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ABSTRACT

Problems in introducing suitable phase space
and statistics occur for continua and degenerate discrete
systems. The solution of these problems for the Korteweg-de Vries
equation is discussed. The classical removal of the ultraviolet
catastrophe in this case is contrasted with Planck's black-body

radiation spectrum.

Die nachstebende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.



The statistics of continua is basic in several areas of physics and especially in quantum
theory and turbulence. Statistics of continua far from equilibrium necessitates the solution
of equations /1/ with functional derivatives for which no mathematical tools exist. Ther-
modynamics of continua is, however, an important and challenging discipline and lies on
the border of the mathematically tractable, so that this paper is restricted to equilibrium

statistics of conservative continuous systems.

Conventional Gibbs statistics for systems of interacting particles starts with a canonical

phase space p;, ¢; with i = 1,...N. From the Hamiltonian dynamics
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one can prove conservation of the volume element (Liouville theorem) d(2:

N
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This combined with an ergodic or ”chaos” property leads to microcanonical and canonical

Gibbs distributions /2/. The canonical distribution is
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is the partition function.

If the p;, g; are mapped one to one into a new set of noncanonical variables z; with j =
1,... 2N, egs. (1) become /3/
o0H
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The main change in the canonical distribution and the partition function will be made to

the weighting Jacobian, so that

7 = /e_'@H N ﬁ ds . (7)

For general systems eq. (5) remains valid but the antisymmetric MxM matrix 5% can
be singular /3/ as for the rigid top (the rigid top is a kind of degenerate continuum).
Such systems possess Casimir invariants /3,4/ which commute with all observables. Their
number m is equal to the degree of degeneracy of the matrix n,x. For each set of Casimirs
C; one can obtain /4/ a symplectic system with a nonsingular matrix n;, of even dimension
M-m. In this case the canonical distribution does not seem to be uniquely defined:
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with =1, M, =1 m, k=1 m, and
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The freedom in the functions f; can only be removed by more information about the
system, e.g. by prescribing specific values for the C;, f; = 0 and carrying the integration

over the z; only.

In the case of fluids and plasmas the matrix n;; is replaced /5,6/ by differential or integral
operators A, and the z; by functions u, so that the system can be writien noncanonically

as
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Generalized Poisson brackets in Eulerian variables can be constructed in the form of Lie-
Poisson brackets /6/. These brackets are in general /4/ singular and possess Casimir
invariants. The difference to the discrete singular case is that it is very difficult to find
the whole set of Casimir invariants and the corresponding /4/ transformation of variables

which reduces the system to a symplectic system of lower dimension. This problem is in
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fact not solved, so that it is not possible in general to define a volume element and do

statistics in Euler variables.

If we go to Clebsch variables, we obtain a canonical system at the cost of inflating phase
space. This means that we know how to do statistics in a nonphysical space, but we do
not know how to fix the "gauge” freedom and translate the results back /7/ to physical
space. With nonlinear Lagrange variables one can, in principle, introduce a canonical
formalism but then the expressions are tedious and the calculations virtually impossible.
There is also the question of fixing the labelling freedom. In linearized Lagrange variables
all this can be done and the results were given in Ref. /8/. Linearization leads, however,
to a Gaussian canonical distribution which itself leads to equipartition of energy and the

ultraviolet catastrophe.

A special case for which a solution to all these difficulties has been found /9/ is the

Korteweg-deVries (KdV) equation:
u — 6uu; + Uz, = 0. (11)
It can be transformed /10/ to a ”quasi”-canonical form by
u = v + v, (12)

One obtains the modified KdV equation

vy — 6v2u; + Uz = O (13)
or
v = ¢ o (14)
i
with
H = % f(v"‘ + v2) dz. (15)

Volume element and Statistics in v space are possible. Miura transformation (12) seems
similar to a Clebsch decomposition, but in contrast to Clebsch potentials it deflates phase

8pace /10/. The problem is not in restricting the ”gauge” freedom but in understanding
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what has been lost. Partial answers /11/ exist for the case —oo < £ < +o00. It is proved
that solutions asymptotically exhibiting layers are lost. It is not known whether periodic
solutions are lost by Miura transformation. I would conjecture a faithful phase space
transformation in the case of the periodic solutions needed in Refs. /9/ and /12/. Let us

finally mention that without any transformation of phase space equations of the type
U — uU, + Ugzr = O (16)

have a simple and divergence-free statistical treatment using calculations similar to those

of Refs. /9/ and /12/, but they are not physically appealing.

One of the fascinating results is that the k-spectrum obtained /12/ for KdV is of the
Lorentz type and is free of divergences. Besides possible applications in several areas of
physics, the removal of the ultraviolet catastrophe is interesting in itself because it happens
in a purely classical way without need of quantization, unlike in the case of Planck’s black-
body radiation. The point with Maxwell’s equations is that they are linear and valid
up to the highest energies attained hitherto, i.e. energies much higher than in black-
body radiation, and there is no sign that they will have to be modified in the future.
This means that there cannot be /13/ a classical interpretation for black-body radiation

because Maxwell’s equations are linear and cannot contain sizeable dispersive terms like

KdV or egs.(16).
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