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Abstract

For investigations on turbulent diffusion /1/ the solution of FOKKER-PLANCK equations
with convective terms is needed. In this paper we treat as a 1-dim. example the solutions

of the differential equation

P = ww+(wp)w_

V(w) (2.1)

with the initial condition in z
1 w3
—q = — —-—)4 2
Plazo = \/ 5= ezp(—5-) 6(r) | (22)

For very large x (“far zone”) as well as for very small x

Doing this, one can see:

P as a function of r is approximatively a GAUSS distribution.

Also the “density”

D = D(r;z) = 2[ dwg (2.4)
0

as a function of r is a GAUSS distribution, if x is sufficiently large. For

Viw) = A + v? (8.1)

the “convoluted density”

3 2
Clg,z) = 1 fd - 2_} [D D(y,a_ 8.10
ﬂt_g J Yy ezp 2g (y! ﬂ+) + (yl a ) 1 ( G)
with

ar = (1+A)y + z, b)
a_=(1+A)y—-z, C)

is given, which can be used to treat more general velocity fields (s.Ref/1/).




1. Statistical Background

Turbulent diffusion can be decoupled from the whole problem of turbulence by asking
for the transition probability of a test particle within a fluid with random velocity field.
Approximations on the basis of a BROWNian motion model do not seem to be adequate,
especially for the limiting case of “frogen-in- turbulence” (ref/1/), i.e. a situation where
the velocity field is irregular but stationary in time. It turns out, however, that the
transition probabilities obey a certain kind of FOKKER-PLANCK equation (eq.(2.1) in
the 1-dim case) if the velocitiy field v(x) is modelled by a nonlinear map of a WIENER
or ORNSTEIN-UHLENBECK process, e.g. for one dimension one has

V(iw) = A + v?;

see.eq.(8.1).

There is considerable interest in the solution of this equation , which may play a domi-
nant role in understanding the main difference between turbulent diffusion and ordinary
BROWNian motion. The results can be extended from the previously treated frozen-in

case to a wider class of non-stationary processes, as given in eqs.(8.10)-(8.13).
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2. Problem

We have to find the solution P = P(r;w;z) of the partial differential equation

Py

P; = Pow + (WP)w - V() (2.1)

with the initial condition in z

2
Pl=o = \/23 ezp(— ) 6(r) (2.2)

where r, w, z are the independent variables;
V(w) is a function that can be chosen almost arbitrarily: the restriction “almost” denotes
that the integrals (2.4) and (4.6) must remain finite.
V and P are symmetric in w:
V(-w) = V(+w) (2.3)
P(-w) = P(+w)

From P we have to form the “density integral”
=]
P
D = D(r;z) = 2[ dw 7 (2.4)
0

and other integrals given in eq.(4.9) and (8.10-13).

The initial condition (2.2) obliges us to introduce a function F with the definition

1 w?
P = I ezp(—T) F (2.5)
From eq.(2.1) we than have
B ey ~ a2 (2.6)
14
and from eq.(2.2) the initial condition
Fle=g = &(r) . (2.7)




3. Basic Equations

In this section we write down the general equations required for representing the solution;
proofs and explanations are left aside till Appendix.
For very small z one gets approximately
A F=56r-2). (3.1)
(PFIRSCH’s approximation - see Sec. 6).
If z is interpreted as “time”,
eq. (3.1) describes a single wave front
with maximum at

r=45 (3.2)

which propagates in the positive z-direction

FIG. 3-1 (see FIG. 3.1).

The term with 83/8w? in eq.(2.6) generally causes the wave front (3.1) to spread in the

course of “time” z, leaving
[ Fdr =1 forall z,w. (3.3)
—o00
F (as a function of r) may therefore be interpreted as the distribution of a random variable

r, and one may use the formulae of, for example, M. Fisz (Ref. /3/). According to Ref.

/3/ it follows from [ F'dr = 1 that there exists an expansion

(sA)"
ind = E T fn (3.4)
n=1
for the FOURIER transform
® = d(\wyz) = fdr F(r;w;z) e | (3.5)
— Q00
where the
Ky = Ky, z)

A



are the semi-invariants. Equations (3.4+5) are equivalent to

K3

1 z3 -
F = ezp(-——-z—)[l + ,,Eza k,.Hc.,]
with

Z = (r-x)/Viz

kn = kn/[n! K37
Hey =1

He, = 2

Hey, = 27 -1
Hey = 2°-32

Hey = 24 -62°+3

He,= HERMITE polynomial of order n with normalization

o0
2
[ az e::p(—-zz—) Her Heyy = V2xL! forL=M
—o00

The integral vanishes for L # M.

The semi-invariants x,, are given by the differential equations

Kiz = Klww — WKLyt v

K3z = Kaww — WK3y Kiw

K3z = K3 ww — W K3 wt 6K 0wk w

at: 3

Koz = Kyww — W Kqw + 8K wK3 o + 63,
n—1 -

Knz = Kpww — W Kpw+ E Kmwfn—m,uw
= m!(n — m)!

with the initial condition

InGleci = Bula=p =0 B 21,

5

(3.6a)

(3.8)



Every K, is determined by a linear inhomogenous equation because in the n-th equation
the x,,’s with m < n — 1 are already known. For n = 1 the inhomogeneity is given by the
function V from eq.(2.1).

The homogeneous equation is of the type

h: = hyw — Whe (3.9a)
and has the solution -
_ £)3
h = /du G(v) ezp[—(v &) ] b)
NG 4n
—o0
with
£ = we c)
i = %[l—c'”] d)

(PFIRSCH transform).

G(v) is a arbitrarily choosable function. For large x we have

£ = 0. f)
1
N = 2 g)
It follows that for large x
h = const. h)

The density D (see eq.(2.4)) satisfies the conservation laws

/dr Dir,z) = ¢ (3.10)
fdz D(r,z) = 1. (3.11)
0

with

o = \/gfdu E%((_T;fl . (3.12)
]




Template Model for Large x

With sufficiently large z and w, the semi-invariants x,, separate into a term which

grows linearly as z and does not depend on w, and a term which only depends on w:

Kn kn(w,z2) = cpz + Sp(w) (4.1)

If z is interpreted as“time”, x,, be-
haves like a template, which in the
w-diagram in FIG. 4.1 is pulled up-
wards with constant velocity, hence

% > the name “template model”.

FIG. 4-1
K, versus w for two x-values z3 > z,, schematic.
Solid curve: template solution (4.1) valid.

Dashed curve: template solution (4.1) not valid.

In the case n = 1 we can understand the template behaviour as follows:

Equation (4.1) exactly solves the differential equation (3.7a) for x, , but not for the desired

boundary condition &,|z=0¢ = 0. We now write the exakt solution which is valid for all z
in the form

Ky = ¢z + 31 + h y (4.2)
where h is the homogeneous solution (3.9) with G(v) = —5,(v). Equation (4.2) solves
the differential equation (3.7a) exactly for the boundary condition &,|;=¢ = 0. Large z
results in

§—0
n—1/2



and hence h — const,

which shows that the template solution (4.1) for large z is a good approximation. For the
case n > 2 we require the differential equations for the S,(w). Substituting the template
solution (4.1) in the partial differential equations (3.7) yields

1

g = 8§, —wS, + v (4.3a)
ca = S; —wS, +287 (b)
" r n! "o
tn = S, —wS, + ,,.Z;, msmsn_m ; (c)
with
NL. = % S d)

The solution according to KAMKE (see Ref. /4/) is

w? r v [ 1
0
w? f v3 ]
S = ezp() f dv ezp(— ) [ea -2Sf°] : ()
J .
s'—r.(ujg)fm‘i"”(uﬂ)c—“z—:1 Sty (<)
n = EEPC=) § AU ETp—o) G ml(n —m)t T ‘
0 m=

We now postulate something which, though plausible, is somewhat arbitrary:
S! must not grow proportionally to ezp(+w?/2) for large w.
It thus follows that the integrals on the right-hand side of eq. (4.4) have to vanish for

Ef = \/gfdv e:cp(—v?) i"_(%zj , (4.6a)

(o o]
2 v3 -
oy = \/2 [dvean(-3) 257, (b)
0

w — 00



2 Ug n—1
Cn = \/;[dv ezp(—?) E 1m' — |S';',,,S,'__ i (c)
0 m=

We learn from eq. (4.6) that V(w) must be so constituted that the integrals (4.6) remain
finite.

We can now prove for n > 2 as well that the semi-invariants for large z are of the template
type (4.1): In the case n= 2 we consider, besides the original differential equation (3.7b),
the solution a; for the diff. eq.: |

@3,z = 03pw — W G2p + ZS?,W (4'7)

a, is of the template type, because it is obtained from «; simply by replacing V(w) b
another function of w.
For large z one gets

Kiw — Sl.w

so that the homogeneous equation (3.9a) is valid for the difference k3 — a3. The solution

acc.to eq.(3.9h)is

Kg —ag = const

irrespective of the initial condition. Eq.(4.1) is thus also valid for the case n=2 and anal-

ogous for n > 3.

Eq.(4.4) gives the first derivatives Sy, but this makes S, known except for an additive
constant. The latter is defined by the requirement that

Ky = 3% + 8 (4.1)

be satisfied as well as possible, where x,, on the left-hand side denotes the exact solution
of the partial differential eq.(3.7) and the right-hand side is the asymptotic approximation

for large z.




It follows that

2

00
[dw S\ e::p(—wT) =0 (4.8a)
0
i 3
/dw Sy ezp(— ) = Lo _ \/E caz] (b)

2 2 i F
0

e o]
s
P =1 /dw Ka ezp(—T) (4.9)

0

t2 has to be calculated numerically from the exact x5 - see, for example, FIG.8-6 - and has

nothing to do with the template model.

10



5. Par Zone

The far zone is the x region in which the term S, in the template solution

Kn = Cp T + Sp(w) s.(4.1)

can be neglected in relation to ¢, z: this leaves

Kp = Cn L. (5.1)
Substituting eq.(5.1) in the semi-invariant expansion (3.6) yields

ks prop 7°8% | (5.2a)

kq prop z7! | (5.2b)

F

([r—az)? ] _ (5.3)

1
B V2rcaz ezp[ B 2cqz
In the far zone F' as a function of r is a GAUSSian distribution which is (almost) indepen-

dent of w.
Calculating the density integral (2.4) one may therefore put F in front of the integral to
yield

D=2 [dw 5\/; ezp(—u;—g) (2.4)+(2.8)

0
D= Fg (4.6a)
€1 (r—cz)?
_ I . o ol 5.4
Vemeaz ezp[ 2c3z ] 184

D, too, is a GAUSSian distribution; Fand D are completely determined in the far zone by
specifying c; and ¢; in eqs. (4.6a,b).

11



8. Near Zone

The near zone is the x region in which PFIRSCH’s approximation (3.1) is valid. The
6§ symbol in eq.(3.1) denotes a continuously differentiable function of the type (3.6) whose

width \/x3 is very small compared with the location x; of the maximum:

Rz << Ky . (6.1)

In order to show this for small x, let us consider the differential equations (3.7) for the

semi-invariants £,. The terms

Knww — WKpuw

are one order smaller than x,, ., if z is sufficiently small. In the near zone one can therefore

neglect K, ww — WKn » and integrate the differential equations (3.7). This yields
Kk, prop z"71. (6.2)

From eq.(6.2) it follows that the above-mentioned ratio of width to location of the maxi-

mum

V¥ peop E (6.3)

K1
goes to zero with x, thus proving PFIRSCH’s ansatz (3.1). Furthermore, the factors k,
in the expansion (3.6) also tend to zero with x, as can be seen from eq.(6.2), leaving the

GAUSS distribution

1 CIP(_('__ﬂi)

F =
TKg 2 kg

(6.4)

in the near zone as well as in the far zone.
The proportionality factor in eq.(6.2) rapidly increases with n; in the Appendix, eq.(A.13),

we give an example.

12




Finally, let us calculate the density integral (2.4) for very small x. According to

2[  F :
D = \/;f dw 7 ezp(—%—) . (6.5)
0

We introduce PFIRSCH’s ansatz (3.1) into eq.(6.5),

eq.(2.4+5) one has

define w by k(W) = r,
expand Ky —1 = K u(0) (w — )
and get
/2 ezp(—w?/2)
D=} Ve e

see example in eq.(8.9).

FIG.6-1
K, Versus w

1 vers rK1
with r and @ A

schematic

VvV
=

13



7. The example V = const

In the case
V = const (7.1)
one has PFIRSCH’s solution
F:&(r—é) 5.(3.1)
for all x.
The maximum is located at
z
=KL = g (1.2)
the moments are
mi, = Ky B> lj (7.3)
the semi-invariants are
Kk, = z/V 3.(7.2)
kn =0 n>2; (7.4)
the density integral (2.4) is
7T P
1 T
0
and the FOURIER transform is
® = ezp(—ik;A). (7.6)

If A is interpreted as “time”, the real and imaginary parts of ® behave like the two coordi-
nates of a 2-Dim pendulum moving on the unit circle with constant angular frequency. If
V is allowed to be dependent on w, the motion is damped due to k3 > 0 and the pendulum

spirals inwards; see FIG.8-1.

14



8. Numerical examples

In this section the formulae and results are applied to the case
V =1/(A+w?) ; A< 1. (8.1)

If analytical results were not available, we carried out numerical computations. From these
we learn that, approximately,

sec.6 for the near zone is valid for 0 < z < 0.54;

gsec.4 for the template model is valid for z > 0.5(1 + |w|) ;

sec.5 for the far zone is valid for z > 3/VA.

The range of validity is chosen somewhat arbitrarily; for example, eq.(8.13) for the con-
voluted density in the far gone can also be used for small x-values; see FIG.8-8. From
this rough survey we learn that there is a “middle x region” between the near zone and
the range of validity of the template model. In this “middle x region” the semi-invariant
expansion (3.6) is of no use and we computed F from the FOURIER transform ® by back

transformation:

o]
F = i/ ) @ e
2
—o00

see FIGs.8-1; 8-2; 8-3.

In the following we present

in FIG.8-1 the FOURIER transform ® , which behaves like a damped 2-Dim pendulum if
A is interpreted as “time”;

in FIG.8-2 and 8-3 examples of F(r) at various w values;

in FIG.8-4 and 8-5 the semi-invariants k; and x; according to the template model;

in FIG.8-6 the quantity ¢2 , as defined in eq.(4.9) , versus x;

in FIG.8-7 the density integral (2.4) and, finally,

in FIG.8-8 the convoluted density C according to eq.(8.13).

15




The FOURIER Transform
FIG.8-1

® versus A

for A=0.1 and £ =0.12
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Next we present three examples for F.

F(r) is asymmetric:

in the case w = 0 the third semi-invariant x; is negative;
in the case w > 1 the third semi-invariant x3 is positive;

the maximum is shifted accordingly away from Xj.

FIG. 8-2
F versus r, numerical

for A = 0.1 and x = 0.12

4-L

17
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FIG. 8-3

F versus r
for A = 0.1
and x = 0.12
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The examples shown in FIGs. 8-1 to 8-3 are taken from a “medium” x range in which the
semi-invariant expansion (3.6) is useless. F then has to be calculated from the FOURIER

transform ® by back transformation
oo
F = lf dr @ e'"
2x .

As x increases - roughly for z > 0.5(1+|w|) - the template model gradually becomes usable;
examples are presented in FIGs. 8-4 and 8-5. Table 8-4 shows ¢, versus A according to
eq. (4.6a). The integration in eq. (4.6a) can be performed analytically for V = A + w? ;
according to Ref. /2/ one has

gy = \/g éxp (%) erfe (\/f_) (8.20)

erfc(y) = —/c": dt. b)
v

with

The derivative of the template solution for n = 1 converges for small A towards the envelope

i) () e

Sn

Cn

S

(5]

For large w one gets

= b)

w — 00

not only for n = 1, but also for arbitrary n, because the differential equation (4.3) reduces
to ¢, = —w S), for large w. Equation (8.3) is important for the numerical calculations: S,
has to be specified for a large w value (e.g. S} = —1/8 at w = 8.) and calculated back.
If one were to start at w = 0 and calculate forward, i.e. in the positive w direction, the
numerical solution would run away proportionally to exp (w?/2) roughly as of w > 3 (see

eq. (4.4)).
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0,5

T

FIG.8-4

S'
%ll and c—: versus w for five A-values

Tab.8-4

c; versus A

20

A

10~4
103
102
10—!
1

e = /2 ep($) erfe(\/4)

124.3
38.65
11.59

3.153
0.6557



dl1

0.0
0.004
0.0001

FIG.8-5

i : i,
%11 and f—:versus w for five A-values; S; = S3— S3|w=0

Tab.8-5 A ca Salw=0
cq versus A 104 19615.  4500.
103 1678. 440.
102 115. 46.
10! 4.66 3.0
1 0.0573 0.11
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We now present in Fig. 8-6 numerical calculations of {3 and () = Z(t3)

for V(w) = A+ w3,

For large x one gets

(ta)z = \/2_‘;63.

FIG.8-6

t3/ca and (t2)_ /cg versus x

22
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Density

First let us consider extremely small x. We transform eq. (6.6) for the case

V= A+ v s. (8.1)
and obtain
I z
VT A+ ul
W=/ = 4
r

_ /1 ezpl3(4 - 3
D‘\/; rE = A

This equation is only valid if r is also small,

r < =
A H
so that the root is real.
For an imaginary root,
r>% orr<0 (8.7)
one has according to GRAEFF
D =20
If one introduces
D = z Dinstead of D, (8.8a)
r .
y = — instead of r b)
z

one obtains

. 1 ezp3(A - 1)
Dz\/;y'——“i_,‘ . (8.9)

23



In the near zone D depends on the coordinates r, x via y only. If x is allowed to grow, D
remains of the order of unity till about z < 2, so that densities can readily be compared
for various x-values in the y-D diagram.

Figure 8-7 shows examples of the density integral (2.4); the curves for x = 0.01, 0.1 and
1 were calculated numerically; the curve marked by eq. (8.9) was calculated according to
eq. (8.9).
FIG.8-7

D=zD ],J\

"1

€4.(8.9)

versus 4

y=r/z
for A =0.1

24



Convoluted Density

IV = A+ w?isvalid (see eq. (8.1)), one can form the

“convoluted density”

1 T 3
C(g,z) = fdy exp[- y_] [D y,ay) + D(y,a_)|, 8.10a
where
ay = (1+4)y + z, b
a_ = (1+A)y - z, c)
and
D(r,z) =0 for r<0 and/or z<0. d)
C is symmetric in x:
C(g,—z) = C(g,2) . (8.11)
C satisfies the conservation law
(o ]
fd:c C(g,z) = ;— (8.12)
0

For very large x, i.e. in the “far zone” (see Sec. 5), the integration can be performed

approximately; it follows that

C = : ez ( zﬂ) (8.13a)
- Vomg P \Tz5) '
with
112
g = [1+A - -—-] g b)
(]

(see Appendix).
xC thus depends approximately on the parameters A, x, g via §/z? only. To estimate the
range of validity, in FIG.8-8 we compare C according to eq.(8.13) with numerical results.

It can be seen that eq.(8.13) is also useful for small x.

25




FIG.8-8
zC versus §/z? = (1+ A4 - 1)? g/z?
Solid: according to eq.(8.13)

oooo: numerical for A =0.1 z =0.16
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Appendix
Comments on the equations

Re. eq.(3.3)

Let

(s o]
mo — [ F dr (A1)

be the 0-th moment of the function F. We now calculate mg as a function of w and z by

integrating the differential equation (2.6) and the initial condition (2.7) over dr:

f dr [F, = Fyw — wkF,— %] 3.(2.6)
—o00
Moz = Moww — W Mow (AZ)
The solution
me = 1 5.(3.3)

satisfies both the differential eq.(A.2) and the initial condition

Molz=0 = 1, s.(2.7)

27



Re. eq.(3.6)

Calculating the moments of F according to ansatz (3.6)

yields

(e o]

/drF =1 (A.3)
— o0
(s ]

/drFr = &y

/drFr’ = K3 + k?
fdrFr3 = K3+ 3Ky K3 + &3

fdrFr‘ = Kae+ 6k] k3 + 4Kk k3 + 3k3 + k.

The same relations (A.3) are valid for moments and semi-invariants according to M.FISZ
(ref./3/); this demonstrates the equivalence of eqs.(3.4+5) and (3.6), q.e.d.

The factor n! in eq.(3.6¢c) is obtained from the normalization (3.6f) of the HERMITE
polynomials;

The factor nglg = (dr/dn)"/? results from the transition from r to Z as integration

variable.

28



Re. eq.(3.7)

First we determine the differential equation for ®. This is done by multiplying the differ-
ential eq.(2.6) for F by ezp(iAr) and integrating over r:

[+ o]
E ;
f dr [F, = Fow — w Fy, — v ezp(sAr) , 3.(2.6)
— 00
yielding
b, = Buw - w@.,—%m (A.4)
according to the rule
o0 Qo
/drF,.G:— fer’,F (A.5)
— Qo0 — 00
applied to
G = ezp(shir) .
Defining
Y =ind, (A.6)
we have
Y = Yow — Wy + 3 + - A. (A7)

4
Substituting the semi-invariant expansion (3.4) in the differential eq. (A.7) yields the
differential eqs.(3.7) for the semi-invariants, q.e.d. We learn from this that the bilinear

inhomogenities come from the quadratic term from eq.(A.7).

Re. eq.(3.9)

Substituting £, n (see eq. (3.9¢c,d) for the independent variables w, x in the homogenous
eq.(3.9a) yields
hy = hee, (A.8)

where




this states that the use of PFIRSCH’s transformation (3.9c+d) “transforms away” the

term why, in eq.(3.9a). The solution (3.9b) is a superposition of GAUSS distributions
with weighting G(v) dv.

Re. eq.(3.10)

oo

/‘er _ fdw ]‘odrF\/g‘ITezp(—wQ/Z)
s 1 -~ //J see(3.1)
\ ¢ see(4.6a)

Re. eq.(3.11)

We consider the derivative with respect to r;
all integrals run from —oo to +o0.

From eq.(2.4) for D and diff.eq.(2.1) for P we have
ad B .
a?fdzﬂ—fdzfdwv
= fdz [dw (P.,,.,, + (wP)y - P,)

= fdz (Pw + wP) vt + fdeiifg.?
= 0,

It follows that
[dz D(r,z) 1s independent on r.

Inserting eq.(5.4) for the far zone gives

[dzD:l;

q.e.d.
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Re. eq.(4.8a)

We multiply the differential eqs.(3.7) by ezp(—w?/2) and integrate over w. As a result,
the derivatives with respect to w drop out according to the rule

(0 o]

f dw w f, ezp(—w?/2) = f dw fuw ezp(—w?/2) . (A.9)
—oo — 00

Because f is an even function of w (see eq.(2.3)), this also applies to w integrals from 0 to
00.

From the differential eqs.(3.7) it therefore follows that

o f [

== fdw xy exp(—w?/2) = fdw v exp(—w?/2) , (A.10a)
0 0

9 2 2 2

3z dw g ezp(—w?/2) = [ dw 2 ki, ezp(—w?/2) . (b)
0 0

oooooooooooo

The right-hand-side of eq.(A.10a) is &/ ¢, from eq.(4.6a); integrating eq.(A.10a) from 0 to
x with the initial condition (3.8) yields

(¢ o]
%f dw k; ezp(—w?/2) = ¢z (A.11)
0

for all z > 0, both for large and for small x.
For large x one has the template solution (4.1); substituting eq.(4.1) in eq.(A.11) yields
eq.(4.8a), q.e.d.
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Re. eq.(4.8b)

We put the template solution for n = 2,
K3 = ¢ + S5, s.(4.1)

into the defining eq.(4.9) for t? and obtain

\8

dw kg ezp(—w?/2) = - 2 (8.4.9)

(v o]
[dw S; ezp(—w?/2) = > t3 — \/g 3% |2—s0s (s.4.8b)
0

dw S3 ezp(—w?/2) = fd: ( (83) — \/gc, )|,_>m. (A12)

The integral (A.12) denotes the hatched region in FIG.A-1.

0\.

FIG.A-1
5(t%): versus z

for the special case H

T
V = 1/(1+w?); 2 2
see FIG.8-6.
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Re. sec.b Far Zone

It should be mentioned that inserting eq.(5.3) for F into the diff. eq.(2.1) gives no mind,
because the w-derivatives in eq.(2.1) are of the same order of magnitude as the x-derivative

on the left-hand side. Inserting the GAUSS approximation

_ 1 (kg —1)?
F= V2rKg ezp( 2Kq )

into eq.(2.1) gives eq.(3.7a+b) for k; 3 which can be solved by the template eq.(4.1); the

term S, (w) gives the correct w-derivatives when F is inserted into diff.eq.(2.1). However,
the neglection of S,(w) for very large x can be justified by

FIG.A-2, which shows schematically

ky versus w (solid line) A
for two different values of z.
The hatched area ~ /&3 ~ /z'
describes the spreading of the

wave front with increasing z.

It follows:

for very large z and w < 3
S, << V2

and can be neglected.

The region w > 3 is of no

interst due to the factor
~ X,{ S — = — = =

ezp(—w? /2) in eq.(2.5) for P. S,

FIG. A-2



Re. eq.(6.2)

Let us consider eqs.(3.7) for the semi-invariants x,, for very small x.

Neglecting £n ww — W Kp o

we have

Kz
K3 z
K3,z

Kg z

Introducing the special example

yields

Ky

Ka

K3

Ky

2
2Kl

6 Kiw Kaw

’

8 Klw K3 w +6 K.;w .

-
Il
g
S

(]

(3.7a)
(b)
(c)
(d)

(A.13)

The proportionality factor increases with n more strongly than n! thus causing the expan-

gion (3.6) to be semi-convergent.

With increasing x, the terms with large n become dominant in expansion (3.6);

this GRAEFF has called “explosion of the moments”. Furthermore, with increasing x the

terms xp yy — W Kn . damp the high-n-terms more strongly than the low-n-terms, and,

finally,'in the far zone cut off all terms with n > 3 thus leaving a GAUSS distribution (5.3)

for F.
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Re. eq.(8.13)

Owing to the symmetry (8.11) we have two far gones

one at , say, £ < —100, and

the other at z > 100.

We are only interested in positive large x.

D(y,a) is very small compared with D(y,a_); in order to get D(y,a_), we apply eq.(5.4)

for the density in the far zone to z = a_ and r = y and obtain

D(y,a+) = 0,
c —ca_)?
D(y,a_) = —r;ga czp[ _ly-ca ) 2cala ) ] .

Inserting this into eq.(8.10) for the convoluted density C gives

_ 1 —-1/32 _
Clo,2) = - [ dya™’? exp(-arg) (4.14)
Ymin
with
Ymin = z/(1 + A)
and
2 2
_y (y—ce)
arg = 2 e (A.15)

The main contribution to the integral (8.14) stems from the y-interval in which arg is
minimal. In the far zone the minimum of arg is approximately reached, if the numerator
in eq.(A.15) vanishes: from

yo—cia_ = 0

and eq.(8.10c) we have
z

N = AT

Let us consider the y-dependence of the terms in eq.(A.15).
g is very large in y-intervals with considerable contributions to the integral (8.14) .

The first term y?/2g - and analog a_ - weakly depend on y, in contrast to the numerator
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(y — c1a_)?, which strongly depends on y. Replacing y by yo in the terms depending

weakly on y gives

arg:y—°+

g ([cl(l +A) -1y — cl:z:)
Zg 202[(1 + A)y() - I] '

(A.16)

Inserting eq.(A.16) into eq.(A.14) gives eq.(8.13), q.e.d.
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