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Abstract

Strong neutral beam heating in the W VII-A stellarator with injection nearly perpendicular
to the magnetic field results in a high energy ion tail. In a simplified model, the full nonli-
near Fokker-Planck equation based on Coulomb interactions is solved self-consistently by
means of Monte Carlo techniques. Generalized scattering operators which are equivalent
to the nonlinear Fokker-Planck collision term are derived. With the numerical simulation,
the strong neutral beam heating is analyzed for a typical discharge in W VII-A with H°
injection in a HY /D% plasma mixture for stationary conditions. Both deuterium and hy-
drogen distribution functions are calculated. The Dt distribution is found to be highly
isotropic, the deviation from a Maxwellian resulting mainly from electron cooling. Fur-
thermore, ion heat conduction is of minor importance for the energy balance of the bulk
part of the plasma. The Ht distribution, however, develops a strong pressure anisotropy,
which can also be deduced experimentally from the diamagnetic signal.
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For typical currentless discharges in the W VII-A stellarator (R = 200 e¢m, r, = 10 c¢m,
[ =2, m = 5), heated by 3 or 4 neutral beam lines (27 ¥V, H° or D° in D*-target plasma,
80 — 120 kW absorbed power per injector, nearly perpendicular to B (84°) ), the ion
temperature (400 eV < T; < 1000 eV') exceeds the electron temperature /1/, /2/.

The heating efficiency of the nearly perpendicular neutral beam injection (NBI) and
the fast particle slowing-down in W VII-A have been central problems during the last
few years. With injection of deuterium instead of hydrogen and with highly time-resolved
measurements during the switch-off phase of the injectors, the heating mechanism can
now be understood. The earlier hypothesis of very fast slowing-down with preferential
ion heating related to ion cyclotron instabilities driven by the nearly perpendicular NBI
could not be verified. In the deuterium injection experiments, the measured neutron
flux of D*-D* reactions both in the stationary and transient phase after switch-off of
the D°-injector agree very well with theoretical predictions based on the assumption of
Coulomb collisions /3/. Energy analysis of the charge exchange (CX) neutrals of the HT
slowing-down distribution leads to the same conclusion /4/. By linear stability analysis
of the slowing-down distribution function calculated with the assumption of Coulomb
interactions, no significant ion cyclotron instabilities were found for stationary conditions

/5/,/6/.

Strong radial electric fields had been derived from the poloidal plasma rotation measu-
red by Doppler shift of impurity lines. The particle confinement of both the thermal ions
and the fast ions of the NBI is significantly improved by these fields. Then, the ion energy
balance is determined mainly by the beam power transferred to the ions (which is less than
the part transferred to the electrons) and by electron cooling (T is less than 7} in almost
all cases). Ion heat conduction is of minor importance for the bulk part of the plasma /7/.
In case of collisional slowing-down, the high-power nearly perpendicular NBI is connec-
ted with a strong pressure anisotropy which results from the distribution function of the
beam particles. Furthermore, deviations in the thermal DT distribution (in the case of H°
/injection) may be expected due to collisions of D particles with the strongly anisotropic
H* distribution. The evaluation of the ion temperature by energy analysis of the charge
exchange deuterium neutrals in the range of 2T; < E < TT; is very sensitive to distortions
of the D* distribution function perpendicular to B.

The aim of this report is to describe the ion distribution functions in the case of
strong NBI and to estimate the pressure anisotropy. In a simplified model (homogeneous
in configuration space), the full nonlinear Fokker-Planck equation describing the Coulomb
interactions is solved by means of Monte Carlo simulation. In the past, different methods
have been developed to solve this nonlinear system of partial differential equations for
all distribution functions (see e.g. /8/ and /9/), most of them based on finite difference
schemes and/or eigenfunction expansion. The Monte Carlo simulation technique, however,
seems to have been applied only to the linearized problem of test particles in an isotropic
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Maxwellian background. Since the Monte Carlo simulation technique becomes very impor-
tant in calculating the plasma transport /10/, /11/, /12/ as well as the heating efficiency
and power deposition of neutral beam heated plasmas /13/, the simulation technique is
extended to the full nonlinear problem in this report. Generalized scattering operators are
derived with the random process unspecified. For the calculations described in this report,
Gaussian random processes are used.

The Monte Carlo simulation is applied to the case of strong neutral beam heating
with H° injection into a HY-D* plasma mixture. Neglecting fast orbit losses and ion heat
conduction, an upper limit of the ion temperature is calculated for both NBI heating po-
wer and electron temperature given. Furthermore, the distortion of the Dt distribution
function and the slowing-down distribution function (H*) is evaluated. Finally, experi-
mental results for the deuterium temperature, the pressure anisotropy and the high energy
H*-spectrum are discussed.

II. Basic Equations

The magnetic field is assumed to be constant, and a configuration space dependence
of the distribution functions is disregarded. For collision frequencies small compared to
the cyclotron frequencies, the model becomes axisymmetric in velocity space with respect
to the magnetic field, B. Then, the Fokker-Planck equation can be written in the form
given by Rosenbluth et al. /14/ :
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Here, fo is the distribution function of species a, v the absolute value of the velocity, p
the pitch (v)/v) and S, the particle source (and loss) term,
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with In A being the Coulomb logarithm, Z, the charge number, and m, the mass of the

particles of species a. The coefficient functions Ay, Az, By, B and C in eq. (1) are
defined by derivatives of the Rosenbluth potentials h, and g:
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The Rosenbluth potentials h, and g are defined by the differential equations:

o 2 Ma
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where A is the Laplace operator. Here, the summation is carried out with respect to all
plasma species . Alternatively, ho and g can be defined by the explicit formulas:
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For large values of the velocity, h, converges as 1/v, whereas g diverges as v. In the
differential form of eq. (3), the boundary values are defined at infinity. Consequently,
instead of using fast Poisson solvers, the Rosenbluth potentials h, and g and all derivatives
in eq. (2) are calculated from the explicit formulas (4) by means of Legendre expansion of
the distribution functions fg (see Appendix Al). For f being Maxwellians, the Rosenbluth
potentials and the coefficient functions in the Fokker-Planck equation can be calculated
analytically (see Appendix A2).

To derive the scattering operators for the Monte Carlo simulation, moment equations
are calculated directly from the Fokker-Planck equation. Let (v'p*), be the moments
defined by

oo 1
2T
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where n, is the particle density. Straightforward calculation with integration by parts
yields
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I11. Monte Carlo Scattering Operator

In the Monte Carlo simulation, the distribution function f, is represented by an
ensemble of simulation particles (test particle model). The scattering operators for the
simulation particles are functions of the Rosenbluth potentials, which on the other hand
depend on all distribution functions fg. Consequently, this nonlinear problem is solved by
iteration as is well known for Monte Carlo techniques. Within the iteration, the distribution
function f, is estimated in a velocity space mesh from the number of simulation particles of
species a within the mesh cells. For stationary conditions, the statistical accuracy can be
significantly improved by means of a time average. From the f,, the Rosenbluth potentials
are calculated directly (s. Appendix A1) for the next iteration step. This procedure leads
to a field particle model for the Coulomb scattering of each simulation particle.

The Fokker-Planck equation (1) describes the diffusion in velocity space of each si-
mulation particle including generation as well as annihilation as defined by the particle
source term S,. The Coulomb scattering is approximated by a sequence of random pro-
cesses with random changes of the velocities of the simulation particles, these changes Av
and Ap being related to small time steps At. Then, the equivalent Monte Carlo scattering
operator is defined as the single random process in v and p depending on At and inclu-
ding conservation of the simulation particles. The particle source term S, is modelled
independently.

The random process is characterized by the expectation values which must be consi-
stent with the moment equations (5). For estimating the scattering operators, the particle
source term S, in (5) is disregarded. The corresponding expectation values up to second
order are defined by the moment equations:

e =-(50),
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with the abbreviation 7 = 'y + At. For small time increments At, the probability distri-
bution of the random scattering process for each simulation particle is highly localized in
velocity space. Therefore, the moments on the right side in equations (6) can be replaced
by use of the initial values v;, p; of the simulation particle ¢ (the index a of the plasma
species is omitted in the following). Integration of equations (6) yields to 1st order in time:
A
(v) =v; — ~—-l— T
v?
B,
(p) =pi — 22 T
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Here, the coefficient functions A;, Az, B;, B2 and C are defined at the initial values v;,
p;i of the simulation particle :. The standard deviations o,+/7 and op+/7 of the random
process must be very small compared to the domains of definition for v and p since the
moments (egs. 7) are only valid to first order in At. This leads to the limiting condition
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From this point on, the form of the random process must be specified. The two-
dimensional random process can be separated after transformation to the statistically
independent variables

X = ";(”)
v=—2_. (2=, ©)
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Then, the random process in v and p is replaced by the sequence of two random processes
in X and Y, respectively, with the moments

(X)=({¥)=(XY)=0; (X% =(Y?*) =r. (10)
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The random processes are assumed to be Gaussians which can be treated easily within the
numerical simulation. However, other random processes may be chosen just as well (see
e.g. /10/). For Gaussian processes, the velocity space boundaries v = 0 as well as [p| = 1
must be handled with care since random numbers X and Y can lead to values v < 0 or
|p| > 1 depending on the step size of At. This problem arises only for initial values v;, p;
very close to the boundaries. On the one hand, the time step At can be strongly reduced
in such a case; on the other hand, a new set of random numbers X, ¥ can be generated
if v < 0 or |p| > 1 occurs. For this case, however, small deviations in the distribution
functions very close to the boundaries are expected.

Now, the Monte Carlo scattering operator for the particle species a is given by the
equivalent Gaussian random process

1 Vel (_M)
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and the initial value problem
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(11)
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where 0,, 0, and v are defined by the equations (7) and the statistically independent
variables X, Y are defined by the equations (9). From two independent Gaussian random
numbers X and Y, random values of velocity, v, and pitch, p, are calculated corresponding
to the diffusive nature of the Fokker-Planck collision term for each simulation particle. Due
to parallel momentum conservation as described by the cross term in the Fokker-Planck
equation (1), the random numbers v and p are not statistically independent. Energy and
pitch angle scattering become statistically independent only in the case of an isotropic
background plasma (C = 0). '

6(v—vg) - 6(p—pi)

The source function S, in equation (1) is modelled by both generation and annihilation
of simulation particles of species a. Corresponding to the specific physical problem, particle
source operators S} as well as particle loss operators S; must be constructed based on
random processes.

IV. The Simulation Model

The H° neutral beam injection in a D*-H* plasma mixture for the case of good
confinement properties (orbit losses neglected) is modelled by Monte Carlo simulation.
Although no stationary conditions could be obtained under experimental conditions since
the electron density inceases during the injection, the stationary distribut on function
calculated in the simulation model is a good approximation as long as the average slowing-
down time 7gp is small compared to the particle confinement time 7p. Due to the high
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collision frequency, the electron distribution function is modelled by an isotropic Maxwel-
lian with the measured value of the central electron temperature. Furthermore, the ion
heat conduction is disregarded.

For the D* plasma component, no sources are assumed (Sp+ = 0). The generation
of the H' simulation particles is approximated to the NBI in W VII-A by the formula:

St = Zmomm (-2 E) T oo-w) (12

V2monBI 20%p1

with the mean pitch of the NBI, pxps ( = 0.1, corresponding to 84° injection angle), and
the standard deviation, oxpr ( = 0.035, corresonding to the divergence of the beam lines
of £2°). v, are the velocities corresponding to the different injection energies with source
strengths w,. For 27 kV voltage in W VII-A, the beam composition is assumed to be 21%
: 32% : 47% for particles with 27, 13.5 and 9 keV energy. This particle source operator is
statistically independent in v and p, the H* simulation particles being generated by means
of two independent random processes.

To get stationary conditions, the loss strength is assumed to be equal to the source
strength of the NBI. In a simple model, only thermalized particles are assumed to be lost,
and the loss operator S, is defined by an isotropic Maxwellian. In the simulation, a
random number vy, is generated (corresponding to the isotropic Maxwellian), and the H*t
simulation particle with v closest to vy, is annihilated. The temperature of the thermal part
of the H* distribution function is equal to the deuterium temperature which is calculated
self-consistently within the simulation by fitting a Maxwellian to the low energy part of
the energy spectrum of the simulation particles.

As the Rosenbluth potentials (eqs. 3 and 4) depend strongly on the distribution func-
tions, the Fokker-Planck equation (1) is nonlinear. Consequently, the scattering operators
(eq. 11) depend on the H*, D* distributions of the simulation particles, and the distri-
butions must be calculated by means of iteration within the simulation. The time of an
iteration step is of the order of the maximum slowing-down time for which the distributions
of the simulation particles become constant. The time step At of the scattering operators
(egs. 8 and 11) as well as the source operators is very small compared to the collision times
(>~ 10us). The distribution functions, fz+ and fp+, averaged over the iteration time
step, are used to calculate the Rosenbluth potentials (Appendix A1) and the expectation
values (egs. 7) for the next iteration step. This procedure is carried out until convergence
is achieved. In Figure 1, the mean velocities, < v >, of the H* and D* simulation par-
ticles are plotted for the last 8 iteration steps. The Ht and the Dt distribution functions
are each represented by 500 simulation particles. Time average within the iteration steps
greatly improves the statistical accuracy.
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Fig. 1  The mean velocity < v > of the hydrogen and the deuterium simulation particles
(normalized to the velocity v, of 1 keV H™) for the last 8 simulation steps. The
time increment of the scattering operators is approximately 10 us.

The NBI model (eq. 12) includes an energy and a momentum source. With the
assumption of a fixed Maxwellian distribution for the electrons, they act as a momentum
sink. In addition most of the input power is transferred to the electrons. Thus, the self-
consistently calculated ion temperature becomes larger than the electron temperature in
this stationary model. As ion heat conduction and density increase are neglected, the
calculated ion temperature is an upper limit compared to the experimental situation.

V. Results and Discussion

The Monte Carlo simulation, the results of which are now described in detail, was
carried out for the following set of plasma parameters, which is typical for a neutral beam
heated discharge in W VII-A with lower density:

electron temperature T, =600V
electron density n. =6.6-1012 cm=2
deuterium density np+ = 4.6-1013 em=3

(70% deuterium, 30% hydrogen plasma mixture)

27 kV voltage of NBI with 84° injection angle

heating power density: 4.2 W/cm?

(corresponding to 3 beam lines with 340 kW power absorbed)
resulting total source strength of HY : 1.85-101% em~3 g1,
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Fig. 2 Isolines of the hydrogen and deuterium distribution functions, v%- fg+ (v,p) and

v2- fp+ (v,p), in the velocity space, (v, p), estimated from the number of simula-
tion particles in the velocity space mesh averaged in time for the last simulation
step.
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In Figures 2 and 3, the hydrogen and deuterium distribution functions are plotted
in the velocity spaces (v, p) and (v, v.), respectively. The deuterium distribution was
found to be highly isotropic and close to a Maxwellian. The small deviation in the energy
spectrum (Fig. 4) arises due to electron cooling since the resulting temperature Tp+ =
950 eV significantly exceeds the electron temperature. The Ht distribution is close to a
Maxwellian with Tg+ = Tp+ only in the very low energy range with E < 2 keV’ (see Fig.4).
For higher energies, the distribution is strongly anisotropic (Figs. 2 and 3), the 3 peaks
in the distribution function appearing close to the energies and pitch of the neutral beam
injection. In the perpendicular energy spectrum of Figure 4, however, the high energy tail
is smoothed and significantly decreased.
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Fig. 4 Perpendicular energy spectra of the hydrogen and deuterium distributions. The
arrows in the figure on the left indicate the energies of the H° injection. In
the right hand figure, the pitch-averaged spectrum (A) with higher statistical
accuracy is also plotted. ‘

In the simulation, the strong NBI results in a total fraction of 13% non-thermal ions,
which is related to a total pressure anisotropy of 35% with electrons included. The average
parallel velocity of the HT distribution, however, is only 10% of the thermal velocity. The
power balance for the HT component, normalized to the NBI input power, is as follows:
10% thermalization loss (density increase), 20% transfer to the D component (which is
lost to the electrons) and 70% power transfer to the electrons. This balance results from
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the average over the H* distribution. The average slowing-down time, 7sp, defined by
the non-thermal part of the ion density divided by the NBI source strength, was found to
be 4.7 ms. This value of 7sp is about 20% larger than the one estimated analytically (for
the formula see /3/).

The Dt temperature, calculated self-consistently in the Monte Carlo simulation, is
slightly greater than the central value found in the experiment: T}¥ = 850 eV (CX-
diagnostic). For these discharges, the HT /D™ ion composition as well as the central
heating power density are not measured, and the values assumed for the calculations are
a little uncertain. As stated above, the density increase and ion heat conduction were
neglected in the simulation. Under these restrictions, the agreement of the calculated
deuterium temperature with the measured central value is rather good. Consequently, the
central ion energy balance is determined mainly by the collisional beam heating and by
electron cooling. Ion heat conduction is clearly of minor importance.
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Fig. 5 Ion temperatures T; and injection power Py versus time for a discharge series
in W VII-A. The temperature values are derived from the following diagnostics:
energy analysis of charge exchange neutrals (CX), Doppler broadening of the
OV impurity line (CXRS), both parallel and perpendicular to the magnetic
field, and neutron flux measurements (n) during D° injection (4th injector).
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Some effort was made to confirm the deuterium temperature measured by charge
exchange analysis, the results of which are plotted in Figure 5. The CX-temperature, TS_X ,
measured perpendicular to the magnetic field, was evaluated from the flux of D° neutrals
generated in the central region (using a diagnostic injector) by energy analysis in the range
2T: < E <7T;. The TE*ES values were estimated from Doppler broadening of the OV /1!
impurity line (charge exchange resonance spectroscopy) both parallel and perpendicular
to B, the energy range of evaluation being E < 2 T.. Finally, the temperature T is
derived from the neutron flux of the D+-D+ reactions, the evaluation of which is based on
the assumption of an isotropic Maxwellian for the deuterium distribution function. The
agreement of all these ion temperature results is very good and confirms that the deuterium
distribution function is very close to an isotropic Maxwellian.
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Fig. 6  The internal energy production, W L, versus time when all neutral beam injectors
(NBI) are switched off. The data are derived from the diamagnetic loop signals
with a sampling frequency of about 3 kHz.
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An estimate of the pressure anisotropy averaged over the plasma column was deri-
ved from the diamagnetic signal after all injectors were switched off. The perpendicular
component of the internal energy production, W, is plotted in Figure 6. As the en-
ergy confinement time (~ 12 ms) is much larger than the average slowing-down time
(~ 4ms), the anisotropic part of the perpendicular energy component, which disappears
nearly within a slowing-down time, can be separated from the thermal part. With the
ansatz W, = W_‘L" + AW, where Wf‘ is the thermal part, the perpendicular non-thermal
component of the energy content, AW, is estimated by integration in time (hatched area
in Fig. 6) after switch-off of all injectors. Then, the pressure anisotropy averaged over the
plasma cross-section is defined by AW / Wj_h. For the discharges of Figure 6, an averaged
pressure anisotropy of 13% was estimated. Here, the central plasma parameters are dif-
ferent from those used for the simulation, resulting in a shorter slowing-down time. For
larger radii, the collisionality is increased and the slowing-down time decreased, and for
the lower densities, the NBI deposition is smaller. Furthermore, the fast particle losses
become more important near the plasma edge. Thus, the energy content AW ~ AW, of
the slowing-down distribution evaluated from the diamagnetic signal yields a lower limit
for the central pressure anisotropy.

Figure 7 shows the perpendicular energy spectrum of the H' slowing-down distribu-
tion. The energy analysis of the CX-neutrals leads to the smoothed spectrum (points) since
the energy resolution of the CX-analyser is of the order of 20%. These data are directly
derived from the count rates; the energy dependence of the CX-cross section (decreasing
ocx for E > 10 keV) is not taken into account. Therefore, the Ht distribution function
is closer to the calculated spectrum (solid curve) for higher energies. The Monte Carlo
simulation is analogous to that outlined above except that the DT distribution function
was assumed to be Maxwellian with the measured central ion temperature of 850 eV. The
perpendicular flux, proportional to v - fi+, was evaluated in the pitch range |p| < 0.033
corresponding to 2° aperture. The distribution function is very sensitive in pitch (comp.
Fig. 3), thus the agreement with the CX-data is rather good.
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Fig. 7 The perpendicular energy spectrum of the charge exchange H° neutrals (dots)
and the perpendicular flux, v, - fg+, calculated by Monte Carlo simulation (solid

curve). For the simulation, the following central values of the plasma parameters
have been used: n.=6.6-10'2 em™3, T, = 600 eV, T; = 850 V.
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VI. Conclusions

The Monte Carlo simulation is a suitable technique to solve the nonlinear Fokker--
Planck equation. Scattering operators for Coulomb interactions were found for arbitrary
distribution functions of the plasma species. For the conditions of neutral beam heated
discharges in the W VII-A stellarator, however, the nonlinearity in the Fokker-Planck
collision term is relative small, and the D' plasma component is nearly unaffected by the
high energy H* distribution of the injection. Furthermore, the collisions between the non-
thermal H particles result in a broadening of the high energy tail of the H* distribution
function since the effect of pitch angle scattering due to the electrons is relative small.
Newertheless, simplified scattering operators based on Maxwellian distribution functions
are a relatively good approach under the conditions typical for W VII-A.

A strong pressure anisotropy was deduced from the diamagnetic loop signal for all
injectors switched off. The lower limit of this anisotropy, averaged over the plasma co-
lumn, is in qualitative agreement with the results derived from the Monte Carlo simulation.
Furthermore, the calculated perpendicular energy spectrum of the H* slowing down distri-
bution fits very well with charge exchange data. Together with neutron flux measurements
in the case of deuterium injection, these results confirm the collisional slowing-down of the
neutral beam injected particles.

Acknowledgements

The experimental investigations were a common effort of the W VII-A Team. Particularly,
the author would like to thank Dr. J. Junker and Dr. M. Kick (CX flux measurements)
and Dr. H. Renner (diamagnetic signal) for helpful discussions. The author thanks also
W. von Zeppelin for his numerical support and Prof. Dr. M.A. Hellberg for his correct
proofs of the final version.




— 18 —

Appendix

Al Calculation of the Rosenbluth Potentials

For all distribution functions fz(v,p) estimated in the simulation, the Rosenbluth
potentials h, and g are calculated as outlined in the following. The contribution of all
plasma species § can be separated:

hQ=ZZﬁ 1+—-—)Hp
B

g=zZ§ Gpg.
B

The distribution functions fg, as well as the Rosenbluth potential contributions Hg and
Gp are expanded in Legendre polynomials

fa(v,p) =Y f5(v) Pu(p)
Hp(v,p) = > H(v) Pa(p
Gp(v,p) = 3 G3(v) Palp).

The Legendre coefficients H? s and G are calculated from the Green’s function formula
(eq.4):

H2(v) = 24:’_1[ Tu(v,v') [2(v') dv’

G30) =g [ Tolns) f50!) v
Y= "1 J, TV e

vl"+2 "
. ! Skl . =
with Ty (v,v) —mm{ = v"‘_l}

2
o™ t2 _ lu o™ n— 1y2 )}

e (v,v') =min{ 1 U— s v2) 1 =3 (= n+ zv..z

Within the numerical iteration, the distribution functions fs are estimated from the en-
sembles of simulation particles. Depending on the number of simulation particles as well as
on the number of steps for the time average, up to 40 polynomials are used in the Legendre
expansion. Statistical deviations in the distribution functions have very little influence on
the Rosenbluth potentials (smoothing by the velocity space convolution).

The derivatives of the Rosenbluth potentials in equation (2) are calculated directly:
derivatives in v by convolution with the corresponding derivatives of the Green’s functi-
ons, 'y and I'g, and derivatives in p by means of recurrence relations in the Legendre
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summation. This procedure yields improved accuracy in the evaluation of the coefficient
functions in the Fokker-Planck equation.

A2 Coefficient Functions for Maxwellian Plasma

If the distribution functions of all plasma species are isotropic Maxwellians, the Rosen-
bluth potentials are calculated analytically from equation (4). Straightforward integration
yields:

Mm_ 1 2 Ma
hy, = . gnpzﬂ 1+ m—ﬁ) erf(vg)
1
gM = anzp =) erf(vp) + —J_—exp(—vp)}
20}

with vg = v/vip, where vip, is the thermal velocity of the particle species f. Then, the
coefficient functions of the Fokker-Planck equation defined in equation (2) are given by

= Znﬁzg {1+ :—;) n(vs) — 7(vs)}
znﬁzﬁ o (o)
B = p Enﬁzﬁ 1(vp)
B

B =

cM=o0
with n(z) = erf(z) — —E—z Pt
- 7

1
22

7(z) = erf(z) — n(z).

In the Monte Carlo simulations described in Chapter IV, the electron distribution function
was assumed to be Maxwellian, and the electron contribution to the Coulomb scattering of
the plasma ions was estimated from the corresponding part of these coefficient functions.
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