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Abstract:

A system of two nonlinear oscillators is proved to be
integrable by reducing it to elliptic integrals. This con-
servative system delivers the attractors of a driven damped
system of a generalized Van der Pol type that was previously

introduced by the author[:il.




In a previous paper[ij the Lyapunov stability and the
location of attractors for a special system of nonlinear oscilla-

tors were investigated. This peculiar system is of the form
Vo [(LAYIM L (V,BYN.P]Y » CY=0, ©

where Y’ is a real vector of arbitrary length r, A, B and C are
rxr positive definite symmetric matrices, and M, N and P are rxr
matrices whose symmetric part is positive definite. It is shown in
[]:I that the Lyapunov stability of system (1) can be dis-
cussed in terms of (Y Y) and (Y, CY), and that the attractors have

to be located in a strip of the first quadrant as drawn in Fig. 1.

Fig. 1 'ﬂ - (Y,CY)

81, u1, ﬂ1 are the largest eigenvalues and BO, ¥y T
the lowest eigenvalues of B, NS and Ps’ respectively, NS and P

being the symmetric parts of N and P.

It is reasonable to expect limit cycles when the strip of

Fig. 1 goes to zero. An example which was considered in Ref. (1]

was to take

l\ = ]: ’ (5 = f;.x .
(2)
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where I is the identity matrix. This leads[:{] to a high-
dimensional harmonic limit cycle. Notice that we can add to

M, N and P antisymmetric parts Ma’ Na’ Pa without altering the
null thickness of the strip of Fig. 1. This brings the nonlineari-
ties (Y, AY)Ma, (%, B;.’)Na into play and the problem of testing

for a limit cycle becomes very difficult.

In this note the problem is restricted to an r=2 system

with the null thickness condition (see Ref. []I)

(Y,Y) + £(VY) = o, o
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) () e (1)

This means that after the system has reached asymptotically the

strip of zero thickness the equations of motion are given by

g‘ + [M[‘j:-l-'é‘:j 4 '\("4:-\-.3‘:)-1- l‘—lcé,_ +i‘3.,= o,
(5)

3, - [y eah) +m (B e B 41 Y, ¢ £ 3= 0

If system (5) is integrable, this means that system (1) under con-
ditions (3) and (4) has a stable four-dimensional attractor. We

want to prove integrability. Let us set

2:‘3‘4.(:31 and z:‘é‘-bszo )

System (5) can then be written as
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The polar representation of z is

| « Bt
Z = pt) e ()- (8)

Expression (8) is substituted in eq. (7) and real and imaginary

parts are separated to yield
oo e 3 * . 2 22 °
pP -p06 .l.mfs.‘.u‘pﬂ(p +p9)..-yp9+if’=°, (9

ph w26p -mpponp (P apb)-prp =0 (10)

Multiply eq. (9) by p and eq. (10) by p6 and add

e 08

pp *.'9*;} .;-}7166 ¥ ‘-}’]" = 0. (11)

Equation (11) can be integrated once to

prebp asp - n (12)

« 72 [ X
with h = w/Bv according to eq. (3). The wvalue of P +on
from eq. (12) is substituted in eqs. (9) and (10) to yield

}_P‘B‘l_‘.m‘?’é +ﬂPé(“-i_P1)-{-"fé +if-=0, (13)
PE;..Qéﬁ-m_p‘}-ﬂ}(h-iﬁ‘)_pﬁ = 0. (14)

Multiply eq. (14) by p and integrate once:
P" 9' m P" nh 4 en P4 !E 4 (o (15)
&4 2 4 2 ’

where C is an integration constant. If we insert 9 from
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eq. (15) into eq. (13), we obtain an equation for p only:

or

- ? 1 (o) (nh+n) * (onsn)
f:?{%ﬁp"?tﬂiz( __"43"&.?( Eh)

..(C(_'ﬁ-qi&) * (rll_‘;:ﬁz).l 5 (17)

Multiply eq. (17) by J’ and integrate once:

¢ q _ C?- 4 (M_iu)(ﬂh'\'p’) - ﬁf' M_iv\)t
p = {" P P [ 16 (

..-Pt( %.[M-i.‘\) ¥ ('_‘h{'—n)l)a- A} ) (18)

where d is an integration constant.

Set P“"‘ % and multiply eq. (18) by 4 X . This yields

xX = ¥ [-— ('“__.._-;f“)tx“‘ - (m-m) (ahap) %

b
= ({nha-r)t ¢ 2Cm-tnoe® 4 4dx - la-C}] . (19)
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The integration of eq. (19) reduces[::z:I to elliptic integrals.
The original system can now be integrated completely because
eq. (15) needs an integration over a function of p. Of course, the
explicit answer will be cumbersome in general. As an illustrat%?n
; % C
consider here a rather simple case wasg i aye , a >
D TIDN

Instead of an elliptic integral we get an arcsin, and the solution of
(19) or (18) is

i

= = z_é—-— A———- € S"“(nh'*")b e (20)
! "{; - (“h_.,v)‘ k.p'; ((nh-l-\!)‘ ) ”

Equation (15) is also easy to integrate in this case. We find

_,_.-E—t+arc1'9‘.d fg(e,_.ﬂ‘.t)_l,___(b

Tlawep) wap?

Let us note finally that an equation of the type

with 5 and 3 real can be proved to be integrable by

a similar procedure but cannot be reduced to elliptic integrals.
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