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Abstract

It is shown that experimental temperature and density profiles are consistent with the

assumption that they relax towards profiles related by

= () el ) .

v =5/3 = adiabatic constant, @ > —(y — 1)nnin/no independent of x;

in most cases one has n,,;, =0 .

Cases of incomplete relaxation are exceptions, e.g. pellet injection in which the tempera-
ture profiles are too flat compared with the corresponding density profiles .

Relation (1) follows from the entropy principle proposed here. According to it tokamak
plasmas should relax towards states described by relations T' = T'(n(x)) , in which the
total entropy of the plasma does not change when the plasma performs arbitrary internal
motions slow enough 8o as not to alter the relation between T' and n.

a = 1 corresponds to the profiles obtained by BISKAMP /2/ and KADOMTSEV /3/
from an energy principle assuming the electrical conductivity being given by SPITZER’s
law ¢ = const - T(x)3/3 .

To get agreement with experimental profiles, however, a values ranging from 0 to 3 are

required.

Tokamak equilibria are usually describable in terms of two arbitrary functions of the
poloidal flux ¢. For resistive plasmas with SPITZER’s formula valid one can choose the
temperature and the density as these functions. Equation (1) reduces this freedom to the
free choice of one function, say T(y), and of a special value of the parameter a. This is a
feature that can be related to what is called “profile consistency” /1/.

Examples are presented for cylindrical plasmas with circular cross-sections.



1. Introduction

Tokamak profiles usually show some universal features, for which COPPI /1/ has
introduced the notion “profile consistency”. Because of this universality it is conceivable
that these features should be describable by a certain general principle. BISKAMP /2/
and KADOMTSEV /3/ have proposed a variational principle which consists of an en-
ergy principle with the constraint of fixed total toroidal current. Interesting results of
this variational principle are only obtained, however, if the constraint is not treated in
a straightforward way, which would lead to surface current distributions, but in a more

restricted way for which no physical interpretation exists at present.

In this paper we propose a variational principle which we call “entropy principle”
and which aims at yielding relations between the density profile n(x) and the temperature
profile T'(x). It can be shown by comparison with experimental findings that tokamak
plasmas indeed have the tendency to relax to such states in which these relations hold.

The entropy principle results in the following equation between T'(x) and n(x):

-1
T8~ (%) eapa -1 - oy, 0
a : parameter independent of the position vectorx, a > —(7— 1)nmin/no;
~ : adiabatic coefficient, 1= 2;
To = Ti(xg);
no = n(xo) ;

Xo : arbitrary reference point, e.g. the position of the magnetic axis,
then p < po and n < ny for monotonous profiles;

Nmin : Mminimal value of n(x) ;
In Sect.2 the entropy principle is formulated and relation (1) is derived. It is also
shown that eq.(1) can be approximated by the polytropic relation

T(x) _ (n(x))"; 2

TO ng "=3 —|C!

-9

29 sign(a) . (2)

w

3

The approximation is poor for ac << 1, i.e. near the plasma boundary. However,

in most cases the experimental error bars are larger then the error made by using the
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The approximation is poor for ;"-‘0- << 1, i.e. near the plasma boundary. However,

in most cases the experimental error bars are larger then the error made by using the
polytropic relation (2) instead of the exact relation (1). Relation (1) or (2) means that
one temperature profile allows different density profiles belonging to different values of
the parameter a. This is at variance with BISKAMP’s /2/ and KADOMTSEV’s /3/
theory, which yields a one-to-one relation between the density and temperature profiles for
j ~ T3/2 | Their relation corresponds approximately to the special value @ = 1 in our
theory. Agreement with experimental results requires, however, a wide range of o values
including @ = 1. Relation (1) is checked in Sect.3 against experimental temperature
and density profiles of a variety of tokamak discharges. In Sect.4 we present “theoretical”
profiles n(x) and T'(x) for cylindrical 8, = 1 plasmas which follow from relation (1) when

it is combined with SPITZER’s formula for the electrical conduc‘ivity.

2. The Entropy Principle

The entropy principle proposed in this paper is aimed at yielding relations between
the density and the pressure profiles valid for states towards which, it is assumed, tokamak

plasmas tend to relax. These states are characterized by such functions

p = p(n) (3)
for which the entropy
1 " _aha
5 = 7—"f,f,,, o (6 i (pto) ") + (1= s n) 4
8y = entropy constant,

no longer changes when the plasma performs arbitrary internal motions which are slow
enough 8o as not to alter the relation between p and n. These motions can be described
by an arbitrary displacement vector ¢ = £(x) vanishing at the plasma boundary. The
variation of S is then given by

6S = — [ d*z én(x) ;—n(n In(pn™7) + (v—1) 3o n) (5)

plasma




with
bn(x) = — V- (E(x) n(x)) (6)

Eq.(6) describes conservation of the number of particles.

Partial integration in eq.(5) yields
3 a3 .
S = —— d’zné¢ - V- Enln(pn")-%('r—l)son (7)
plasma

This has to be zero for arbitrary £(x). We therefore obtain

ai(n In(p n~™7) + (1-1) s ﬂ) = A (8)

n

with
vV

I
=

Integration over n yields

ninpn‘”’+((1—1)30—/\)n=—an0 (9)

with

Va = 0, no = n(xXo)
Xo i8 chosen in the following as the position of the magnetic axis, thus n(x) < ng for
monotonous profiles. Writing down relation (9) for the position xo, we can express A in

terms of 3y, a, no and po = p(xp) to obtain

P (.1)1r ezp( - (1 — ) (10)

no
Inserting

p=nl

into eq.(10) yields relation (1), given in the introduction. The temperature relation (1)

tells us that

a > _('T - l)ﬂmin/ﬂo
must hold in order to guarantee that %%g;— > 0 in the density regime of interest.
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It should be pointed out that @ = 0 means an isentropic plasma. In this case
there exists an example which might throw some light on the physical background of our
principle: an isentropic gas with a non-uniform temperature distribution in the direction of
a gravitational force is just marginally stable; in addition, it is well known that gravitation
and the curvature of magnetic field lines have similar effects as regards stability. As far as
tokamak plasmas are concerned it is important, however, that a can be any non-negative
number as will emerge in the next section, where relation (1) will be checked against

experimental results.
Finally, we show that the polytropic relation (2) approximates relation (1) reasonably
well, except for :—D << 1, as can be seen from Fig.1.
Fig.1

T yersus ™
To no

Solid: according to the exact relation (1)

Dashed: according to the polytropic relation (2)
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3. Comparison with Experimental Profiles

For a comparison with experimental profiles one needs for each position a pair of
density and temperature values. Sometimes there is uncertainty as to the real position;
this, however, does not matter if it is guaranteed that the values of n and T belong to
the same position. We distinguish such data by a discrete lable k : n(k); T(k)- We use
directly measured points (+) as well as points (¢) on curves given in the literature in order

to fit the experimental results. The values of a to be used in eqs.(1) and (2) are obtained

from
kmazx T 5
o (-%)(nF - 3mz)
a = kmazx 2 (11)
> Ok (1 - '—‘,?)
k=1 k
with

kmaz : number of points considered.

This means a least square fit of In(—ZT—O) with the weight function gg; for the latter we have

o= (2 0-2),

Eq.(12) gives small weight to the plasma centre =

0

taken

~ 1 and the plasma boundary region
;"; << 1. In these regions uncertainties are usually biggest and also the applicability of
relation (1) might be doubtful.

In the following figures we reproduce n(r) and T'(r) diagrams from ALCATOR A
and ASDEX and compare relations (1) and (2) in T'— n diagrams with these experimental
data; a transport code simulation of an ASDEX discharge done by BECKER /4/ is also

considered.
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Fig.2b % versus - for Ref/6/, Fig.2, pellets

+ : experimental points,

o : points on curves fitting experimental data,

solid line : relation (1) with a =0,

dashed line : relation (2a) with n from a fit analogous to eq.(11) for a.

n = 047

The entropy relation cannot be applied to this case of pellet refuelling reproduced here,
because the plasma has not yet relaxed to “quasi- equilibrium” described by relation (1)
or (3)+(4). The density profile n(r) is too slender compared with the temperature profile
T(r), which causes p < 2/3, this not being possible in the quasi-equilibrium theory.

T/T




Fig.2c T.T; versus n—“o for Ref/6/, Fig.2, gas puff
+ : experimental points,
o : points on curves fitting experimental data,

solid line : relation (1) with a according to eq.(11),

dashed line : relation (2) with a according to eq.(11).

a = 0.27
n = 1.08
T/To
1

n/no



Fig.3a

Results of a transport simulation code from Ref(4)
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Fig.3b % versus - for some of the data given in Fig.3a.
o : data used,

golid line : relation (1) with a according to eq.(11),

dashed line : relation (2) with a according to eq.(11).

a = 0.21

n = 0.99

T/T,
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Fig.4a

Reproduction of THOMSON scattering profiles for the L- and H- regimes from

Ref/5/
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Fig.4b %;— versus ;% for Ref/5/, L-regime

+ : experimental points,

o : points on curves fitting experimental data,
solid line : relation (1) with a according to eq.(11),

dashed line : relation (2) with a according to eq.(11).

a = 0.24
n = 1.04
T/Ts
1

13

n/ng




Fig.4c % versus = for Ref/5/, H-regime
+ : experimental points,

o : points on curves fitting experimental data,

solid line : relation (1) with a according to eq.(11),
dashed line : relation (2) with a according to eq.(11).
a = 0.27

n = 1.07

T/ T;

0 n/no
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Fig.5a

Reproduction of Ref/1/, FIGURE 2
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FIGURE 2. Evidencs of decoupling of the particle-density profile from the electron-
temperature profiles at relatively low densities in the Alcator A device.® Here the linear
average density, in deuterium plasmas, isne = 2 X 10'* cm™ and the plasma current / =
115 kA. The ratio g¢/q, has been viried by increasing BT from 35 to 77 kG.
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Fig.5b TLO versus :—o for Ref/1/, FIGURE 2, dashed, r > 0
+ : experimental points,

o : points on curves fitting experimental data,

solid line : relation (1) with a according to eq.(11),

dashed line : relation (2) with a according to eq.(11).

a = 1.30

n = 2.36

PIT:
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Fig.5¢ ;'—0 versus ;% for Ref/1/, FIGURE 2, solid, r <0
+ : experimental points,

o : points on curves fitting experimental data,

solid line : relation (1) with a according to eq.(11),

dashed line : relation (2) with a according to eq.(11).

a = 2.46

n = 3.66

T/T,
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4. “Theoretical” Profiles for Cylindrical Plasmas

In this section we present theoretical profiles which are obtained on the assumption
that the toroidal field B, is large compared with the poloidal field By, and that therefore
OHM’s law for the toroidal direction is simply

o~ T, (13)

Details are given in the Appendix.

Pp = 1 means in its simplest form B, = const. This situation is described by eqs.(A13a-d).
It turns out that in this case only a = 0 allows n = 0 at a plasma boundary placed on
a finite radius a. For a > 0 the plasma boundary can be defined by a certain arbitrarily
chosen value of a.

Figs.6 show n(F) and T'(f) with ¥ ~ r defined in eqs.(A8) and (A12) for the parameters
listed in Table 1. This table also contains the values of the safety factor ratio g,/qo
according to eq.(A11). For the plasma boundary we have taken a = 10, except for a = 0,
witha/a = 7/r.

Table 1 )
Fig a da/90

6a 0. 4.6
6b 0.2 8.6
8¢ 5L 7.5
6d 2. 7.2
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Fig.6

(e)

(d)
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One also can define 8, = 1 in a more global way by requiring only B;(a) = By;(0).
For a certain class of toroidal fields B;(r) given by eqs.(A16,A17,A20,A22) one can allow
n(a) = 0 also for a # 0. In this case the relevant equations are (A23)-(A31) and b, = b;.
We have used @ = 4 as the plasma boundary if n(a) = 0 yields a > 4.
Figs.7-9 show n(f) , T(¥) , (B2(F) — BZ(a))/(87po)
with ¥ ~ r defined in eqs.(A8) and (A27)
for the parameters listed in Table 2. This table again also contains the values of g,/qo.
Note that
A =0.5 means n ~ A?
A=1 meansn~ A
A=2 meansn~+VA4.
The variation of B;(r) is always modest, usually showing a small diamagnetic effect, if
A + a is not too small.
The case A = 1 and a = 0 is also treated analytically in the Appendix.
There is an interesting feature with these profiles that all the temperature and pressure
profiles are essentially of the Gaussian type, except for ¥ > 3, and therefore agree with the

idea of profile consistency.

20



Table 2 .
Fig

7a
7b
7c
7d
8a
8b
8c
8d
9a
9b
9c
9d

0.5
0.5
0.5
0.5

[y

21

9a/90

4.3
5.8
9.5
13.2
2.3
3.2
5.7
7.6
1.5
1.8
3.2
4.8
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Summary

It has been shown that experimental temperature and density profiles in sufficiently relaxed
tokamak discharges agree reasonably well with relation (1). Since this relation is obtained
from a general principle, dubbed “entropy principle” here, one can expect this relation
to hold rather universally. It should therefore also be related to what is called “profile
consistency”. This is especially exhibited for 8, = 1 plasmas when eq.(1) is combined with
OHM’s law with SPITZER conductivity for the toroidal direction.
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Appendix: Cylindrical Plasmas with Circular Cross-sections

In an r, ¢, z cylindrical coordinate system the magnetic field consists of a
“poloidal” field B,(r) in the ¢— direction and a
“toroidal” field B;(r) in the z— direction:

) (0, B,(r), B,(r)) , (A1)

It can be obtained from a vector potential

A= (0, jB,,(r')dr’, A(r)) (A2)

with
dA(r)
By(r) = - 220 (43)
In electrostatic cgs units, the current density is given by
r, 0B, 1 8 04
?"(“"797' :a—r'ﬁ)‘ (1)

With
By = Bi(A(r)), p = p(A(r))

the pressure balance equation yields a second relation for the toroidal component of the

current density

= omg(r+ ). (45)
We assume OHM’s law to be valid with the electrical conductivity proportional to 7'3/2
and
B; >> B,. (A6)
Hence one has
o = cpT3/?. (A7)

The constant p includes the external electric field necessary to drive the current and to

make the system stationary. If one prescribes the total toroidal current, the quantity p
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follows from the whole set of equations. The last equation we need is eq.(1) or its equivalent

eq.(10) , which we repeat here:

1
p n ng
— = |—) ezxp(a-(1 ——))- 10
2o (2) eapa- -2 (10)
We introduce
a : plasma radius, (A8)
Bpa = Bplr:a Bia = Btlr:a B = Btlr:O
be = Btga/Bga bi = Ba/Bga ﬁO = gaf}g‘;‘
P =p/po i =n/ng ﬁp= p/ Bpa
B, = B;/B,, A=jp A/ (a Bpa) f=pr/a
. 8ma (Po)alg 40
PED Bya \no T o<i>
2 ;
<i>= = f} rdr
0
The following set of equations is then to be solved:
p = 7 ezp(a-(1- ) (49a)
3 . 5\
——— pp =S — gb
o) - ()
19,04\ _ 1[5\
7 a"(' ae) - E(E) ' A%
We define the plasma boundary by T = T, which may be reached at a certain value £ = f,.

In some cases T, =0,
in other cases f‘a could also be some other value << 1.

In order to fulfill the boundary conditions

OA Y

= -1 -0, (A9d)

7 =t P FF=

the yet undetermined quantity po has to be chosen correspondingly. The value #, itself

gives us j as follows from the definition of # in eqs.(A8), namely

5= . . A10
p (A10)




Furthermore, we note that the safety factor ratio ¢,/qo can be expressed as

to=n (2 9)
=& \/5 (A11)

We discuss separately the two cases a) By const and b) B, wvariable.

Constant Toroidal Field

In this case the toroidal field term in eq.(A10) is zero. We introduce

A = A/po, P = #/Vbo, (A12)
which transforms eqs.(A9a-d) into
i « 1
p = v ezp(a-(1- E)) (A13a)
. A\ 3/2
0f (2) (A13b)
P) fi
1 0 (.04 1/5\*?
FE:(' ﬁ) = i(a) ' (A135)
If 7, is the plasma boundary one finds g, from
— (0A B 04 3
Do (E‘:);:-d = -1 ,glrzo =0 (A13d)

In order to obtain information about the possible values of T, we discuss eqs.(A9) and
(A10) in the neighbourhood of the plasma boundary:
After multiplication by

JA[OF =~ —1

eq.(A9b) becomes

--(®)" (A1)



We integrate this equation between the radii fo & #, and #, and obtain
7 (fo)
fa — fo = fo- f di p=1/ (1 a2 + a ﬁ"‘/”) . (415)
7 (fa)
From this relation it follows that f(#;) = 0 yields a finite value of #, only for a = 0.

Variable Toroidal Field

This case means a wide field. We restrict attention here to a simple case that allows

fi(fs) = 0 also for a # 0. The A dependence of B, is expressed via an # dependence:
B}(A) = F(n). (A16)
The function F must fulfill
F>0, F(0)=b,, F(1) =b; . (A17)
In order to obtain simple relations, we define a function G(#) by
d foa 23 (2 Ay &—3/3
3z \Pho + F) = G(f) a~°/%. (A18)

This yields on the one hand

n
fG(n) dn = A (A19)
0
and on the other side
n
F = — ppo + /;3312 G(R) A~3/3 dia + b,. (A20)
0

Interesting simple equilibria are obtained for
A =g, g=const>0, A=const >0, (A21)

which means

Q

Il
)

>

At (A22)
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The integral in eq.(A20) exists for all allowed a ’s. The positivity of F is not guaranteed

in general. But since we are interested in b, >>1 whereas p, should be of order 1, there

should be no problem with F' > 0. Furthermore, from eqs.(A24) and (10) or (1) we find

)l/.\

n =

A 1/
= (3)" e
g

a

(é
g

(v=1)/A
. A
T = | — -exp| a-
(9’) p(

The equation for A becomes

| -

If we introduce

we obtain

] -

2

9 (L0A) _ _1 (AT
afr\ afr) = 2 \yg

which is to be solved with the initial conditions

From eqs.(A27) we have
04
oF

Thus if A(7s) = 0 then g is found from

A

Yris

From eq.(A20) with fi = 1 it follows that

Fa

1

F= Vi,

0 -_3A~ . 1 -~3(4-1 . 3 _ "'_1/‘\
_é_’_:(r 5’_._) = AT ezp(ﬁa 1 - A7Y2 ),

By b B — By == gfﬁ"’”)«ﬁ"“"/"’dﬁ,

which determines po + b;.

0
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Analytical Example

For illustration we present here an analytical example:

7 = 5/3; 13 a=0

h=d;  p=AoP; = A
3 - 19 - 1~
A =nx = — —A.
or? " ror 2

This yields
Ji = JO(;/\/E) ’

which has the correct value 1 at r = 0. The first zero of Jj is at
F/V2 = 2.4048

from which we find

fo = Fls,—0 = 2.4048-V2 = 3.40.

Furthermore, we have

94 _ 1

r V2

Ji(F/V?2)

with
Ji(Fa/V2) = 05191 .

It follows that

and therefore

Fo= 2.725F; fa = p = 9.27

ga/q0 = 2.32 \/ba/bs .

The square of the toroidal field becomes

B? = F = —jo #%® + 3.71-74% + b, .
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An overall B, = 1 plasma, i.e. b; = b,, is obtained for
fo = 3.71.
In this case the minimum of F is reached where
fi = A, = (5/6)° = 0.5787.

It has the value
F =F, =b, — 0248.

There is thus a small dip in the toroidal field.
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