasma transport. We certainly acknowledge the grat desirability of
repeating our analysis with a full kinetic model and showing in greater

detail the effects referred to in this paragraph.
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We now turn to the implications of this work in the study of tokamak
dynamies. We have shown that the partiecle flows necessary to generate
ewquilibrium currents are large enough to have other significant effects.
When one includes the effect of parallel viscosity coming from gradients of
the equilibrium flows - recently other authors have considered other types
of parallel viscosity - one finds that these flows also determine the
energy balance and energy flow of the system. We expect this conclusion to
apply more generally than in the Brginskii model. Furthermore, crude
scaling arguments indicate that the energy lifetimes are in rough,
qualitative agreement with present hot tokamaks. These flows allow the
possibility of ideal magnetohydrodynamic equilibria, but they also allow
for steady states with density varying on a flux surface, although

temperature remains constant on a flux surface.

We have finally presented a model in which one calculates an equilibrium
state, Section III, perturbations from that equilibrium state and the time
evolution of the equilibrium, Section IV. The calculation of the
equilibrium is considerably more complicated than the calculation of an
ideal magnetohydrodynamic equilibrium. We retain, of course, a Grad-
Shafranov-Schliuter equation for the magnetic flux, but we have a set of
first order differential equations for the sources in the Grad-Shafranov-
Schlilter equation. This analysis indicates how intricate tokamak transport
is likely to be and how sensitive the results would be to small changes. We
can calculate the energy transport only after the completion of the
caloulation of a perturbed equilibrium calculation. Thus, it seems likely
that obscure changes in lowest order may have major changes in the energy

flow. We indiecated that in principle our system appears to allow for a
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steady state tokamak with only energy sources to sustain it. Thus, we
believe that we have included the "bootstrap current" of recent great

interest.

We have just indicated how complicated within our model and secaling is the
determination of energy transport. We could take another scaling of the
velocities, for instance, in Table II we might multiply all the elements in

the last four columns by e /2

. In some ways this might fit the numbers of
Table I slightly better. The basic model of section II would not change,
although the lowest order equilibrium would be rather different, and one
would still get a system similar to Section III. However, the calculation
of the energy transport would now require calculation of perturbed
equilibria through second order. Thus, the change in the energy transport
from the relatively simple results given in this paper to those with the
modified scaling of velocities would be quite large. We would then expect

that it is extremely unlikely that there is any generally valid law for the

scaling of energy confinement time in tokamaks with different parameters.

In the matter of "anomalous electron energy transport" we observe that in
our model we have significant energy flows generated by the ion and the
electron parallel viscosity. One could make the ion energy production quite
small - and to the extent that a tokamak is up-down symmetric this effect
must be small - but if Bp + 1 then there must be electron poloidal flow
and correspondingly electron viscous energy production and electron energy
outflow. These electron energy outflows must occur and do not require any
anomalous perpendicular heat conductivity. Their effects can be estimated

as on the order of e—u larger than the classical (Braginskii)
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perpendicular electron heat flow and 5-2 larger than the classiecal
perpendicular ion heat flow. Thus, we find significant anomalous effects
without the addition of anomalous transport. We believe that this
phenomenon alo is independent of the details of the Braginskii model and
would reappear in a full kinetic caleculation which includes the equilibrium
flows associated with the currents. We consider that the exploration of

this possibility have been the major function of this paper.
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