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Abstract

The behaviour of h.f. waves near ion cyclotron and ion ion hybrid

resonances in a tokamak is investigated by means of an onedimen-

sional finite element code. Our model takes into account:

- strength and orientation of the poloidal component of the
static magnetic field,

- finite larmor radius corrections to the dielectric tensor,

- ion cyclotron damping at the fundamental and first harmonic
resonance,

- electron Landau damping to lowest order me/mi'

We assume that an incoming fast wave approaches the singular layer
from the low or high field side making an arbitrary angle relative
to the local magnetic flux surface and to the resonance layer.
These initial conditions might be provided by ray tracing from

the antenna. Then we calculate the electromagnetic wavefield and
the power fluxes of the transmitted or reflected fast and slow

waves as well as the power absorbed by ions and electrons.




1. Introduction

Ray tracing /1/ has proven an attractive tool for modelling ICRF
heating of large plasma. To be really useful, however, it has to
be supplemented by the full wave analysis near ion cyclotron and

ion ion hybrid resonances where the WKB method fails, In this re-

gion the dielectric tensor depends almost only on the strength

of the static magnetic field which is basically a function of the
horizontal coordinate x. Hence the wave equation can be approxima-
ted by an onedimensional differential equation /2,3/ assuming that

n and K the toroidal and vertical wave vector components,

’
remain coistant within the singular layer. Further details of this
model will be outlined in section 2. In section 3 we shall discuss
the properties of the dielectric tensor in the "warm plasma" appro-
ximation /4,5,6/ and the difficulties arising from the nonlocal
character of the various kinetic damping processes (ion cyclo-

tron damping, ICD; electron transit time damping, TTMP; electron
Landau damping, ELD). Existing analytical approaches /3,7/ to

solve the resulting differential equation rely on the assumption
that the region of mode conversion lies outside the layer of

strong cyclotron damping which is not always justified. They are
also not able to treat in all generality the important scenario

of a hydrogen minority in a deuterium plasma where the ion ion
hybrid resonance is very close to the majority's first harmonic
resonance. Therefore we have written a numerical code which we
shall describe in section 5 after a discussion of the dispersion
relation /8/ in section 4. In section 6 we shall apply our code

to various heating scenarios and compare the results with those

from the analytical models mentioned above.




2. An approximate 1-d wave equation for the e.m. field near a

resonance layer

For a wave with time dependence exp(-it) Maxwell equations can

be written:

mtmtfz%(§+%ij>=:{:§ (1)

where jXﬁ) is the h.f. current in the plasma. We shall refer to
g in the following as the "dielectric tensor" although it is,
g%rictly speaking, a linear, nonlocal integraloperator. In the
vicinity of a resonance eq. (1) is dominated by the strong

A
variations of g due to the horizontal gradient of the static

Re
X (2)

RT denoting the major plasma radius, X the horizontal coordinate.

magnetic field B:

| BB

Hence we make the ansatz
—— . - K
E=E(x)- e‘(mP(PTL 22 ) (3)

with the toroidal mode number n and the vertical component of
the wave Xector KZ being constant. As anticipated from the next

section, £ is most conventiently expressed using rotating co-
- —

ordinates with respect to B decomposing E in its left (E+) and

right (E_) circularly polarised component and E parallel to

Il

Ei In a tokamak'E is approximately given by:

—_—
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where tane = BPOl

/Btor f~ const in the region of interest. The
angle T is visualized in fig. 1. In our model we assume that T
is constant in the vicinity of a resonance, i.e. we neglect the
curvature of magnetic flux surfaces. This is probably the severest
simplification. For example, the slow wave, being excited due to
mode conversion near a resonance, tends to propagate along flux

surfaces.

Nevertheless, for large tokamaks like JET, T %~ const is an
acceptable approximation because the interval where we solve

eq. (1) is very small compared to the device size.

Using eq. (3) and eq. (4) we can write the rot rot operator in

our reference frame:

(ot ot E).;_ =— (30 *’Qul)E+ 4'9+9+ £+ (3 Ey)
(ot AOEE)_ =- (3.9 JQE')E_JD_D_ E +_ (9, E,) )
(~ot ~ot E‘)" = -29,9_E, +7, (9. E_+ D E,)

where
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with‘Ro denoting the position of the cyclotron resonance as
shown in fig. 1. In the next section, we shall discuss the

other part of eq. (1) the generalized dielectric tensor .




3. The dielectric tensor

Brambilla and Ottaviani /6/ have, based on works by Swanson
/4/ and by Colestock and Kashuba /5/, derived the dielectric
A

tensor & by integrating the linearized Vlasov equation along

unperturbed particle trajectories. In the "warm plasma" appro-
ximation it contains full parallel dispersion and perpendicu-
lar dispersion to second order Larmor radius (FLR-corrections).

In zero order Larmor radius obtains:

(ém—*) (L_E)e + RE & 4—(?5) (7)
with o3
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where TquCb,-ﬂc denote a species thermal velocity, plasma fre-

quency and cyclotron frequency, respectively, and:
| ' -
X ()= X+, SO Sam. T
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The FLR-corrections are given by:

(£9E), =2 22,2k +29,2,(0.6,-% £)
(9)
(£3E).= 192, (3 E-DE,)

with t+ as defined in eq. (6) and
(2 E+)(x2,p)= £ S5 Do oo ek,
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L and 22- are resonarci’t at GO:J’ZC and (O = 2J?_C, respectively. Their
antihermitean parts describe ICD at the fundamental and first har-
monic resonance, the one of P and ;Zo ELD and TTMP, respectively.
P and ,20, as well as L and ,22' near their resonances, are non-

local integral operators. Assuming that the spatiél dependence of
the e.m. field parallel to the static magnetic field iSAJca*Kan

(10)

with a given Kh , one can evaluate the integrals and finds the
. algebraic expressions:

Sy Wpe — 7 + 5
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denoting the Fried-Conte Zetafunction /9/. In tokamak geometry,

with Xr‘VL/L =

2
-X

however, this is strictly speaking not possible since the non-
vanishing poloidal component of the magnetic field doesn't allow

for a well defined hﬂ' . In our model, *(n would be given by

K

with K - unknown.

. =

’%ﬁ" G+ smb (T Ky = Sam T Kx) (12)

But for those damping processes localized near a resonance (ICD)
or which affect only the transversal fast waves (TTMP) it is
adequate to neglect the last term in eqg. (11) since

m_ﬁ" cc’)@>> Sam © K,(l holds for most values of the toroidal
moé% number n " Furthermore, dropping this term is acceptable
near the equatorial plane where SAM T2 O. To describe ELD,
however, which hardly affects the transversal fast waves, whereas
it is the most important damping mechanism for the longitudinal,
electrostatic slow waves, one has to make another approximation.
In calculating P we have therefore used the expression:

Kllls

e O +SMQC%’>’T.’ ]{-LL-SWT“ Kx(sam> (13)

Ro
where I( i is an estimate of the solution of the dispersion
ow
relation %or outgoing slow waves (see next chapter).

Another problem arises from the different orders of magnitude of
E, and E“ : Because of the very low electron inertia, P is much
larger than the other tensor elements. Hence Ej is of order
me/nﬁ'amﬂlerthan Ei. In order to avoid scale problems one usually
sets E" = 0. By taking this zero electron inertia limit, however,
ELD is lost. Therefore we use the parallel component of eq. (1)

to express El,in terms of E, retaining only terms to lowest order

Me/n.
i
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and insert this expression in the other two equations. This allows
us to eliminate E‘\ without omitting ELD, but increases the order
of our differential equation by 2. Since the resulting new wave is
always evanescent, however, it is justified to replace in the

corresponding terms 3“ by A K'l 3"
1

To summarize the results of this and the previous section we re-

write the complete onedimensional wave equations:

- (Q)J((D_-F@uz) E, +, 9 E_ -9+_ ‘f_(_“; (o E +o_ E,.)

P
= LE++2®_ 2294- E, *’294- 2o (o Ey- 9wf- E_) J
(15)

28
— (9, 9.40) E_ +29.E, -9 '_g,l,s (3 B +0.-Ey)

= RE_ 4—:)-@_/20(94_5——9- E+)

Since we are interested only in the behaviour near a singular layer
we assume that all quantities except L(X) and ;Zl(x) which might

be resonant, remain constant over the interval.

4, The dispersion relation

Before explaining the numerical method used to solve this system
of two coupled second order differential equations, we want to
draw some information from the dispersion relation /8/. Upon re-

placing in eq. (15) diy by iK, we obtain the local dispersion re-

dX
lation. With
2
R = qu'b<x’- Q.Fg K}( = é9
o = SAm B Sam T

@ = Sam B 5@7(7%"0%9— K} 3,{,\49@%) (16)
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and Kj: = KX2 - KZ2 it reads:
[+]

2
Lo (22 K—g" )+ E:l kLQ; . g“s K
< : < 2
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<

K

'
where we have neglected terms proportional to D2 (~ M ©)

and ‘0-.21 .
The roots of eq. (17) are approximately given by:

- z l'(ul_’l.— Z“T\)
K: ’ 2 - K - (i XK% ) 18
foni (K 2‘——5) (18)
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K 2 4. S
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where K = ?ﬂp + sin © cos * K.} S = R;L
“0 QO

Eg. (17) describes the fast, magnetosonic wave which is usually

excited by the antenna. It encounters a cutoff for L = K"2 neo0%
Q
For a two-component plasma its position can be given by:

Z, /n
e Kt vl S wlesarfiea sl i o (20)
><C‘O. R L2 Z,/R /f
B
XRes is the position of the minority's fundamental resonance

L . _m; .
(= RO in our model),‘\)i = A/;kldenote the concentrations, Zi
and Ay the atomic charge- and massnumbers of the two ions. The po-
sition of the socalled hybrid resonance, S = K, ? & 0 for a two

llo
component plasma is

e ot s e 149, 2, (208 - 1)

b Tor
by A4, 2, (Bl 1)

(21)



At this point, mode conversion to the other branch of the dis-
persion relation, the slow wave, occurs: In the vicinity of

Q)g-Qﬁﬂ% eq. (19) describes the ion Bernstein wave. One pro-
perty of this wave is that it runs backwards, i.e. power flux

and phase velocity point in opposite directions.

For ;ZLQ’ 0 eq. (19) describes the cold plasma shear Alfvén or
ion cyclotron wave. This wave exists only for nonvanishing poloi-
dal magnetic field. Hence it is necessary to retain FLR-correc-

tions as well as BPOl to describe the slow wave properly.

Mode conversion to the ion Bernstein wave can also occur in a
single species plasma near the second harmonic resonance /10/.
The positions of cutoff of the fast wave and confluence are
approximately given by:

Xeo = Xuy= = S5 B X, (#- \[123.)

o (22)

2 s
_ _ o Wp Dy V3 (23)
Xeog ™ X ~ 32 & Xoogn (1 + 5_)

Here, XRes denotes the position of the second harmonic resonance

(= Ro in our mecodel).

Eq. (19) has been used in our code to estimate Kyx/ in eq. (13)

slow
for the K, ¢of outgoing slow waves taking into account that the ion
) '

Bernstein wave runs backwards.

At each side of the interval we have solved the dispersion rela-
tion (17) numerically by means of a Newton iteration taking eq. (18)
and (19) as start values. The resulting wave-vector components K

X
and polarisations

W E= - [ty k-2 B ke +167- +>.("%§—L)

4-

-f—(('f—o{?) K;-'F’Q@KX-!”KZL-F?) (2 2?__4'2'25"’ %5—‘3 )] / (24)
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with
W= CAT A0 Sam
= K% SM"C’-&—A'(K?CB)@ CLONT — S4Am B n%?") (25)
: o]
of the fast and slow waves are needed to impose thé radiation

conditions at the boundaries as we shall explain in the next
section.

5. Solving the wave equation

5.1 Determination of the interval

As mentioned in the introduction the code is intended to be coupled
to a ray tracing code to solve the wave equation near resonances
where mode conversion is expected. Hence the WKB approximation
should be valid at both ends XA and XB of the interval. In case of
a single component plasma, where the interval is centered at the

second harmonic resonance (Ro = XRes = x (0= ZJZCD we choose

XH,B = Xq, . té-(wa = X )

Xconf denoting the position of confluence as obtained from eq. (21).
In case of a two component plasma the interval is centered at the
minority's fundamental resonance (R0 = X = X(Lo=,ﬂ% ,)) and we

Res Mim

impose the conditions:

5gn ek e XJ&%—X%\

with Xﬁyb given by Eg. (21). The minority's contribution to L at the

ends XA and XB must be smaller than 20 % and

3rwz,(l._)
R CL)

|Xn"x12u>

—~2.0
£ 40 at X, xg




5.2 Determination of the mesh

One advantage of the finite element method is that it doesn't re-
quire an equidistant mesh. Hence we have adjusted the resolution
of the mesh to the local properties of the expected solution by

imposing the following conditions:

LCX.\‘H)" L-(Xx') il O]

L(X,;) -
Zq(x/i;q) = Z,LQXA) A 0.2’ i
R (X)) )

_/_’-————" (c)

Xigs — X, 2
t+A A [o {T?
ngbelng an estimate of lefast and, where the leper51on relation

predicts a propagating slow wave

A
X4'+4 N Xf. < KX}S@m (dh

with Kx/slow approximated by eq. (19). As conditions (a) and (b)

are in the close neighbourhood of the cyclotron resonance or its
first harmonic unduely restrictive, we introduce a minimum width

of a finite element given by:

1

M O A0 2wWR

K, i

; lo : ;
so that X, ., - Xi> DX ., in any case. 2T ZRus is a rough esti
mate ot the minimal wavelength of the fast wave as it approaches

da resonance.

5.3 The numerical method

Since it is not possible to apply the finite element method (1)
in its usual form to equations with non-hermitean operators, like

ours, only a weak (Galerkin) variational form can be constructed.

This form is obtained /12/ upon multiplying eq. (15) by an arbitrary

test function (T'}*(X)) ~A(Myp ¢ +¥32) of some functional space and
o0
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integrating over the interval. After partial integration of terms
containing second derivatives, one has

j%{(u *{& +22)(0X F¥)(o_E) 4.(9:1-;*‘

"%

)3, E,)
22, (80 E))

? .
- L_{; _ |- ({j;ﬂ.);:*‘o( A X
+ f;; Ob( = ZC 73 ¥ &; E; +’E{? Tt

Y E+ (26)

- (1- K 12 2 )Y RN (4 E

2 N2
G Pl _ W o
— (2 2+ Ep).@ FAOE - 22, & 7

2z XB
y 2,20—Ku_,.9 _I:L *9 E 1
e ( e ,> Vs *a’ s s ><B

with u given by eq. (25), and 8 by (16). The second equation gives:

. _
f g(’” fi,. + 120>(8+%E’¥)(9+ E_)+(9,,*F_*)(9,,Ef_)
i 5122 (5% )(2.5,) - FX¥RE. Jolx
= (2204,}_{..,5) WS E - D " d e

(27)

olx
_ g N X§
446/2F_t (4422, "5)—@ =

*R
We now use a complete set of 1nterpolat1ng functions

9& i centered
at the meshpoints X

as test functlons'{;QQ and to expand B XY

Esy00 = 2 Ex Yy, 0O s
4,0l !

For our code we have chosen cubic hermitean interpolating functions
which have outstanding convergence properties

. To form a complete
set one needs two functions per mesh point

X 030X

1—4

O =
= [ CIFP=1)C2 1§ 1+41) ) X, e xe X
)

444
) 2 X,



1.3 =

O X&) zy
and ({/,2 &t f (!S-l'a—") (X* X{') X{"'f = é ﬂ'f’/{ (29)
2 K = X;{.{.,'
X = X2 L Lx & X,
where E" " ;= Xy x'\—-/l = A
X"' xA‘ ra s X
Xifa = Xy Xi = £ o
so that _ 0{ . (}(. ) =)
b, - (X)) = 04 AR C I

ol )= 54’]

/'j;ﬁ%,

. (Y\ );:_ O % ~
('f/?_‘l_] 4
i.e. E + (X) and %iﬁdx) are continuous. Using these functions also

to interpolate L(X) and

(X) between mesh points we can evaluate

the integrals of the left side of eq. (26) and (27) obtaiqiqg a

A
set of linear equations for the expansion coefficients EE+L
The

les

resulting "Stiffnessmatrix" is block-tridiagonal because variab-

at a mesh point Xi interact only with their nearest neighbours.

5.4 Boundary conditions

The right hand side of eq. (26) and (27) contains the boundary con-

ditions. We assume that a fast wave approaches our interval from
the low or high field side at a given T with some Ky nyp . For
outgoing (transmitted or reflected) waves radiation conditions are
imposed. We shall explain in the following how this has been im-
plemented.

The E,-component of the incoming fast wave is normalized to be one.
inc (E- inc inc

Its polarisation Wfast = (z— Xfast

57) Fast 2nd wave vector component K

are then obtained from the dispersion relation. So are the polari-
sations W and the wave vector components of the outgoing fast and

slow waves at both ends of the interval. Their amplitudes,

"K - tr- (‘U i : - ref
F E*fastrgﬁd S E+siow *fast

and._gS = E+slow for reflected waves, however, are

for transmitted and gw = E




- 14 -

unknown. For these new variables we write four additional equa-

tions. If the incident fast wave comes from side A they read:

E- = 4+ 8. + s
EM' = W + Sk w;iﬁ + §s W;i 509
Ei"‘"“‘“’ = T+ T,
gl ey . \/\/;;t + T, WSZ\O
i labeling the last mesh point. The right hand sides of eq. (26)

max
and (27) are then expressed in terms OfTF'gF’TS' S and the

corresponding W's and Kx's replacing ax by i Kx. In our example
we would for instance have for ,_:'( :
- le XT?'

OIE... _ . AMC \A}AMC £ K”\'E.{, b\)f\'q -?

= )Xﬁ = Xt Wpga 4 Kt NVt SE

b HTE WO e
"Wy ow =S

Only the contributions due to the incoming fast wave remain as
"driving term" on the right hand side whereas the other waves'
contributions to the boundary terms are added to the enlarged

"Stiffnessmatrix".

Solving the resulting §ystem of linear equations we get the expan-
sion coefficients fi#f as well as the amplitudesﬁfs'F andhg’S'F
of the outgoing waves. In the next subchapter we shall show how

to obtain from these quantities the powerfluxes of the corres-

ponding waves.
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5.5 The power balance

Conservation of energy is a trivial consequence of eq. (26) and
(27) . Upon replacing F+*(X) by E+*(X), adding the two equations

and taﬁgng the imaginary part we obtain the power balance /12/:
® X
2
S Q () olx = P !X (31)
Xy H

Q(X) denotes the differential power absorbed by the plasma per
unit length due to the various damping processes. In particular

we have
g 3

C1T7T4$2: 2 ;I/VVt(gzo 7 l 29_ E;+.*' EQ+ E;_‘,Qf

a-

RES - Sm(g*‘) | B Ep % B

On the other hand, P is the sum of the power fluxes of the trans-

(32)
2
|

mitted fast and slow waves or of the incoming fast and reflected
fast and slow waves. All these quantities are easily evaluated using
the various T7s and @'s and the corresponding W's and Kx's. After
numerical integration, eq. (31) can serve as a first consistency

check of our code.

5.5 Convergence properties

In order to investigate the convergence properties of our numerical
method we have made test runs varying the number of mesh points N.
As test parameters A(N) we have chosen A1,2 = ,E+|2 (X1’2) at two
positions X1'2, one where the slow wave is evanescent, one where

it is propagating and A3 = E;ﬁ:ﬁlmx’ the maximum differential power
absorbed by ions per unit length. The "true" values A, (.o ) have been

estimated by extrapolation. Fig. 2 shows plots of
5 AN - Ai (o)
ogt A1 (00) i
with a He3++ minority in H which requires particularly good reso-

) versus log N. As scenario we have taken a plasma

lution because of the short wavelength of the shear Alfvén wave. We

find that the convergence of [E+l ? scales like N*5, that of
ions . -3 . .
E:abb,ﬂuaxllke N in accordance with the results from other authors

f L




6. Applications

Although our code is fast enough to make possible the incorpora-

tion into a ray tracing code we have run it in the following examples
as individual package. The plasma and tokamak parameters have been
chosen to by typical for a JET discharge: B = 3.5 Tesla,

BPOl/Btor = 0.1, Ry = 300 cm. If not explicitely statet, we have
used: Te = Ti = 2 keV. The fast wave is assumed to be launched from
the low magnetic field side (LMFS). We have considered three diffe-

rent heating scenarios:

a. Pure first harmonic heating of a D+-plasma;‘{)= 50 MHz,

_ . 13 -3
iy, = 5 10 “cm ~.

the confluence between fast and Bernstein wave as given by

fig. 3 shows ZL(X) and the position of

eq. (23). The Bernstein wave is propagating at the HMFS. We
have investigated the case of an incoming fast wave in the

equatorial plane (¥ = o) with K, =0 and toroidal mode

number h = 10. The electric field predicted by the code
is depicted in fig. 4, the power balance is given in table 1.

(R denotes the power fluxes of reflected, of trans-

S,F
mitted slow and fast waves;

Ts,r

Eabs)i the total power absorbed by

TTMP ’ EELD the total power absorbed

by electrons due to TTMP and ELD. All these quantities are

the ion species i and E

normalized to the incoming power.)

In fig. 4 the ion Bernstein wave to the left of the resonance
is clearly visible. In spite of its large amplitude it trans-
ports only 3.6 % of the incoming power. This is due to its
partially electrostatic polarisation which is, however, not
enough for efficient ELD. (For K, = 0, T =0 eq. (13) gives

a rather small K j g = q%f.goﬁég ) This shows the li-
mits of a 1-d model. In a tokamak the slow wave is diffracted
as it propagates towards regions of shorter wavelength and
this will enhance its subsequent absorption by ELD. Neverthe-
less the lack of absorption in our model indicates that power
deposition to electrons could be appreciably broader than
usually admitted. We have also calculated absorption and power
fluxes as function of the ion temperature Ti (£ig.ab).1As

expected, absorption increases with temperature.




D H+—minority in DT at o =-IZCH= 2 _YZQD ; other parameters as
in example a.
Figure 6 shows 22IX) and L(X) as well as the evanescence layer
between the positions of resonance and cut-off of the fast
wave for 3 $ H' in a deuterium plasma. In fig. 7 we have
plotted the e.m. field for a run with T = 0, n = 10, K, = 0.

For the same reason as in case a:)ELD of the Bernstein wzve,

which is excited at the ion-ion hybridresonance near R = 312 cm,
is negligible. Figure 8 shows the results of the power balance

as function of the angle of incidence, i.e. of Kz (KZ = + 0.27 cmn1
corresponds to an incoming fast wave making an angle of + 45°
relative to the resonance layer). Since K, is proport%onal to

K

absorption increases with K,. For K, = - 0.32 cm K,

’
niarly vanishes.

A more systematic comparison of the predictions of our code with
the estimates used in ray tracing is made in fig. 9 which shows
the power balance under the same conditions as above (with KZ = 0)
varying the H'-concentration. For n, + 2~ 0.05 - n, the power

H
absorbed by ions remains nearly constant since the mode cgbersion
layer lies outside the Doppler broadened cyclotron resonance of
the minority. At this concentration the transition from the

minority to the mode conversion regime occurs /3/.

Using the n-spectrum of the JET quadrupole and dipole antennae,
as obtained from a numerical code /13/, we have also calculated
the deposition profiles in the equatorial plane (7= 0) by super-
posing the contributions of each toroidal mode nyg limiting our-
selves to waves with KZ = 0 (fig. 10 and 11). For the quadrupole
antenna we find a broader absorption profile since its spectrum
is shifted towards larger n.? values compared to the spectrum

of the dipole antenna. The results of the total power balance

for all toroidal modes are listed in table 2. (For the dipole
antenna all terms add up to 96.5 % since our code can not treat
the IIP = 0 mode which contributes the missing 3.5 % of the total

power launched by the antenna.)




c. He, ' minority in a H+—p1asma at W~ (2 ; Y = 35.6 MHz,

ne3= 8 - 1013 em™3, CHJ:

Figure 12 shows a plot of L(X) as well as the evanescence layer
between the cut off and the (isolated) ion ion hybrid resonance
of the fast wave for 3 % He3++ in a H+—plasma. Figure 13 shows

a run with n Y, = 10, KZ 0, = 1.5:rad. Inrthis case, FLR
terms are negligible near the wave resonance and the cold plasma
shear Alfvén wave is excited. This wave propagates towards the

LMFS away from the IC resonance of He " and is accurately

3
electrostatic, hence unaffected by TTMP. The strong absorption
visible in fig. 13 is entirely due to ELD, which is very im-

portant in this region where & 2'qﬁi :

Figure 14 shows the corresponding power deposition profile
proving that TTMP affects only the fast and ELD only the slow
wave. The modulation in QELD is due to the interference of the
slow wave with the incoming and reflected fast waves. The

spatial average of Q however, depends only on the slow

'
wave's amplitude. Tthgower balance for this example is given
in table 3. In order to compare our results with those from
semianalytical models, we have run the code without ELD and
TTMP. Figure 15 shows the power balance as function of the
He3++ concentration (all other parameters as above)together with
the analytical approximations /3/. Taking into account that in
the analytical model the absorbed power is attributed to the
power coupled to the reflected slow wave, the two curves are in

excellent agreement.




Table 1

RF = 2.2 %

RS = 0. %

TF = 78.4 %

TS = 3.6 %

Eabs,D+ = 15.8 %

ETTMP EELD 0.1 %
Table 2

dipole antenna

; = 50.0 %
abs,ionen

abs,el =2.3 %
= 29.9 %

F
11.3 %

F
S 3.0 %

e N

Table 3

quadrupole antenna

Eabs,ionen = hoat B
Eabs,el = 3=l §

Ry = 8.2 %

Tp = 19.2 %

TS = 1.1 %
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Figure Captions

Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8:
Fig. 9:
Fig. 10z
Fig. 11:
Fig. 12:

Modeling resonance layers in a tokamak in one dimension.

Convergence properties; plots of the relative deviations
( (N) - A, (DOD/ of three quantltles A, versus the
number of flnlte e{ements N.

Plot of 512(x) for heating of a single species (p%)
Plasma at the second harmonic; NV = 50 MHz,

_ 13 =3 _ _ . _
s 5 « 10 cm “; T = 2 keV; n?> = 10.

Solution of the corresponding wave equation for rr; 0,
K, = 0. Shown is the E_ -component of the e.m. field.
Plot of the power balance as function of the ion tempera-

ture Ti; other parameters as above.

Plots of 2 ,(X) and L(X) for 3 % H" in a D -plasma;

other parameters as in fig. 3.

Solution of the wave equation for Qf==0, KZ = 0. Shown

are the E_- and E_-components.

Power balance as function of KZ’ other parameters as

above.

Power balance as function of ny+ for KZ = 0.
Deposition profile in the equatorial plane (T'= 0) for
the JET-dipole antenna (KZ = 0).

Deposition profile in the equatorial plane (T = 0) for
the JET-quadrupole antenna (KZ = 0).

Plot of L(X) for 3 % He, ' in a H'-plasma; 2 = 35.6 MHz;
n, =8 - 103 cm™3; T, = 2 kev; n, = 10.

* 4




Fig.

Fig.

Fig.

13:

14:

15:
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Solution of the corresponding wave equation for
K, =0, ¥ = 1.5 rad.

Power deposition profile for the above case.

Power balance as function of Npa *+ without TTMP, ELD.
3

Other parameters as above.

Results from our code (left) and from a semi-analytical

model (right).
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