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ABSTRACT

The modifications in the antenna loading produced by the plasma equilibrium cur-
rent, the Faraday shield, and the finite electron temperature for coupling to the Alfvén
waves are studied using a self-consistent, three-dimensional, fully analytic periodic-
loop-antenna model. The only significant changes are found to occur due to the plasma
current and consist of an improved coupling (by a factor of ~2.5) at low toroidal num-
bers (n ~ 1 — 3). Despite this gain, however, the coupling to low n continues to be
poor with R = 0.03Q2 and Q = 180 for n = 2. Optimum coupling with B = 0.71(1 and
Q = 16.8 occurs for n = 8 as was also the case in the absence of the plasma current.
For the large n values, mode splitting due to the removal of the poloidal degeneracy
combined with the finite electron temperature effects lead to significant broadening of
the energy absorption profile. Direct antenna coupling to the surface shear wave is small
and no special provision, such as Faraday shielding, may be needed for preventing sur-
face losses. The introduction of the Faraday screen, in fact, increases the coupling to the
surface shear wave, possibly by acting as an impedance mitching transformer between
the antenna and the plasma. The finite electron temperature causes the predictable
increase in the absorption width without influencing the antenna coupling. Thus the
recommendations for antenna design for optimum coupling to the Alfvén wave remain
unaffected by the inclusion of the plasma current. Efficient coupling with capabilities
for dynamic impedance tracking through purely electronic means may be obtained using

a dense-cluster-array antenna with a toroidal configuration of n ~ 8.




1. INTRODUCTION AND REVIEW OF BASIC CONCEPTS

The potential for thermonuclear plasma heating using Alfvén | 1] waves was rec-
ognized in a series of articles by Winterberg [ 2]. Dolgopolov and Stepanov mention
the possibility of electron heating via Cerenkov absorption at the Alfvén resonance
[ 3]. These findings, however, did not become common knowledge until the indepen-
dent work of Grossman and Tataronis [ 4] and Jankovich [ 5]. Hasegawa and Chen
[6,7] showed that in a hot plasma the wave conversion process plays the pivotal role
of transporting the energy from the undamped fast compressional Alfvén wave (COM)
to the kinetic Alfven wave (KIN), which is subsequently absorbed via electron Landau
damping (ELD). The foregoing work set the stage for the considerable activity that has
followed [8 — 31].

The wave dispersion relation in a slab plasma model with the inclusion of the parallel

electron temperature along the magnetic field lines is given by [32],
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n =nZ +nl, n, and n; are the perpendicular and parallel refractive indices, respec-

tively, and ¢ is the plasma dielectric tensor given by

e=lie, € 0], (12)
0 0 €2

wp and w, are the plasma and the cyclotron frequencies, respectively, Z;(¢;) is the
plasma dispersion function [33], v is the particle thermal speed along the magnetic
field direction, and s; is the sign of the charge carried by the particles of type j.

Equation (1) may be factored [15] into quasi-compressional and quasi-torsional roots
n =e;—n2+ec;, (13)

and

€
nl = (e —nd) ter. (14)
z

The coupling terms ¢; and ¢, assume importance in the resonance region and may
be obtained using (13) and (14) in (1). The qualitative dispersion curves [17] for (a)
a cold plasma, (b) a hot plasma, and (c¢) a plasma with a monotonically increasing
electron temperature profile are shown in Fig. 1. The left and the right cutoffs occur
at €z,g = n2 and the position of the Alfvén layer corresponds to €; = n2. The dashed
parts of the curves correspond to regions of significant ELD. The transition from the
torsional Alfvén wave (TAW) to the kinetic Alfvén wave (KIN) is caused by the change
in the sign of Z, (and hence of ¢;) as ¢, ~ 1. In the limit of vanishing electron mass
both TAW and KIN collapse to form a vertical branch at the Alfvén singularity.

In most practical situations the conditions depicted in Fig. 1c prevail, with the
transition from TAW to KIN lying close to the plasma edge. The azimuthally oriented
antenna couples predominantly to the COM which is evanescent near the plasma edge

but assumes a propagating character beyond the right cutoff. Also some of its energy
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is converted to the KIN in the region of the Alfvén layer. The KIN is in turn absorbed
via ELD producing plasma heating. A small additional part of the antenna energy is
directly coupled to the TAW which is readily absorbed by ELD close to the plasma

edge, giving rise to undesirable surface heating.

The inclusion of the plasma equilibrium current produces significant modifications by
removing the poloidal degeneracy resulting in a multiplicity of resonances with their cor-
responding cutoffs [14,16,17]. Yet another important effect of the plasma current, first
pointed out by the Lausanne group, is the appearance of stable kink modes. Whether
the so-called discrete Alfvén waves (DAW) can be usefully exploited for plasma heating

continues to be a controversial issue [19, 20,22, 24].

The COM is weakly (15| damped with a radial damping length of several thousand
kilometers. The KIN, however, is readily absorbed via ELD with the radial damping

length given by
1 ¢ exp(c?)

V2T Wpe fgz ’

which is typically of the order of a few centimeters [15]. The vastly different wavelengths

-1
k.. =~

(15)

of COM and KIN, the strong evanescence effects as well as the rapid increase in the
TAW refractive index near the plasma edge, contribute to the difficulties in an accurate
integration of the Maxwell’s equations. Ross, Chen and Mahajan [17] have conducted
a boundary value analysis in a model that incorporates the COM, the TAW, the KIN,
the plasma current and even the finite Larmor radius effects. The difficult integrations
are tackled in an elegant manner by employing a Galerkin procedure with cubic spline
elements.

Modifications in the Alfvén wave propagation characteristics are also predicted due
to the poloidal mode coupling by the inclusion of toroidicity (14, 16,25,29]. The precise
quantitative estimate of the fraction of the antenna energy diverted to the parasitic
modes is, however, not presently available; extensive global mode studies in toroidal
geometries are being pursued.

The wave conversion process from the COM to the KIN in the plasma interior is

4




2
y

may be

critical to the Alfvén wave heating scheme [6]. For finite ny, nZ = n2 —n

obtained by displacing the abscissa in Fig. 1 by ng so that the right cutoff moves further
away from the resonance region thereby decreasing the coupling to the fast wave. This
apparently causes the well-known increase in the wave conversion to the slow branch
resulting in the superior coupling at the |m| = 1 azimuthal modes. Still larger values
of |m|, however, cause a reduction in coupling due to the increased evanescence. An
improvement in the conversion efficiency also accompanies an increase in the w/w,; ratio
and hence upon the toroidal wave number n [14 — 17|. Two basic effects of increasing
n (and concomitantly the frequency) are (i) to increase the separation between the
resonance and the cutoffs, and (ii) to provide a larger effective distance (measured in
wavelengths) for wave conversion due to the reduced wavelength at the higher frequency
of operation. Both these effects contribute to an increased coupling to KIN. An approx-
imate analytical derivation of this effect is given in the Appendix. Too large a value of
n, however would cause diminished coupling owing to the field cancellation effects from

the adjacent antenna sections [14 — 17].

Important progress has been made in the experimental documentation of the basic
physics of Alfvén wave heating especially by the Austin [17] and the Lausanne [18, 25, 30]
groups. In addition to the antenna loading characteristics, direct observation of the wave
conversion, as well as effects associated with the plasma current and toroidicity have

been recorded.

- Efficient coupling to the Alfvén waves requires (i) conditions conducive to high con-
version efficiency, and (ii) minimization of the evanescence between the plasma edge and
the singular surface. These happen to be contradictory requirements. The first of these
conditions demands the choice of a large w/w.; ratio (requiring a high toroidal number
n and hence a densely packed longitudinal antenna configuration), whereas the second
condition is best satisfied at low frequencies and therefore for low values of n. Although
this predicament has been recogonized previously, the precise quantitative implications

were brought to a focus in our recent antenna optimization study [31]. It was shown
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that optimal coupling, possessing high efficiency and low @ necessary for thermonuclear
applications, would not be feasible with the low toroidal number (e.g., n ~ 2) antennas
employed in the current experimental practice. Acceptable coupling may require using
n ~ 8. The antenna structure will take the form of a dense cluster of limited longitu-
dinal extent, reminiscent of the grill coupler used for the lower hybrid heating. Unlike
the grill antenna which is used to provide accessibility, the cluster antenna promotes
higher conversion efficiency. The penalty for using such large toroidal wave numbers is
the strong radial evanescence suffered by the wave. Thus the resonant layer has to be
located approximately at two-thirds the plasma radius (roughly corresponding to the
center of the plasma volume). This may constitute a viable choice for heating the entire
plasma volume, particularly if the energy distribution is aided by the enhanced electron
heat conduction.

The results of Ref. [31] were obtained without the inclusion of the plasma equilibrium
current which has an important bearing upon the Alfvén wave characteristics for the low
|n/m| values. The role of the plasma current in the antenna optimization is addressed
in this paper. Allowing for the possibility of the TAW wave excitation due to the finite
angle of the magnetic field lines with the cylindrical axis, requires the inclusion of finite
electron temperature as well. Finally, a more flexible version of the Faraday screen
with the capability of variable inclination with respect to the magnetic field direction
has been incorporated in order to enable us to suppress any offending surface heating
effects.

Allowing for an inclination o in the Faraday shield with respect to the local direction
of the magnetic field lines requires the following modifications in the tensor components

Mis and Na; of Ref. [34]
Mz = [(a155 + a2C5)e(c + f), (@255 + a3Cq)e(c + f),
(0152 + 202C» Sy + @aC2 — ¢F),
(@1Ss + 22Co)e(a — f), (@2Ss + 3Co)e(a — )l (16)

and




N3J' = [.5(ny5'a + nzca)uz—-f, (al So + QZCU): (a280' + aacg-),
(61580- + a4C¢,), .SCaux_f, "'-5Sa'uz—-f] ) (17)

where, C, = cos o, S, = sino, while ay, ¢r, €(z), and u, remain as defined in Ref. [34].

The single antenna geometry of Ref. [34| and the fully analytic antenna treatment
developed in Ref. [31] will be used. As in Ref. [30], m and n denote the poloidal and
the toroidal wave numbers while M and N pertain to the antenna geometry. Thus
M = 1 azimuthal antenna configuration used throughout the computations denotes a
single antenna elememt in the poloidal direction. Assuming that the alternate antenna
sections along the toroidal direction are in phase opposition, N = N4/2, where N4 is

the number of antenna sections deployed along the toroidal circumference.

2. THE PLASMA DESCRIPTION AND THE LOCAL COORDINATES

The density and electron temperature are asstmed to vary as

v =l ()] e ‘;(_)} ’ (18)

f= -G =[5 ()] )

L

and

where x and r, are the profile weight and the variance of the Gaussian, respectively. The
quantities ron and ro; are determined by the edge density n.(rp) and edge temperature

Te(rp) in the following manner

—1/xn

ron _ [y _melro) o 1)’ : (20)
Ty n.(0) 2 \ron
slg-bE ) e

where 7, is the plasma radius.

and




Although the present treatment is limited to cylindrical plasmas, it is convenient to

introduce the effect of the plasma current through the safety factor ¢ given by

4 = gmaz — (Imaz — Gmin) {1 = (;";) Xq} exp [—% (i;) 2] , (22)

where, gmaz = ¢(rp) and gmin = ¢(0). From g, one obtains the angle y between the

z-axis and the magnetic field lines using

X= a,rctan(—r—) . (23)
qrr

where rr is the toroidal radius. The local coordinates are related to the cylindrical

coordinates by the relations

é = f y (24)
A=Cl-S3, (25)

and
¢=86+cCz, (26)

where C = cos x, S = sin x, and the hat represents a unit vector. The refractive index

components in the local coordinates become
n, =Cng— Sn, , (27)
and

ne=Sng+Cny=Cn, (14 =), (28)
¢ Y

where, ng = m/r and n, = n/rr. The Alfvén resonance relation
m )\ 2
— 2 _ 2,2 m
55—-n§-—C‘nz(1+nq) ’ (29)

involves both m and n because of the removal of the poloidal degeneracy [14,17]. For
low toroidal numbers n, the dominant antenna coupling takes place to the m = —n/|n|
poloidal wave number as it occurs closer to the plasma edge than its counterpart, the

m = +n/|n| mode. This distinction, however, disappears for larger values of n. In
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the computed results reported here, the radial position of the dominant poloidal mode
(m = —n/|n|) was kept fixed as other plasma and antenna parameters were varied in
order to be able to distinguish among the effects of various parameters on the antenna
loading. The local cyclotron frequency increases by the factor sec x owing to the presence

of the plasma current. The vector operations in the local coordinate system are given

by
ad . . A S
V¢ = ?9?5 + tnp¢f + in.d¢ (30)
10 ) ’
V'A = __(rAE)+lnﬂAq+1ngAg 3 (31)
r Or
and

: m i 52 .
VXA =i(-ncdy +nnAc)€ + (ingAe + XpnAng — TAC — A
1 C? '
+(—m,,A€ + TAq T A,, + X;Ag)g ) (32)

where the prime denotes derivative with respect to r, and

Xpym =X & —. (33)

3. THE VARIATIONAL FORMULATION

From the Maxwell’s equations

VxE=1/H, (34)
and
VxH=—-1¢-E+7J, (35)
one obtains
E=ik-VxH-k-J), (36)

where ¢ is the dielectric tensor in the local coordinates, J is the radiofrequency current
(applied or induced) in the various conductors,

k=€ =| —tk, K¢ 0 |, (37)
0 0 «x
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€
o=, (38)
i
€
= -21 3 (39)
L1
1
o 40
K¢ € ] ( )
and
ei = e% = ei A (41)
Multiplying both sides of (36) by V x H* gives
V-(Exfl*)=i[H-ﬁ"‘-—-(n-VxH)-(VxI:I")+(K.-J)-(V><I:I*)] . (42)

Integrating over the plasma volume yields the variational form

/(Exfl*)-dSzi/[H-fl‘——(rc-VxH)-(Vxﬁ*)+(n-J)-(fol*)] dv. (43)
S \ 4

The electric field E on the left hand side of (43) is to be prescribed by the boundary
conditions, consisting of either the driving source terms at the surface (Section 5) or
regularity conditions at the axis (Section 4). The sole restriction on H is that it should
satisfy the boundary conditions imposed on H. The casting of the variational equation
in terms of H instead of the usual E may be computationally advantageous because
compared to their electric field counterparts, the magnetic field components exhibit
considerably more placid behavior.

Equation (43) has been integrated to solve for the plasma surface impedance tensor
¢p by standard finite element techniques [35] employing cubic Hermite interpolation
elements. Details of these computai‘.ions will be given in a separate communication.

IfH = H, (42) corresponds to twice the dissipation density. Similarly (36) may be

used to obtain the Poynting vector P. Also

_ Trr
=2mr——P 44
P Tr N , ( )

is the total Poynting vector per antenna, while

wrr

P = —V- 5
vV.P 27rrNVP, (45)
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gives the dissipation per unit radial distance per antenna.

4. REGULARITY CONDITIONS AT THE AXIS

Upon eliminating E¢ and Hg¢, the Maxwell’s equations may be expressed in the form

2

C?* n.e npn n
El w0 nen E _ IE it/ 5hd Y . 1-— _n H
n ( - il o )En XpLig +1 € Hy + 1 56) ) (46)
! v Bsbn S* -1 Nl
E; - (Xm = )En - _'Eg - 1“""‘Hﬂ —1 Hg N (47)
GE r 65 65
y : oo g a4 P
H, = —ingn.Ey +i(n; — ¢ )E; — —;H,, =00 e (48)
and
¥ o € : ,  NeEq Ryly: 15°
H,=i(y1— —)E, +ingn.E; + (X1 — JHp + ( - —)H, , (49)
Ge G‘f GE T
where,
M =€ —n}. (50)

At the axis forr - 0, x -0, S - 0and C — 1.

4.1 Polarization relations for the m = 0 case

Since n,, — 0, assuming that the plasma parameters are slowly varying near the axis,

(46) to (49) simplify to

(FEL =4l , (51)
E! = —”z:" Ep— :'Z—;H,, , (52)
(rHy)' = —ire E, , (53)
and
B! = ifn - B, - "y, (54)

& €z
For the polarization corresponding to H, = 0, (51) shows that E, — 0. From (52) to
(54), one obtains

B+ -:-E; +k3E, =0, (55)
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where

2 _ €
1

KY =
€¢

From (55) and (52) we get the polarization relations for r — 0 as
E; = Jo(!Clr) ’

and

E4E 1/2
H, = —i (—5—‘) Ji(k1r) ,
!

where J, are the Bessel functions of the first kind and order n.

Similarly for the wave polarization E.,=0,H, =0,

and
H, = Jo(kar) ,
where )
€
e =1 ;:*

4.2 Polarization relations for the m # 0 case

At the axis we assume that the field components vary as
{TE,,,E;,TH,,,H;} i rp"’ .

Using (62) in (46) to (49) gives
M€
am (s 1)
Together with (46) to (48), (63) provides the polarization relations

.m? 2 2
E, = ‘“‘—E?(ﬁl,z —-m® +er’),
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(60)

(61)

(62)

(63)

(64)




E =i Es‘ (m? - Bi,)r, (65)
n.e€
Hy, = - :;ﬁl,szz ) (66)
and
me €
H; = (1, —m?) (ﬂx,z K —Ef—") o é(ﬁl,ﬂl — mey)r® . (67)

Two independent sets of polarizations correspond to the two values of 3, 2 in (63).

4.3 The regularity conditions for r — 0

For r — 0, let p(r) and ¢(r) be the amplitudes of the two waves corresponding respec-
tively to the two wave polarizations. The total field in the plasma may be expressed as

the superposition of these two components

(] = p(r)EP(r) + q(r)EX(r) , (68)

E¢(r) = p(r)EE(r) + q(r)EJ(r) , (69)

Hy(r) = p(r)HF(r) + q(r)H3(r) , (70)
and

H(r) = p(r)HE (r) + q(r)H(r) . (71)

Eliminating p(r) and ¢(r), gives

Ey(r) = z11(r)Hy (r) + z12(r) H (r) (72)
and
E¢(r) = z21(r) Hy (r) + 222(r) H, (r) (73)
where
211 = (E,’;Hg — E;H;’)D‘l , (74)
212 = (EgH,,’; = E,’;H,”;)D—l y (75)
231 = (EPHY — E{H?)D™' (76)
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z22 = (E{H? — EPH})D™' , (77)

and

D= HEHS — HIH? . (78)

Equations (72) and (73) along with (74) to (77) completely specify the regularity
conditions at the axis. The expressions (72) and (73) for E, and E., respectively, help

to eliminate E in the left hand side of the variational form (43).

5. BOUNDARY CONDITIONS AT THE PLASMA SURFACE

At r = r,, the surface magnetic field may be related to the surface electric field

through the admittance matrix X p by the following expressions

Hy(rp) = T Ep(rp) + T12E(rp) , (79)

and

H(rp) = T21Ey(rp) + T22E¢(rp) - (80)

Imposing the boundary conditions E,(r,) = 1 and E;(rp,) = 0 at once eliminates E in
(43). The solution matrix directly yields T1; = H,(r,) and Y2, = H((r,). Repeating
the procedure with E,(r,) = 0 and E((r,) = 1 gives the remaining two components of
the admittance matrix at the plasma surface.

The plasma surface impedance matrix ¢p may now be obtained from the relations

(= Tad ', (81)
12 =—Ti2A7", (82)
¢1=-TaA™", (83)
G2 = Tud™', (84)
where
A=Ty1Ta—T12T21 . (85)
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The ¢p thus obtained is employed in the antenna calculations described in Refs. [31,34].

6. THE RESULTS

The ASDEX UPGRADE parameters used in the computations described in this sec-
tion are listed in TABLE I. The dot on the abscissa of the following figures corresponds
to these reference parameters. The antenna efficiency 54 is defined as the ratio of the
net power delivered into the plasma versus the power entering the antenna terminals.
The antenna dissipation accounts for over ninety percent of the total resistive losses
in the system, the rest occuring in the wall and the Faraday shield. Unless explicitly
stated, the metallic surfaces are assumed to be silver plated and the Faraday screen is
not included. The quality factor is defined as Q = | X|/R, where X and R, respectively,
are the inductive and the resistive components of the antenna impedance Z4. The po-
sition r4 of the singular Alfvén surface corresponding to the m = —n/|n| resonance is
treated as the primary fixed parameter. In order to maintain r4 constant, the frequency
of operation is varied in accordance with the plasma and the antenna conditions. The
total number of antenna sections along one torus circumference N4 = 2N. The alter-
nate sections are assumed to be in phase opposition so that the fundamental toroidal
wave number n = N. Each antenna section is composed of a single element presumed
to be placed along the outer plasma circumference. The toroidal geometry is simulated
by the cylindrical approximation via the periodicity in the z direction. Although the
plasma surface impedance is computed using the cylindrical model, the antenna com-
putations employ the fully analytic, self-consistent slab treatment of Refs. [31,34]. The
use of slab antenna model is justified because of the relatively short separation between

the antenna and the plasma surface, so that the cylindrical effects are negligible.

Figure 2 depicts the dependence of antenna loading on N. The inclusion of the
plasma equilibrium current produces no significant alteration in the basic result of Ref.
[31]. As before an antenna configuration with N ~ 8 is imperative for good coupling.

The significance of the quality factor Q@ may be appreciated from the circuit theory
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definitions (for input power P4 and assuming Q > 1)

V ~ (P4QX)Y? | (86)
Ix(PAZ)V?, (87)

and
VI~ PAQ . (88)

Figure 3 showing the antenna voltage and current characteristics as a function of N,
conveys the practical implication of these results. For 1 MW power input per antenna,
the N = 2 antenna requires 31 kV and 5.8 kA contrasted with the 14 kV and 1.2
kA needed for the N = 8 antenna (assuming r4/r, = .67). Even after allowing for
some relief in the voltage requirements by employing antennas with a larger width, the
problems with the low N antennas remain formidable.

The cooling problems too become severe for the low N antennas (Fig. 4), 13% of
the input power being dissipated in the antenna itself for the N = 2 configuration,
compared to the more tolerable loss of 1.2% for the N = 8 antenna. If instead of silver,
stainless steel were to be used as the antenna material, the corresponding losses rise to
48% and 6.6%, respectively. For appreciably smaller values of r 4 /r,, even the operation
at N = 8 may be jeopardized.

The precise effect of the equilibrium current is seen in Figs. 5 and 6 for the two
antenna configurations N = 2 and N = 8, respectively. The effect of the plasma current
is simulated by varying the safety factor gmin at the axis while keeping ¢maz/qmin = 3.
For the N = 2 case, the coupling to the m = —1 resonance clearly dominates over the

m = +1 contribution. Although there is distinct improvement in antenna loading for

increasing plasma current, the coupling for the low N values continues to be poor. The
improvement in antenna loading with increasing plasma current is in agreement with
the theoretical as well as the experimental results reported in Ref. [30].

The decline in antenna loading for decreasing r4/rp is shown in Figs. 7 and 8. The

sharper reduction for the N = 8 case is to be traced to the stronger evanescence due
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to the close juxtapostion of the antenna sections. The reduction in loading when the
resonance occurs too close to the plasma edge does not have a counterpart in the absence

of the plasma current.

Figures 9 and 10 are the plots of —P;¢ and (V - P),, depicting the Poynting vector
per antenna and the azimuthal components of the dissipation (per antenna) per unit
radial distance for T, = 1 keV and T, = 10 keV, respectively. The fraction of the
wave energy already absorbed is indicated by the dots on the —P;¢ curve. Combination
of the finite electron temperature and the mode separation due to the removal of the
azimuthal degeneracy results in considerable broadening of the dissipation profile for
the large NV values because the dominant pair of the m = +1 modes are excited with
comparable strength. This advantage will not accompany the low N excitation because

of the relatively weak excitation of the m = +1 azimuthal mode.

The radiofrequency magnetic field in the plasma for the parameters of TABLE I is
plotted in Fig. 11. The wave conversions near the resonances require the existence of
a Poynting vector associated with KIN in order to carry off the wave converted energy
from COM. Since the E. component of the electric field is vanishingly small, H, exhibits
large excursions near the resonance in order to provide for the energy transport to KIN.
Figure 12 depicts the components of the displacement vector D = ¢-E. The component
D, increases as a resonance is approached, followed by an equally rapid restoration
as the enegy is drawn away from the fast COM to feed the KIN. As a result, the D,
component grows, but it, too, quickly subsides as it encounters strong Landau damping.
The D¢ field mimics the D, fluctuations in order to satisfy the continuity requirement
V D = 0. The behavior of E (Fig. 13) follows that of D. The component E., being

several orders of magnitude smaller than the other two components, is not shown.

The small blip in D, in Fig. 12 is due to the direct excitation of the TAW near the
plasma edge. The associated electric field E, is extremely small. Furthermore, since
there is no concomitant increase in H,, the enregy diverted to the edge heating is small

(estimated to be below 0.2%). The prevailing absence of the edge heating has been a
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consistently welcome feature throughout the computations. Ironically enough, the edge
heating flares up in a significant manner upon the introduction of the Faraday screen,
unless care is exercised in the alignment with respect to the magnetic field lines. Figure
14 shows the fraction of the antenna energy coupled to the surface wave as a function of
the angle (¢ — x)°, which is a measure of the Faraday shield misalignment with respect

to the magnetic field lines.

7. DISCUSSION

7.1 Optimal coupling configuration

The primary objective of this work has been to explore the existence of windows in
the parameter space conducive for coupling to the Alfvén resonance in the presence of
the equilibrium plasma current. The principal conclusion to emerge from the present
investigation is that the use of high (n ~ 8) toroidal wave numbers is imperative for ob-
taining acceptable coupling in the context pertinent to thermonuclear plasma heating.
Assuming an antenna configuration of N = 8, a further constraint consists of locat-
ing the resonance at approximately two-thirds the plasma radius, which corresponds to
depositing the wave energy into the longitudinal motion of the electrons via Landau
damping roughly at the center of the plasma volume. Neither of these basic constraints
is significantly altered by the inclusion of the plasma equilibrium current which affects
coupling mainly at low n values which are, in any case, unsuited for thermonuclear appli-
cations. These traits have been highlighted in practical terms through the presentation

of antenna voltage and current as well as the resistive losses.

7.2 Surface losses due to the direct excitation of the torsional Alfvén wave

Among the more welcome findings has been the absence of serious surface heating

effects which could undermine an otherwise tenable scheme. These findings are in
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agreement with the TCA [30] results where the contribution to the antenna loading due
to the direct parasitic loading from the TAW is estimated to be below 5 mf). The low
coupling to the surface mode may be indicative of the degree of mismatch between the
antenna impedance and the effectual short circuit existing along the magnetic field lines
at the relatively low frequencies encountered in the Alfvén wave heating. Strangely
enough, the introduction of the Faraday screen enhances coupling to the surface wave.
This behavior may possibly arise from the Faraday shield aligned along the magnetic
field lines acting as an impedance matching transformer between the azimuthal antenna
and the longitudinally conducting plasma. It is apparently preferable to discard the
Faraday shield altogether. If the need for a particle screen to avoid breakdown problems
is deemed necessary, either careful alignment, or perhaps the usage of a non conducting

material, is called for.

7.3 Discrete Alfvén wave (DAW) excitation

No deliberate attempt either to include or to exclude the DAW resonances was made
during the course of these computations. Nevertheless, over the broad range of param-
eters studied, no evidence of pronounced irregularities in the antenna loading charac-
teristics were observed. These results indicate that an inadvertent excitation of DAW,

attended by uncertain consequences, constitutes no particular cause for concern.

7.4 The computational accuracy

The variational formulation in Section 3 anticipated a more regular behavior by
the magnetic field components in comparison with the electric field counterpart in the
plasma. This is clearly demonstrated in Figs. 11 to 13 where the magnetic field compo-
nents differ by a factor of approximately thirty, whereas the electric field components
differ by several orders of magnitude. An intermediate variation is exhibited by the

components of the displacememnt vector.
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Figure 15 shows the convergence in the value of the antenna loading as the number
of grid points in the finite element integration scheme is increased. Convergence within
0.2% of the final value occurs for surprisingly coarse grids with points a centimeter apart.
This is partly a tribute to the excellent interpolation properties of the Hermite cubics
between the grid points, so that the wave conversion from COM to KIN is accurately
rendered even though the grid points are not closely packed around the resonance.
Partly, however, the remarkable convergence is due to the insensitivity of the KIN to
the precise description of the absorption process. The computations reported in this
paper were performed with 750 grid points.

Notwithstanding the excellent convergence of the antenna loading, inaccuracy persists
in estimating the precise amount of energy coupled to the surface wave. The underlying
reasons include (i) the extreme variations in the refractive index of the slow wave in
the vicinity of the plasma boundary, (ii) the interference among the modes, and (iii)
the smallness of the coupled energy, per se. We are exploring means of improving the
accuracy near the edge. Meanwhile, the estimates given for the edge heating in this
paper may be subject to modification.

The insensitivity of the wave conversion and absorption to the precision in the de-
scription of KIN, together with the insignificant importance of the cyclotron damping

justifies the neglect of the finite Larmor radius effects in this paper.
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Appendix

The approximate differential equation for the fast wave in the slab plasma model is

given by [36] (z is not normalized in this section)

E; - ki(:c)é'y =il (A1)
where
T2
Ey = (_)1/25!; ’ (A2)
71
-y n§ ) (43)
(er — nﬁ)(eR —n?
ki(z) = e z)kg-kj-kg, (A4)
and
n? €z — .25n2 — n? €
k2(z) = —¥_ | 5¢" — = T W P FTR) A5
g() Y172 * Y1772 z nyo; ”yoy (45)

The three terms in the brackets in (A5) are the contributions from the uniform plasma,
the finite ky, and the gradient effects, respectively. The presence of the kg term has
the effect of translating the abscissa in Fig. 1, moving the right cutoff away from the
resonance region, and thereby diminishing the coupling to the propagating branch of
COM. Less important modifications are contributed by the gradient term. For a linear

density profile one may approximately refactor (A4) into the form

K2 (z) = k3(n? — 1) 2o g —Talle —2a) | (46)
Te1Ze2 I — I

-2

- encountered

where z.1 and z.; correspond to the zeros of (A4). For the large kg ~T

in the m # 0 case, the cutoff at z.; is well removed from the resonance region so that

k2(z) ~ —ak2Z 2L AT
2(a) ~ —ak} T2 (A7)

where

a=h2—0£%. (A8)

Using (A7) reduces (A1) to the Whittaker equation

926  , 1 18
& i By A9
57 Th(-3 =570 =0, (A49)
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where

B = allzko(xo —Zc) , (A10)

and

q= ZQI/ZkO(z = Io) . (A].l)
Discarding growing solutions, one obtains from (A9) and (A2)
v
Ey = (7—?)1/2 WK,#('T) ) (A].Z)

where Wy ,,(7) is the Whittaker function as given in Ref. [37], u = 1/2 and k = —f3/2.

Using the relations

.71 OF
By =5t . ’ 13
1’72 oz (413)
and
E,(0)
- Al4
H,(0)’ (A14)
yields
oonBpnk <] o pe? 50,2 g
¢f = tkozo—" Y+ 50" %ko(zo + zc1) D50 2:d)

t U(1+.56,2,7) ’
(A15)

2 _ TR
(e | nytnz—1

where U(a,n + 1,7) is the logarithmic solution of the Kummer equation [37], given by

_1)n+1
U(a,n +1,7) = m[@(a,n +1,7) In~y
+’§)%{¢(a+r) —9P(1+7) -',/,(1 +n+1)}
+21: (nrfai)!”’"“‘l’(“— L —5) 5 (A16)

where, ®(a,n + 1,v) is the Kummer function of the first kind, I'(a) is the gamma

function,
P(a) = IIT((;) , (A17)
and
(@)n =a(a+1)(a+2)...(a+n—1),(a)o=1. (418)
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Since for £ = 0, v = —2a'/2kozo is a negative quantity, In~ in (A16) contributes an
imaginary part which gives rise to the resistive component of ¢f in (A15). For w/w¢; — 0,
B — 0 so that [[(a —n)]”" — 0 and the resisitive loading disappears. For a fixed
value of a, increasing w/w,; causes a rapid increase in 8 due to the increasing ko and
(zo — Zc1). This in turn, causes a steep rise in the loading resistance as [[(a — n)] ™" as
well as ®(a,n+1,7) increase. The net result is a marked improvement in the conversion

efficiency leading to the superior coupling properties at larger values of w/we; and hence

at the higher toroidal wave numbers.
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TABLE I

TABLE I

toroidal radius

poloidal radius

toroidal magnetic field
peak density on azis
relative edge density
density profile weight
density profile variance
peak electron temperature
relative edge temperature
temperature profile weight
temperature profile variance
safety factor on aris
safety factor at edge

g profile weight

q profile variance
resonance position
antenna toroidal number
antenna length

antenna width

antenna wall sparation
gas composition

1.65 m
0.5m

3.0T

3 x 1020 m~3
0.01

T keV
0.01

O BN W e

.67

0.8m
0.15m
0.15m
Hy

ASDEX UPGRADE PARAMETERS USED IN THE COMPUTATIONS
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Fig. 1 The qualitative Alfvén wave dispersion curves for (a) a cold plasma, (b) a hot
plasma, and (c) a plasma with an increasing temperature in the direction of the density
gradient. The left and the right cutoffs occur at e,z = n2 and the position of the

Alfvén layer is given by ¢; = n2. The dashed parts of the dispersion curves correspond

to the regions with significant Landau damping. In the limit of vanishing electron mass

both TAW and KIN collapse to form a vertical branch at the Alfvén singularity.
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Fig. 2 Dependence of antenna loading on the toroidal number N. Antenna loading falls

sharply below N ~ 5, much as in the absence of the plasma equilibrium current.
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Fig. 4 Antenna resistive loss for the case of stainless steel and silver plated antennas,
respectively. The large voltage and current requirements as well as the high losses

associated with the low N values would preclude their use in thermonuclear applications.
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Fig. 5 Improvement in antenna loading with the plasma equilibrium current for N = 2
by a factor of approximately 2.5. The loading, however, is still too low to be viable for
thermonuclear applications. Notice the clear distinction in the loading characteristics

for the the positive and the negative azimuthal numbers. 4
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Fig. 6 The plasma current produces insignificant changes in the antenna loading for the

large N = 8 antenna configuration.
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Fig. 7 Antenna loading as a function of the resonance position r4/rp, for N = 8. The
rapid reduction in coupling as the resonance moves deeper in the plasma is due to the

strong radial evanescence for the closely spaced antenna configuration.
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Fig. 8 The loading for the N = 2 antenna configuration exhibits less sensitivity to the

resonance position but remains uniformly low.
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absorbed) and (V - P),, (solid curves) for T, = 1 keV. The differing locations of
the resonance for the different m in conjunction with the finite temperature effects
considerably broadens the absorption profile. Since most of the dissipation occurs in
the m = +1 azimuthal modes, this advantage will not be present for the low mode

numbers where the coupling to the m = +1 is effectively suppressed.
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Fig. 11 The magnetic field components in the plasma for the reference parameters.
The large excursions in H, compensate for the low values of E, in order to provide the

requisite conditions for the transport of the wave converted energy.
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Fig. 12 Components of the displacement vector D = € - E. The component D, increases
near the resonances to provide for the E needed for carrying the slow wave energy. D

follows the D, variations in order to satisfy the continuity condition for D.
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Fig. 13 The electric field in the plasma. The E, component, being several orders of

magnitude smaller, is not shown.
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Fig. 14 Fraction of the antenna energy coupled to the surface wave as a function of the

angle (0 — x)° of the Faraday shield with the direction of the magnetic field lines.
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Fig. 15 Convergence of the antenna loading resistance versus the number of the radial
grid points in the finite element integration of (43). Convergence within 0.2% of the
final value occurs already for a scant 50 grid points. The computations reported in this

paper employ 750 grid points throughout.
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