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ION CYCLOTRON HEATING OF TOKAMAK PLASMAS
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Abstract

We present a complete set of equations for the numerical simulation of ion cyclotron
heating of tokamak plasmas. The model includes the full geometry of the tokamak
equilibrium, full parallel dispersion, and perpendicular dispersion to second order in the
Larmor radius. It is therefore capable of describing correctly ion cyclotron damping at
the fundamental and first harmonic, as well as mode conversion to the ion Bernstein
wave and /or the shear Alfvén wave, depending on the heating scenario. It includes also

electron magnetic pumping and Landau damping, the latter to lowest order in m./m;.

Relying on the knowledge gained from slab and ray tracing analysis, we also situate with
respect to this standard model some of the further approximations which are commonly
encountered in the literature. Finally, two procedures for the numerical solution of the
standard model are proposed.




1. Introduction

H.F. waves in the ion cyclotron frequency domain are a favourite auxiliary heating
method for large tokamak plasmas [1-4]. Considerable effort has therefore been devoted
to the theory of their coupling, propagation, and absorption. The complex geometry
of a tokamak was first simulated with a slab model including the appropriate variation
of |§o| and shear [5-6]. Considerable progress was made with the introduction of ray
tracing [7-11], combined with a semi-analytic treatment of resonance layers [12]. A
large amount of physics can be understood with these approaches; their limitations
are, however, obvious. The next step should be the numerical solution of the full
wave equation in two dimensions (the toroidal coordinate ¢ being ignorable, it can be
eliminated by a development of the field in toroidal Fourier components). The first

“global” codes have been recently developed [13-19].

Upon a closer look to the problem, however, one rapidly realizes that global codes for
the simulation of ICRH of large tokamak plasmas are not far from saturating the ca-
pabilities of present-day computers. To keep things manageable, one is forced to make
approximations, whose implications are not always easy to understand. Efforts to ana-
lytically unravel the behaviour of solutions of the wave equations in two dimensions have
sometimes further confused rather than clarified the issues [20, 21]. The main goal of
this report is to present a complete model (i.e. a self-contained set of equations) retain-
ing the essential physics yet amenable to numerical solution with standard techniques.
Relying on the knowledge gained from slab and ray tracing simulations, we also try to
situate with respect to this “standard” model some of the further approximations which
are commonly encountered in the literature. Finally, two procedures for the numerical

solution of the standard model are proposed.

The first difficulty encountered in the realization of this programme is that of reducing
the full set of Maxwell plus quasi-linear Vlasov-Fokker-Planck equations to an approxi-
mate but more manageable one, in which the information about the velocity space dy-
namics is compacted into a “constitutive relation”, i.e. a relation between the h.f. field
and the oscillating current in the plasma. A powerful variational approach to this
problem has been developed by Gambier and Samain [22]; related techniques have been
used for the solution of the bounce-averaged Fokker-Planck equation by Kerbel et al.[23].
Here we greatly simplify our task by assuming that most ions cross cyclotron harmonic
resonances with a constant speed along the magnetic field lines. We will refer to this

approximation as the “ballistic” model.
In Section 2 we introduce the plasma equilibrium and the differential operators needed
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later. The set of equations to be solved, based on the work of Swanson [24, 25|, Colestock
and Kashuba [26], and Brambilla and Ottaviani [27] is presented in Section 3. There we
also briefly discuss the approximations included in the “ballistic” model, and we deal
with the limit of vanishing electron inertia in a novel way, which allows to retain electron
Landau damping, while eliminating from the equations the very small component of the
h.f. electric field parallel to the static magnetic field. Finally, in Section 4, the equations
are recast in the weak-variational form appropriate for numerical discretization: the

boundary conditions and the power balance equation are also formulated.

In spite of the simplifications due to the ballistic approximation and the zero electron
inertia limit, the equations of Sections 3-4 are very difficult to solve numerically due
to the dispersive nature of the plasma response to h.f. waves. Dispersion has two
consequences. On the one hand, finite Larmor radius (FLR) effects are responsible
for the existence of short-wavelength, quasi-electrostatic modes, which are excited by
linear mode conversion [25] in the vicinity of wave resonances. The need to resolve short-
wavelength features sets heavy constraints on the mesh for the numerical discretization,
whose severity increases with the plasma dimensions. On the other hand, free streaming
of the particles along magnetic field lines makes the constitutive relation non-local in
the vicinity of IC harmonics. Thus to describe kinetic absorption adequately, one has,
in principle, to solve a set of integro-differential equations. To our knowledge, no code

thus far has coped with both these problems.

In Section 5 we discuss the approximations which are most commonly made to alleviate
these difficulties. We claim that some of these approximations, particularly the one
consisting in taking the cold plasma limit of the constitutive relation, simplify the
algebra rather than the numerical task; and that on occasions (including some of the
most important ICH scenarios) they give quite misleading results, in spite of a flawless

numerical solution.

Finally, in Section 6 we suggest two numerical schemes for the solution of the integro-
differential equations of Sections 3—-4. One is based on a mixed spectral-finite element
discretization; the other uses finite elements in two dimensions, and iterates to cope with
the non-local nature of the constitutive relation. Work towards the implementation of
the spectral method is in progress [28]; the second method remains for the moment
speculative. Our conclusion is that any numerical approach, to be successful, must be

taylored as far as possible to the physics of the problem.




2. Description of the Plasma Equilibrium

It is convenient to describe the tokamak equilibrium in the parametric form
X=X(9) Z=2$9) 1)

X, Z are horizontal and vertical Cartesian coordinates in the poloidal cross-section; %
labels magnetic surfaces. and ¥ is some poloidal angle. The third coordinate will be

the toroidal angle .

The covariant metric of coordinates (¢,9,¢) is
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In these coordinates, the static magnetic field can be written
B = BoRo{f($)Ve x V¢ + g(¢) Vio} (5)

so that its toroidal and poloidal components are, respectively,

B, = BoR I
(6)

In the general case, G # 0, so that (¢,9,p) are not orthogonal coordinates. At each

point we can, however, introduce an orthogonal triad of unit vectors
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(€7 = €, x €y points in the direction of the poloidal magnetic field.)

For subsequent reference, we list here the most important differential operators in the
(¥,9, ) coordinates:

Go= Lt 00 _ G984, 10, 1db,
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L. 10 a1, J 104,
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A simple description of the h.f. response of the plasma, on the other hand, is only
possible in a reference frame which singles out explicitly the direction of the static
magnetic field. A triad of units vectors satisfying this condition can be obtained from

the previous one by a simple rotation:

- —

s = €y
€y = cosOe; — sinOe, (11)
& = (B/B) = sin®¢, + cosO¢€,

where
tan®(y,9) = B, /B, (12)

We will refer to the (physical) components of a vector along the triad (11) as its “Stix”
components. In addition, it is often convenient to introduce the rotating unit vectors

(€ F iéy) (13)

o
Il
Sl

They allow the decomposition of E| = E — (E-B)/B in left (+) and right (-) circularly

polarized components.

Although (3, n,¢) coordinates are defined only in a local sense, it is of course straight-

forward to express the differential operators (8) to (10) in the Stix reference frame:
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We note the identities which will be useful later:

Tng +Yen = Vy
Vo + Vg =V
sy ¥ n (17)
Ty T Vyn = V¢
Tnn + Ve =0
3. The Constitutive Relation
For a wave with time dependence exp(-iwt), Maxwell equations can be written
S w? . 4w
rotrotEl = —(E + Tf) (18)

where J, the current density within the plasma, is a linear functional of E. In a slab
model, where a dependence of the form exp(ik.¢), with k; = k) a constant, can be
assumed for the field, J(E) has been obtained from the linearized Vlasov equation
correct to second order in the ion Larmor radius by Swanson [24] and by Colestock and
Kashuba [26]. While the assumption of a constant k| does not exclude shear ([24, 12]),
it is, nevertheless, incompatible with the full two-dimensional geometry of a tokamak

plasma. In this case J(E) is non-local even in the small Larmor radius limit.

The constitutive relation for this situation has been obtained by Brambilla and Otta-
viani [27], under the additional assumption that ions cross cyclotron resonances with
constant parallel velocity, and that their parallel distribution function is Maxwellian.
Distinguishing the zeroth and second order contributions in the Larmor radius expan-
sion,

= 0 2 2

J=JO+J®+ 3 i (19)

tons

the results of Ref. [27] can be written
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where E| = Eyéy + Enéy = Epéy + E_é_. The perpendicular differential operators
are easily identified by inspection of eqs. (14) — (17); they are most easily expressed in
rotating coordinates through
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Finally, in eq. (20) we have introduced the following integral operators:
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L and R contain the polarization and the E x B drift of the electrons, and the zero
Larmor radius response of the ions: in particular, the antihermitean part of L describes
ion cyclotron damping (ICD) at w = ;. P is dominated by the very large parallel

inertial response of the electrons: its antihermitean part describes electron Landau
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damping (ELD). Among the FLR terms, the antihermitean part of Xoe describes electron
magnetic pumping (EMP), and the one of X2: first harmonic ICD. We recall that A,;
is resonant at w = 20, where all zero Larmor radius terms remain finite: this is
responsible for a relatively large evanescence gap between the resonance layer and the
confluence with the lowest ion Bernstein wave [29, 30]. Terms proportional to Xoi and
5\1,-, which remains always small compared with homologous zeroth-order terms, have
been omitted from eq. (20).

While the restriction to Maxwellian distribution functions can be trivially removed, the
ballistic assumption v = cte. during transit through a cyclotron resonance deserves

some comment. The typical duration of a resonance is [22]

TR
Tiis By [ LLTE =
e =/ v sin8 (24)

during which the change in v can be estimated to be

2 .
. v] [msin©®

Ay &2 —
Yl 2 ﬂv”R

(25)

This is certainly small for passing particles, but not for trapped particles on orbits
with reflection points close to the resonance plane. Moreover, solution of the Fokker-
Planck equation in arbitrarily specified field distributions [31-32| show a tendency to
the accumulation of such particles, for which the ballistic approximation is obviously
untenable. Nevertheless, in a tokamak, their number at any given time is bound to be
small because of their rapid vertical diffusion. Thus, while h.f. -driven trapping might
be importan in producing escaping fast particles, it is unlikely to affect appreciably

wave propagation.

At IC frequencies, electrons screen very efficiently any electric field component parallel
to the static magnetic field: this is reflected in the fact that the coefficient of P is
m;/m, times larger than those of R and L. The difficulty of dealing with the resulting
bad scaling is usually avoided by taking the limit w?/ wge — 0, which of course implies
E. —0.

The limit of zero electron inertia, however, eliminates electron Landau damping alto-
gether from eq. (18). This is well justified for the fast wave, for which EMP in any
case exceeds ELD by at least one order of magnitude. On the other hand, ELD is in
some important cases the only non-collisional absorption mechanism (but then a very

efficient one, cfr. Sect. 5) for short wavelength modes, which are almost irrotational,
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hence insensitive to EMP. A correct evaluation of electron heating therefore requires
keeping ELD in the model.

To make this possible while still avoiding scaling problems, we use the ¢ component of
eq. (18) to estimate E iteratively:

2
A c —
PE,; = E(ratrotE_L)g (26)
Strictly speaking, this equation is not explicit, since P is an integral operator. In any
conceivable ICH scenario, however, short wavelength modes can only be excited when
the antihermitean part of Pis very small, and are absorbed well before this condition

is violated. We can therefore “linearize” around the cold limit, and invert eq.(27) as

A

E = ﬁﬂ(rotrotﬁ ) (Po = —wl, [w?) (27)
$ T w2 & ¢ 07 Tpe

where P! denotes the hermitean conjugate of P. This expression can then be used in
the two remaining components of eq. (18) to eliminate E. altogether while retaining

ELD to leading order in m./m;.

4. Weak Variational Formulation

In view of its numerical solution, it is convenient to recast eq. (18) in the so-called

weak-variational, or Galerkin, form [33]:
dV F*(7){ rotrotE — W' § 4—”’..1?)} =0 (28)
(7 {ro ro o2 (

It will be required that this equation be satisfied for all vectors F belonging to a suitable
space of test functions (to be specified later). As it is well known, this leads to convenient
discretization procedures. In addition, by part integration, eq. (26) can be put into a
form in which only first-order operators are present (except for the ELD term), boundary
conditions can be explicitly stated, and which is closely related to the energy balance

equation.
The vacuum term in eq. (28) can be transformed using the identity
F*rotrotE = rotF* - rotE — div(F* x rotE) (29)
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The FLR terms in the plasma current density, and those arising from the substitution
(27), are also easily integrated by parts, using the definitions (21)-(22), together with
the identity (17). The final form is

2
/ % {rotFj‘_ rotEL ++55 [—F;(LE+) — F*(RE_)
14
I L e
+ (8. div. Fy) (-ﬁg(agdw 1E)) -
+2(04F4)* (Aai(9+ B4)) + (V1 x Fu); (Roe(V 1 x B1))] }

fs d§ - (F* x rotE)

Here the volume integral extends to the whole vacuum vessel; the surface integral on
its wall and on the antenna surface. It is convenient (and realistic) to assume that the
plasma density decreases continuously towards the walls in such a way that F.L.R. con-
tributions to the surface integral are negligible.

It is further convenient to impose that F satisfies the same boundary conditions as E at
the wall, and that it is continuous at the antenna. Then if the wall is a perfect conductor,
its contribution to the surface integral vanishes, while the antenna contribution can be

rewritten 4
— —!* — ﬂzw -
- f dS(F* x rotE) = —— / dS(F* - J#) (31)
where f;# is the surface current density distribution in the antenna.

Finally, the power balance equation is immediately obtained from eq. (30) by identifying
F with E , and taking the imaginary part:

- %Re/(ﬁ*-.ﬂ#)d.?
= o2 [ v {BL ) + @saiv, Eu) (55
—2(8+E4)" [A 3+E+)] - (V1 x E.L)g[ se(V1 % EJ—):]}

agdeEl)) (32)

(superscript a denotes the antihermitean part of the operators). This equations provide
a useful global check on the accuracy of the numerical solution. Even more important,
the integrand on the rhs is the local power absorption: the meaning of each term is

immediately clear from the discussion following eq. (23).

In principle, eq. (32) could also be used to evaluate the radiation resistance R, of the

antenna, since

“RI? = —lRef(E"'*ﬁ‘)ds (33)



In practice, however, this is hardly feasible. Indeed, to keep the problem a two-
dimensional one, one is obliged to solve for one toroidal mode (ezp tn,p) at a time.
While eq. (32) holds for each partial wave separately, eq. (33) only holds for the total
field, i.e. implies a summation over n,. The difficulty of the task can be judged by
recalling that the spectrum of a typical antenna in a medium-size tokamak extends over

several tens of n, modes.

5. Discussion

For the reasons stated in the introduction, the equations of sec. 3, or their variational
equivalent of sec. 4, still present formidable numerical problems. Thus all codes realized

thus far have made one or more of the following further approximations.
1. Finite Larmor radius terms are omitted;
2. the integral operators f;, ... are replaced by local ones;
3. the poloidal component of the static magnetic field is neglected.

In this section we will discuss these approximations, drawing heavily on knowledge
gained from the dispersion relation [12, 30|, from one-dimensional models (5, 6, 12,
25], and from the first published (and unpublished) results from two-dimensional codes
[13-19].

To facilitate the discussion, it is convenient to recall first the qualitative features of
the electric field distribution expected for the most important ICH scenarios (for more
details, cfr.[10, 12] and references therein). They are most easily understood from the
disperion relation obtainable from egs. (18)—(23) assuming a uniform plasma and plane

waves:
A(") 2 ’
Z2¢ n_|_+[(n“ S( )) + A(o)( ” R( ))] nﬁ_

2 (34)
+ (n“ oy R(o))(n” — L(o)) —

Here R(°), L(?) §(0) = %(R(") + L(°)) are the familiar elements of the plasma dielectric
tensor in the zero Larmor radius approximation, immediately obtainable from eq. (23)

under the assumption of a constant kj = wn/c:
(0) pe nce Wi
L =1+ (1 - Z 2 Z0i Z(z15) (35)
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where z,; = (w —nl.)/k|v¢ni, and Z is the plasma dispersion function [35]. /\(o)

n4 is
the FLR correction to L(°) in the same limit [30]; the very small terms describing EMP

and ELD have been omitted.

Equation (34) has two roots: one describing the fast Alfvén or magnetosonic wave,

ﬁ_ . (n ﬁ_ R(O))(nﬁ — L(O))
(nf — 50

(36)

and one describing a slow wave, which in the vicinity of a first IC harmonic resonance

(o] . - .
(=211, )\gi) resonant) is an ion Bernstein wave

IEZ
N

ni (37)

while near an isolated ion-ion resonance (S(®) = 0, Ago) negligible) it is the shear Alfvén
wave (also called ion cyclotron wave for w = 0(0)):

n2 = g 38
=

To apply eqgs. (35)-(38) in the geometry of a tokamak, n; and nj have to be expressed
in terms of the horizontal and vertical components kx, kz, of the wave vector, and of

the toroidal wave number n:

2 _ (2 2 b .
ni = E{kx + k3 — 2—¢0s0sin®

R
2
n
+ (R2 kz)smze} (39)
ny = 5(%cos® +- k,-sm@)
148X 2z
= w. (ggkx + 35k2)

In a region without strong density gradients, kz and the metric coefficients can be
regarded as slowly varying quantities in a WKB sense, and egs. (35)—(38) solved for
kx[5, 6, 12]. This leads to the following qualitative predictions:

(a) First harmonic heating of a single species plasma.

The main feature of the dispersion relation in this case is the confluence between the fast
wave and the ion Bernstein wave which lies somewhat to the high magnetic field side
(HMFS) of the w = 2(Q).; resonance, and is separated from it by an evanescence gap [29].
The Bernstein wave propagates away from the resonance, and is mainly electrostatic;
hence it is unaffected by either ICD or EMP. On the other hand, its perpendicular index
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increases rapidly; refraction is likely to make n| increase as well, until conditions for

efficient ELD will be met, and the wave will be absorbed by electrons.

It should be recalled that for modes with sufficiently large n,, Doppler broadening of
the IC resonance tends to suppress the evanescence layer, and weakens coupling to the
Bernstein wave. Moreover, Gambier and Samain [22] have shown that linear mode
conversion is also inhibited by too large density gradients. Hence short wavelength
features and electron heating are expected to be confined to the central region of the
plasma, to the HMF'S of the w = 2{).; resonance; they should be much more pronounced

for low n,, than for high n, modes.

(b) H* minority in D*.

When the fundamental resonance of the minority species coincides with the first har-
monic of the majority, the topology of the dispersion curves is the same as in the previous
case. The evanescence gap is adjacent to the ion-ion resonance S = 0, and moves to
higher magnetic field as the minority concentration increases. Therefore the critical
value of n,, for the suppression of mode conversion (separating the “mode conversion”
regime from the “minority” regime) also increases; it remains, nevertheless, well within

the spectral range of typical antennas at low to moderate Ht concentrations.

(c) Hed* in H* or D*.

In these scenarios the ion-ion hybrid resonance is isolated, and FLR terms are very
small. Mode conversion then occurs to the shear Alfvén wave (38), which propagates
towards the LMFS. If the Z/A ratio of the minority is larger than that of the bulk ions
(H;' *in D), it propagates by the same token towards the fundamental resonance of
the minority, where it suffers a parallel resonance of the Stix magnetic beach type; in
the opposite situation (H5 * in H*) the cyclotron resonance is on the HMFS of S =0,
and inaccessible to this wave. Because of its very short wavelength, however, the shear
Alfvén wave is even more sensitive to damping by the electrons that the ion Bernstein

wave of situations a) and b).

We are now ready to understand the consequences of the approximations listed above;
it will acutaly be sufficient to consider in details the most drastic one, consisting in
taking the cold limit of the equations of eq. (30) (with Py — c0). The gain in simplicity
is obvious: integral operators become algebraic, and the only differential operator in

eq. (30) is the curl, whose discretization is relatively straightforward.

In this limit kinetic absorption is absent altogether from the model. To avoid singularity
near ion-ion resonances, some collisional damping is assumed. The rationale for this

procedure is that it gives the “correct” result in a plane-layered medium, in the sense
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that the jump of Poynting flux found at the resonance in the model with collisions,
and interpreted as dissipation, is just equal to the sum of what is locally absorbed plus
what is coupled to short-wavelength waves in the more complete model. Since these
waves are also finally absorbed not far from where they are excited, the two approaches
essentially agree. Gambier and Samain [22] have given plausible arguments that this

remains true also in the two-dimensional case.

This procedure has, however, two shortcomings. The most obvious is that, while ab-
sorption due to mode conversion might indeed be correctly estimated, direct absorption
of the fast wave at w = Q; (minority) and/or w = 2Q; (bulk ions) is completely ne-
glected. Thus the method can hardly be applied to the “minority” regime, and not at
all to first harmonic heating. Of course, this defect could be at least qualitatively cured
by reintroducing ion cyclotron damping approximatively, for example by evaluating the
antihermitean part of L(°) as if k| where known and constant, say k| = n,/Rpes. At

least for modes with large toroidal number this should be an acceptable approximation.

There is, however, a more subtle problem that vitiates the cold plasma approximation
irremediably in scenarios (a) and (b). As it is clear from what happens in case (c),
neglecting FLR corrections to the hf plasma currents, and taking the zero electron inertia
limit m./m; — 0, by no means eliminates short-wavelength modes from the model, as
it would do in a plane-layered geometry. Near an ion-ion resonance, the cold plasma
dispersion relation predicts, instead of the ion Bernstein wave, the excitation of the shear
Alfvén wave (38), which, moreover, propagates towards the “wrong” side, i.e. the LMFS,
of the resonance. The presence of this non-physical mode has plagued attempts to
describe analytically mode conversion in tokamak plasmas [20-21]. Numerically, it poses
very difficult resolution and convergence problems, since its wavelength is considerably

shorter than that of the ion Bernstein wave.

The group velocity of the shear Alfvén wave is almost parallel to the static magnetic
field. In a model without kinetic damping therefore a kind of internal resonant cavity
modes can be excited when the appropriate quantization rules are satisfied along mag-
netic field lines between the points where they cut the ion-ion hybrid resonance: the
mode conversion layer then acts as virtual antenna [33]. Short wavelength electric field
patterns, localized on a discrete set of magnetic surfaces and with very large amplityde
(limited only by collisional damping), have indeed been observed in numerical solutions

of the cold plasma equations [16].

We would like to make two final comments on this subject. The first is that the cold
plasma approximation might be adequate for heating scenario (c), provided that kinetic
damping (ICD and ELD) is at least qualitatively taken into account. The second is
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that the problems connected with the shear Alfvén wave disappear when the poloidal
component of the static magnetic field is neglected (moreover, then, the assumption
k| = ny/R becomes exact within the model). For this reason we are convinced that an
unpublished code by Colestock [17], in which both Bpo and FLR terms are omitted but
kinetic damping is included, is at the moment the best available, in spite of the rather

drastic simplifications on which it is based.

The conclusions of the foregoing discussion for the general case should by now be clear.
FLR effects have to be retained so that the model will describe the correct plasma modes
in all situations. Parallel dispersion becomes then necessary, not only for an accurate
evaluation of power absorption profiles, but also to make sure that short-wavelength
modes suffer the correct amount of damping, and do not plague the numerical solution
with unnecessary resolution and convergence problems. Because of the electrostatic na-
ture of short wavelength modes, the last remark applies also to ELD, which is completely
negligible for the externally excited fast Alfvén wave.

6. Numerical Considerations

A completely conventional application of finite element (FEL) techniques to eq. (30) is
made impossible in practice by the nature of the integral operators fJ, i, P. In principle,
one would begin with the expansion of the electric field into an appropriate set of
interpolating functions, say [34]:

E@Y,9,0) = ) Ebhij(1,9)8 (1, 9)e™e? (40)

yiJ

Here p extends over the two possible polarizations (€, = (€y,é€y), or &, = (€54,€-)),
while indexes ¢, 7 denumber the points 1) = 1);,9 = ¥; of a mesh in the poloidal plane.

Identifying in turn F with each of the possible test functions,

F(4,8,0) = hi, ;,(%,9)&poe’™® (all po,io,Jo) (41)
and performing the required integrations on the test functions and their derivatives, one

would obtain a set of linear algebraic equations in the nodal values E?

i3 whose inversion

finally gives the numerical solution to the problem.

The construction of the stiffness matrix of the system involves the evaluation of integrals

/+md e /oo b1 (¢ g UthaSineuT)
u Tigq g U =
Lds © R fy ¥ N,

-ezpi((w — vQa(¥,9) — ny

of the form

(42)
Vihat0sO

= u)'r] (v =0,1,2)
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at a sufficient number of points to make possible the further integrations over ¢ and ¢
required by eq. (30). The difficulty of devising an efficient algorithm for this purpose
is obvious from the oscillatory behaviour of the integrand, and from the necessity of
following Landau prescription, Imw — 0+, implicit in the definition of the operators
Lk 13[27]. Stationary phase approximations, being non-uniform in u, fail in the imme-

diate vicinity of cyclotron resonances, where a correct evaluation is most imperative.

There is, moreover, a less obvious, but in our opinion even more decisive argument
against this direct approach. The interpolating functions h;;(,?) are localized within
one element around ¢ = ;,9 = ¥;, whose support must be small compared to the
shortest wavelengths expected. In most cases, moreover, they also have discontinuous
derivatives of a low order (typically the first) at the extremes of this interval. Hence
their Fourier spectrum in ¥ necessarily contains much higher components than the actual
electric field distribution, the more so the better the resolution one wishes to achieve.
In particular, heavily damped components will give a large contribution when f}, lor P
are applied to the functions h,; separately. In other words, a large amount of internal

cancellation must occur for the correct evaluation of sums like

L@(E) = ) EXL) (hij(¢,9)éy) (43)
%)

Failure to achieve proper cancellation would result in large and uncontrollable errors in
the estimates of damping.

Having ruled out the straightforward approach to FEL discretization, we propose now
two methods which hopefully avoid problems of this kind. We will limit ourselves to
the description of the main ideas, and to plausibility arguments about feasibility and
convergence. At least for the first of the two schemes, whose numerical implementation

is in progress 28], details will be given in a forthcoming report.

a) The spectral approach Clearly, much would be gained by using a set of basis functions
hi;j(,¥), having the same harmonic content as the solution. Ideally suited for this

purpose are the Fourier modes themselves
him($,8) = hi($)e™® M <m<M (44)

They have the further invaluable advantage that double integrals of the type (42) can
then be expressed analytically in terms of the plasma dispersion function Z [35], for

whose numerical evaluation well-tested algorithms are available.
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In more conventional terms, eq. (44) means that the electric field is Fourier-expanded
in 9,
¢ 9 (,O) ZE m) 1(mt9+n99) (45)

so that the single partial differential equation (18) is replaced by a large system of
coupled ordinary differential equations for the Fourier amplitudes E (™) (). This sys-
tem is then discretized with standard one-dimensional FEL techniques. Details of this

procedure will be given elsewhere [28].

Let us, nevertheless, consider somewhat more explicitly the contribution of the zeroth

order current to the variational integral (3) as an example. It becomes

f f / RJIF* - ( )dypddyp
= oy (46)
=3 [ @ @) - elmi m's i) - B ()
where
2 - y
Epp = Eqg = / R " efoni-mid gm " (3, 9)dd
0
2m s s
Eyn = —Eny = —1 ] RJe' (M =m)d pmin (4, 9)dy
0
2 2 (47)
- wPG _ _]; wP': w . m',n n
s=t+gp -3 2k o )
e 1 wgi w ,n n
b= w 2z w+ Q¢ L Z(zl‘ )]
with Qui (4,9)
mn W — i\,
Tyg (¢”9) = mn Veps
Il thi (48)
R (P, 9) = Fszn@) + Ecos@

This shows that the spectral Ansatz (45) replaces the integral operator L (and simi-
larly :\, f’) with a matricial algebraic operator, whose elements are expressed in known

functions, and can be given a direct physical meaning.

Of course, the matrix €(m,m') has a very large band width in the pair of indexes
m,m'. More generally, the sitffness matrix obtained with the spectral approach is block
tridiagonal only in the pair of indexes referring to the ¢ (radial) discretization; by

contrast, a conventional FEL discretization in two dimensions would lead to a matrix
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block tridiagonal in both pairs of indexes (we disregard for simplicity coupling among
separate elements induced by the integral operators). From this point of view, eq. (44)
has to be understood just as a choice of the base functions space which (compared
to localized interpolating functions) gives up sparseness of the stiffnes matrix in one
pair of indexes, in favour of simplicity in the evaluation of its elements. Indeed their
computation, although tedious, can be made reasonably fast by the systematic use of
the Fast Fourier Transform and of the convolution theorem. In this way the effort
required appears comparable to that demanded by the conventional FEL discretization
of a purely differential system of similar complexity, with only little additional penalty

from the integrodifferential nature of the equations to be solved.

Admittedly, Fourier modes are far from being even approximate eigenmodes of the
problem. Strong coupling among a large number of components makes therefore the
spectral expansion (45) appear somewhat artificial. Nevertheless, we may note that its
convergence is ensured on physical grounds, a natural cut-off for |m| being provided
by the shortest wavelengths allowed by the dispersion relation (in this context, having
included in the model the proper amount of damping is once again essential). This
criterion can be exploited in practice to obtain a useful a-priori estimate of how large

M should be taken in any particular case.

This line of arguments also shows that although the required number of Fourier modes
might appear uncomfortably large, this is not a problem of the spectral method as
such, but reflects the general difficulty of having to resolve short wavelength features.
In a two-dimensional discretization, it would show up in a just as uncomfortably large

number of mesh points.

b) An iterative approach

Finally, we explore the possibility of nevertheless adopting a two-dimensional FEL dis-
cretization, then coping with the integrodifferential operators iteratively. The principle
is simple: the h.f. current is split into two parts, f(ﬁ) = —0-E + 6Jwhere 0 - E is
some local approximation to the constitutive relation, and eq. (18) is then solved by

successive approximations according to the scheme

2
Ant1) _ W Ent1) | AT Sat1)) L AT o 5 ()
rotrotE 5 (E + 2o E ) S SI(E™) (50)

The success of such a procedure will depend on the appropriate choice of o - E, and of
the first guess for E itself.
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The simplest possibility is to evaluate o - E by neglecting the poloidal magnetic field in
the definitions (23): then o reduces to the local conductivity tensor evaluated with k) =
k'™® = ny/R. With this choice, 6J(E) can be evaluated with an acceptable efficiency
by making the FFT of E (™), evaluating J(E (™) as in the spectral method, subtracting
the kg'"‘p term, and applying the inverse FFT, followed by some interpolation if the
mesh for FEL and for FFT do not coincide. On the other hand, it is not allowed to
simplify the Lh.s. of eq. (50) further by relegating FLR terms in 6J: this would alter
the nature of the solutions of the homogeneous equation corresponding to eq. (50) (for
example by the appearance of the shear Alfvén wave) in such a way that convergence

could hardly be expected.

Similar considerations apply to the choice of the first guess for E: probably the safest
thing is to evaluate if from the homogeneous eq. (5), neglecting By, also in the differ-

ential part of the operators.

The scheme just sketched is likely to work for modes with a sufficiently large toroidal
wavenumber n.,, but might be inadequate for low n,, particularly for n, = 0. Improve-
ments are not difficult to be found; it would, however, be futile to discuss them further

before putting them to test.
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