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Abstract

The critical dependence of plasma confinement in low-shear stellarators, such as Wen-
delstein VII-A, on the external rotational transform can be explained on the basis of
magnetic surface destruction. External symmetry-breaking perturbations generate is-
lands on the low order rational magnetic surfaces. The islands are largest at ¢ = 1/2 and
t = 1/3. Confinement is optimum in close proximity to these values. In order to study
the structure of surfaces under the influence of perturbations, a mapping procedure is
used instead of field line integration. It is found that the neighbourhood of low- order
rational surfaces is particularly robust against surface destruction. The reason is that in
this vicinity only rational surfaces with large m and n exist (¢ = m/n). On these surfaces
the external perturbation only generates small islands.

In W VII-A the current leads to the helical windings are one symmetry- breaking
perturbation, and there might also be others. It is possible to avoid field errors of this
kind in future stellarators.




I. Introduction

Experiments in low-shear stellarators like W VII-A /1/ exhibit a critical dependence
of the plasma confinement on the structure of the magnetic field. At particular values
of the rotational transform ¢ (¢ = 1/2, 1/3, 2/5,...) confinement is deteriorated, which
indicates that around these low-order rational values of ¢ magnetic surfaces are destroyed
by perturbation fields. The experimenta:l results indicate that the perturbation breaks
the five fold symmetry of the configuration and therefore can be explained by field errors
coming from the coil system. Numerical calculations /2/ have indeed shown that current
leads to the helix create a local perturbation field of 10 — 20 G, which gives rise to island
formation on rational surfaces. The largest islands occur at ¢ = 1/2, three smaller islands
at ¢ = 1/3 and five islands at ¢ = 2/5. Islands are also found at ¢+ = 3/7 and ¢ = 3/8
. It is not surprising to find enhanced plasma losses in the presence of such islands.
As can be seen from fig. 1 and 2 the energy content of the plasma is a minimum at
¢=1/2,1/3,2/5,2/3,... .

What is surprising, however, is the maximum energy content in close proximity to
t = 1/2 and ¢ = 1/3. There is a small positive shear in WVII-A so that under these
conditions the rotational transform ranges from ¢ = 0.48 on the magnetic axis to ¢ = 0.49
on the plasma boundary. A similar situation is ¢ = 0.51 on the axis and 0.52 on the
boundary. As already shown by numerical calculations the surfaces close to ¢ = 1/2 or
t = 1/3 are not destroyed by the perturbation which creates large islands at ¢ = 1/2 or
1/3. This can be understood from the distribution of rational numbers in the vicinity
of ¢ = 1/2 or 1/3. Close to 1/2 only rational nambers m/n exist with relatively high
values of m and n. The distribution of rational numbers is shown in fig. 3, where
|log1/n| is plotted vs ¢ = m/n!. An ¢ -interval from ¢ = 0.48 to 0.49 contains rational
surfaces with larger values of m and n than the region from ¢ = 0.44 to ¢ = 0.45.
A magnetic field perturbation By , which is created internally or externally, contains
several Fourier harmonics, which are in resonance at ¢ = m/n and create a chain of at
least n islands. With a decreasing perturbation spectrum, we expect the sige of islands
to decrease strongly with the period n ( n is the number of toroidal transits before
the magnetic island closes upon itself). This general behaviour may explain why the
neighbourhood of low-order rational surfaces is especially robust against destruction.

The perturbations from the helix leads and joints are the only ones to be identified
in the WVII-A device. Other unknown error fields could also be present in the coil
arrangement or originate from ferromagnetic or paramagnetic material. The particular
role of ¢+ = 1/2 and ¢ = 1/3 can only be explained by a symmetry-breaking external
perturbation, otherwise ¢ = 5/n should be the surfaces to be destroyed first. The basic
periodicity of the WVII-A stellarator is m = 5.

The main question now is whether the neighbourhood of low-order rational surfaces
is always the last one to be destroyed by any external or internal perturbation. In or-
der to study the structure of perturbed magnetic surfaces, field line tracing would be
the appropriate method, however, but great numerical effort is required. The mapping
technique developed by J. Greene /3//4/ and B. Chirikov/5/ needs much less compu-

IThis figure has been prepared by I. and W. Ott



ter time. The disadvantage is that in general the analytic representation of the map
corresponding to a perturbation field B;(x) is not known, approximations have to be
found. But it is well-known that any toriodal magnetic field with field lines returning to
the poloidal plane after a toroidal transit provides a flux-conserving map of the poloidal
plane onto itself. Studying the features of a flux (or area ) conserving two-dimensional
map is therefore equivalent to investigating toroidal flux surfaces with small perturbati-
ons. The theory of flux-conserving maps is well established. The KAM theorem states
that irrational magnetic surfaces remain unperturbed if the perturbation is small enough
/9/. Most theories of flux-conserving maps concentrate on the transition to chaos and
the intrinsic scaling laws. In this context the question will be treated how configurations
with different ¢ -regime react on a fixed perturbation.

II. Basic Equations

We start from a magnetic field B, and assume the existence of nested toroidal magnetic
surfaces ¢ = const. The field may be a vacuum field or a finite-# equilibrium field. Let
the unperturbed magnetic field B, be represented in flux coordinates (¢, 8, ¢) with the
toroidal and poloidal coordinates ¢ and 6:

B, = V¢ x V(¢4 — 0) (1)

The rotational transform ¢(y) = ¢,+¢, ¥ +¢,4? is specified by three constants ¢,, ¢;,¢;. In
the poloidal plane with (¢, 8) coordinates the twist map T, : thy = )5 ; 0 = 0,+ 27 ¢(9),)
yields the Poincaré plot of the unperturbed surfaces. The unperturbed surfaces are circles
in this coordinate system. The perturbation field B; leads to a perturbed map T, + T}
which can be derived from a generating function

Y1
S(h1, 60) = 1 6o + 27 / {)d ¥ + h(1,0,) (2)

. as as
: = 3
30y, o o v, )

Owing to this procedure the determinant of the transformation is unity and the magnetic
flux is automatically conserved. The function h(¢;,0,) represents the effect of the per-
turbation field B;. In general the relation between By and h(¥;,6,) is unknown, except
in the case of a perturbation localized in the toroidal angle ¢. With such §-like depen-
dence the field line equations can be integrated explicitly to yield the action-generating
function h(¥,,0,).

In order to study the effect of perturbations in the W VII-A stellarator ,the fol-
lowing ansatz for h(y1,0,) is made: h = ¢, g(f,) where g is a Fourier series in
sinlf, (I = 1,2...15). This map roughly corresponds to an external error field which
decreases towards the magnetic axis. The Fourier coefficients of g(6,) : Kj,..., K15 are
the control parameters of the map. With this model the following questions can be
studied :

¢o=




How are magnetic surfaces destroyed by increasing the control parameters?
What regime in ¢ is most resistant to destruction?

III. Localised Perturbations

In general the relation between the perturbed map T, + T} can only be obtained by
integrating the field line equations explicitly. In the case of a perturbation localized in
the toroidal direction this integration can be reduced to one or a few steps. In order to
investigate this situation, we start from the Hamiltonian form of the field line equations,
which has been pointed out by many authors/6/,/7/, /8/. If (¢,0,4) is the natural
coordinate system of the unperturbed magnetic field B, the magnetic field line equations
in this coordinate system are '

dy BY dd B°
Tekon atll® adadedide 100, (4)
d¢ B d¢ B

With the vector potential A = (0, Ag, Ay) the magnetic field is given by

= (%4~ %)

B = _1/\@%‘7’ (5)
1s)
B* = 1/v5 5

g"* is the metric tensor of the 9,0, ¢ coordinate system and ,/gdy df d$ the volume
element. By making the following identifications H = Ay , p = —Ap the field line
equations can be written in canonical form /7/:

dp  OH d0 OH

a6- "9 ' @6 % @

p, 0 are the canonical variables. The solution of these equations can be considered as a
sequence of successive canonical transformations which map the point Px = (pk,0x) onto
the successor Piy1 = (Pk+1,0k+1) by

Pk+1 =Pk — il {H(Ok, pr+1, k) 60}
e (7)
2 {H(6k,pr+1,9%) 60}

0Ly i 0 &
k+1 k 3Pk+1

6¢ is the step size along the field line. The advantage of this procedure is that each
step is area-preserving (the functional determinant of the transformation Py — Py, is
unity). This property is also maintained in the case of approximations. The question
now is how to relate the generating function H §¢ to the perturbation field B, .
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In the unperturbed case the vector potential of the magnetic field is

¢
Ao= 990+ [(w)dy Vs (8)

In the unperturbed region the Hamiltonian H, and the momentum variable p are there-
fore

")
H.,-—-[c(ww iD=t (9)

Owing to the perturbation field B; additional terms appear:

H = Hy(y) + A4(6,6,4) , p=9v+A5%,0,4) (10)

In this case ¥ and 6 are no longer canonical variables, in the Hamiltonian H(¥, 0, ¢) the
variable ¢ has to be replaced by p. If the toroidal component of the magnetic field B¢
does not vanish the second equation in (10) can always be solved for ¢ and we may write

¥ =p— As(¥(p),0,9) (11)

The resulting Hamiltonian is

H(p,0,4) = H,(p — Aj(p,6,9)) + Ay(p,9,¢) (12)

or by taking only the lowest order terms in the perturbation
H(p,6,¢) = Ho(p) + Ay — o(p) Ay =: Ho + H, (13)

Owing to our assumption of a localized perturbation the function H; vanishes everywhere
except in a small neighbourhood of ¢ = ¢,. Let §¢ be the length of this interval. In
this region the main contribution to a displacement of the field line comes from the

perturbation, and the transformation of the coordinates p,f across this region is given
by

pa =p1 — By {H(p3,01,¢,)69}
als (14)

03 =0, + B?—{Hl(Pz,el,%) 6¢}
Pa

The index 1 indicates a point at the beginning of the perturbed region and the index 2
a point at its end. When a field line is followed once around the torus, this displacement
has to be added to the unperturbed orbit described by H,(p). Outside the perturbed
interval the coordinates ¢, are canonical variables and to describe the final map it is
justified to return to these variables.

From the preceding analysis it follows that the unknown perturbation h(%;,6,) is given
by H,(¥1,0,,¢.) 6¢. Here the index o indicates a point in the poloidal plane ¢ = 0 and
the index 1 its image after one toroidal transit. If we write the map T in the coordinates
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of the unperturbed field only the ¢ -profile is left to describe the different unperturbed
cases. The detailed geometry,however, enters into the perturbed map T, + T} since the
function H; depends on the covariant components of the vector potential Ay. The metric
tensor of the coordinate system (¢, 0, ¢) therefore appears in H;.

In order to obtain a rough estimate of the function h, we consider the special case with
Ap = 0: the perturbation field only consists of a §-component and a $-component, the
¢- component being gero. This is no loss of generality, since the ¢- component does not
lead to displacement of the field line. The ¢-component of A, is found from

Ay = /ﬁB”’dﬂ

with BY = B, - Vy =: By .|V¥|. B, n is the component of the perturbation field in the
normal direction to the unperturbed magnetic surface. Neglecting the f-dependence of
g and |V¢|, we can approximate A4 by

Ao =Boe5199] [ 5(0,0)d0

Here B, is a measure of the toroidal field and ¢ is the amplitude of the perturbation
field normalized to the total toroidal field B,. The function f(f) is of the order one and
describes the poloidal variation of the perturbation field. The metric \/g and |V¢| can
be estimated from the volume of the magnetic surface

V =2xa®R = / Vg dvdod

R is the major radius of the magnetic surface and a the effective minor radius. As an
approximation we obtain

/ﬁd:p ddp = 4x2 /g

and from this relation
VI|IV¥| = Ra= Ad?
Here A is the aspect ratio of the magnetic surface. In summary the perturbation function
h is
h(y,0) = B,a® Ae f(v,0)6¢ (15)
where f is a function of order one. The function ¢ has the dimension of a magnetic flux.

¥ can be made dimensionless by dividing by B, a? .
Then the generating function S(y,6) of the map T can be written

L2
S(¢1,00)=¢100+21r/t(¢)d¢+Aef(¢1,00)5¢ (16)



The map described by this generating function follows from eq. (3). In order to obtain
an explicit form, these equations have to be solved for ¢, and 6,. If the function h is
linear in ¢ (h = ¢; g(6,)), the solution is trivial and we obtain the map

Yo

V=T g0,

01 = 0 + 2 (1) + 9(0o) (17)

These equations are the basis for the numerical calculations described in the following
section. As an example we consider the WVII-A stellarator with an aspect ratio of
A = 20. Let the maximum perturbation be 30 G and the region of localisation §¢ = 1/20
which corresponds to 60 cm on the circumference. In this case the perturbation function
h(%,8) is of the order 10~3.

IV. Results

In the WVII-A low-shear stellarator the rotational transform only varies by 1% over
the plasma radius. To model this a function &{¥) = ¢, + ¢, ¥ was chosen with ¢, = 0.01.
The perturbation g(6,) is written in a Fourier series:

15

9(0,) = Z ?sin 16,

=1

with constants K; given explicitly or following an exponential decay K; = K ezp(—~1).
In this latter case the §- like perturbation is characterised by the two parameters K
and 4. These parameters are chosen such that the map yields roughly the same island
pattern as found from the field line tracing taking into account the current leads to the
helix /2/. The numbers are K = 4 x 1072 and 7 = 0.2. In fig. 4 the islands arising
at ¢ = 1/2,¢ = 1 are shown. The Cartesian coordinates of the plot are related to ¢,6
by z = /¥cosf,y = /P sinb . Similar islands occur at ¢ = 1/3,2/3,...m/n . The
size of the islands increases with the perturbation parameter K and decreases with the
period n, which is the number of toroidal transits before the field line closes upon itself.
Since the Fourier spectrum of the perturbation contains harmonics up to { = 15 ,the first
generation of islands is created at all rational surfaces with denominator n = 1,...15.
The size of these islands increases with the square root of the control parameter K. The
first generation of islands at two rational surfaces ¢ = m;/n; and ¢ = m3/n; gives rise
to a second generation of islands at ¢ = (m; 4+ m3)/(ny + n3). Continuing this process
yields a sequence of rational surfaces with ¢, = mjy/nk, where the numerator and the
denominator follow a Fibonacci series. The scaling of these islands was studied in the
case of two first- generation islands with K3 and K3, higher Fourier harmonics being set
to zero. As seen from fig. 5, the first-generation island at ¢ = 1/3 increases roughly as
VK (K = K; = K3) . The second-generation island at ¢ = 2/5 already shows a faster
increase and the third (¢ = 3/8) and fourth-generation islands (¢ = 5/13) increase with
a higher power than the preceding generation. At a fixed control parameter the size of
the island decays exponentially with the period n (fig. 6). The behaviour at the chaos
border, when KAM surfaces are destroyed, is determined by the high-n islands, whereas

7




in the subcritical case only a finite number of low-generation islands, whose width is
larger than the gyroradius of electrons, affect the plasma confinement.

The general trend of islands to decrease with n may explain the dependence of con-
finement on ¢, in Wendelstein VII-A. The biggest islands created by external pertur-
bations arise at £ = 1/2 and ¢ = 1/3. The neighbourhood of these rational surfaces,
however, contains rational surfaces with a high period n only. Islands on these surfaces
are exponentially small. In figs. 7 - 10 comparison is8 made with a fixed perturbation
spectrum in different ¢regimes. In fig. 7 the region from ¢ = 0.45 on the magnetic
axis to £ = 0.47 at the boundary is shown. The perturbation spectrum is given by
K; = 6 x 103 ezp(—0.051) , | = 1,....15. Islands can be seen at ¢ = 5/11,6/13,7/15.
In the adjacent regime ¢ = 0.47 — 0.49, which lies closer to ¢ = 1/2, the same pertur-
bation does not generate visible islands (fig. 8). The figs. 9 and 10 show the tregime
0.44 — 0.46 and ¢ = 0.43 — 0.45. Similar behaviour is found slightly above ¢ = 1/2 and in
the neighbourhood of ¢ = 1/3.

A magnification of the pictures shows smaller and smaller islands, which can be seen
from figs. 10 - 13 where the regions 1.1 < z < 1.5 and —0.2 < y < +0.2 are shown. The
small islands arise at ¢ = m; + my/n; + ng . For example, in fig. 11 (¢ = 0.45 — 0.46)
the two big islands occur at ¢ = 5/11 and ¢ = 5/13. These islands are created by the
external perturbation, which contains 15 harmonics. The other smaller islands can be
identified at ¢ = 11/24, 16/35, 17/37, 21/46 . An increase of the perturbation amplitude
leads to a rapid increase of these high- generation islands and finally to stochasticity. As
has been shown by MacKay /10/, all area-preserving maps locally approach a universal
map with an increase of the control parameter K. This means that the general pattern
of island formation and transition to stochasticity becomes independent of the details of
the specific map. Consequently the general results found for the map chosen above holds
for all perturbations h(,6) of the unperturbed twist map.

The effect of shear has been studied by varying the parameter ¢, in the e¢profile.
Although the size of the islands decreases with higher shear, the distance between two
adjacent rational surfaces decreases faster and after approximate overlapping of the is-
lands the region in between disintegrates into a stochastic sea. As can be seen from fig.
15, the island at ¢ = 5/11 grows if the shear is reduced by a factor of two. This figure
has to be compared with fig. 11. An increase of the shear by a factor of two reduces the
distance between the islands ¢ = 5/12, 6/13, 7/15 and the region in between becomes
stochastic (fig. 16).

In the preceding analysis the perturbation is localized to an angle ¢, in the toroidal
direction. Thus the perturbation breaks the symmetry of the stellarator field which is
five fold in the case of W VII-A. If the same perturbation occured in each period, its
effect on island formation would be much smaller. In order to study this behaviour, the
mapping process described in eq. (3) was applied to each field period. For this purpose
the toroidal angle of the perturbation and its poloidal localisation have to be specified
for each period. By proper choosing all parameters characterising the perturbation in
each field period we can either preserve the symmetry or break the symmetry. In fig. 17
it is shown how the same perturbation which creates two islands at ¢ = 1/2 (see fig. 4)
leads to 10 small islands if it occurs in each field period. The amplitude K is 0.02, which
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is five times as high as in fig. 4. If the parameters are chosen in such a way that the
position of the perturbation is different in each field period, the symmetry of the system
is broken and large islands appear again. This is shown in fig. 18 where the amplitude
of the perturbation is the same as in fig. 4 (K = 0.004). A similar situation holds for
every rational magnetic surface and it can be shown from the Hamiltonian form of the
field line equations (eqs. 6) that a perturbation equally distributed in every field period
is much less destructive than one occurring only once around the torus.

V. Conclusions

Like the problem of a kicked pendulum the effect of toroidally localised perturbations
on unperturbed magnetic surfaces can be studied with a discrete map of the poloidal
plane onto itself. The results show that the influence of a fixed perturbation on island
formation differs according to the region of rotational transform and shear. The regions
close to low-order rational surfaces ¢ = 1/2 and ¢ = 1/3 are less destroyed by islands than
others. This might give an explanation of the good confinement observed in these regions.
Two effects of islands have to be expected : one is the modification of the equilibrium
and the other one the enhanced plasma diffusion. Plasma equilibrium in the presence of
islands is still an unsolved problem, neither a successful analytic theory nor a numerical
code having been established to deal with this problem. The presence of electric fields
which follow the pattern of the islands may lead to convective cells and result in enhanced
plasma losses. Also neoclassical diffusion processes should be enhanced by islands since
particles can jump from island to island by Coulomb collisions. Monte Carlo simulation
by R.B. White et al. /11/ have verified this effect. Although these are only qualitative
considerations, they make plausible why the region with high-order rational magnetic
surfaces exhibits better confinement than those with lower ones.

In estimating the effect of islands on plasma confinement the size of the islands may be
a good figure of merit for the reduction of the effective plasma radius. For this purpose
the size of the islands was calculated from the residues at the fixed points of the mapping.
For an island at £ = m/n the fixed point was found by minimizing the distance between
a point P and its image T™(P). The tangent map D T yields the JacobianM at the fixed
points and from this the excentricity of the ellipses at the o-points and the angle between
separatrices at the x-points can be calculated /3/. These quantities are used to estimate
the radial width 64 of the island. The radial width of the island can only be defined
approximately, since in general the separatrix consists of a stochastic region. The sum of
all islands 3 64 with §y > 1073 was calculated and normalized to the maximum value
a of . Fig. 19 shows the effective plasma cross section A = ) 69 —a vs ¢ for a fixed
external perturbation with K = 0.02 and 7 = 0.2, 6+ = 0.02. It can be seen that the
effective plasma cross section defined by the area not covered by islands roughly follows
the same pattern as the experimentally found confinement time or plasma energy.

There seems to be an optimum value of the shear parameter ¢,. If the shear is oo small,
any island can grow to an intolerable size. If the shear is too large, island overlapping
leads to rapid destruction of the magnetic surfaces. In the W VII-A stellarator the shear
is modified by the plasma pressure and by the pressure driven currents. In order to
understand the details of the experimental results, these modifications have to be taken
into account.




In principle symmetry-breaking perturbation can be avoided in stellarators. In a mo-
dular stellarator all systematic perturbations like current leads and joints can be made
equal in every field period, what is left being statistical errors coming from the con-
struction and the assembly. Internal modifications of the field due to the finite plasma
pressure preserve the symmetry, and thus they should be less effective.

Acknowledgements: The author would like to thank I. Ott for preparing the MAP
code and for her assistance with the numerical calculations.
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Fig. 1 : Total plasma energy in W VII-A as a function of the external rotational trans-
form ¢,. Heating by neutral beam injection.
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Fig. 2 : Energy content as a function of ¢, . Electron cyclotron heating.
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Fig. 5 : Relative width of islands. ¢, = 0.01, K5 = K3 = K. The plot shows the growth
of islands with the control parameter K.
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Fig. 17 : Localized perturbation in every field period. + = 0.49—0.51, K = 4- 1073 =
0.2. The arrangement of the perturbation preserves the five-fold symmetry.
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Fig. 18 : The perturbation is identical in every field period, except for the poloidal

locations. The five-fold symmetry is broken.
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Fig. 19 : Effective plasma radius A/a vs external rotational transform ¢,
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