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Abstract

It is proposed that a certain class of equilibrium solutions, which follow from an
elementary variational principle, are the natural current profiles in tokamaks, to

which actual discharge profiles tend to relax.

Die nachstehende Arbest wurde tm Rahmen des Vertrages zwischen dem
Maz-Planck-Institut fir Plasmaphystk und der Europaischen Atomgemesnschaft uber
die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefihrt.




Recently, the idea of profile consistency! in tokamaks has attracted considerable inter-
est. Loosely speaking, this means that tokamak plasmas have a tendency to set up certain
natural profiles of current density j(r) and temperature T,(r). Transport processes, in
particular y., are essentially determined by the energy deposition profiles. If the latter
are such as to support the natural profiles, cross-field transport is minimal, becoming
the stronger the more the actual method of plasma heating tends to generate profiles
largely different from the natural ones. The idea of profile consistency is very attractive
for a number of reasons. It would, for instance, identify the sources of free energy driv-
ing anomalous transport and thus give a more unifying direction to the rather diverging
tendencies of present tokamak transport theory. The fundamental question, however, is
what determines the natural profiles and what are they like. In Ref.1 it has been inferred
from experimental observations that T,(r) and j(r) have Gaussian shapes exp{—ar?/a?},
where a depends only on the ratio g,/qo. Measurements of T.(r) are, however, not accu-
rate enough to discriminate between different bell-shaped distributions, in particular since
the central part and the edge region seem to be dominated by processes not included in
the simple concept of natural profiles. In addition, the current density, the fundamental
profile, has practically not been measured at all. Hence a theory of the natural tokamak
profiles would certainly be very useful. In a recent investigation of magnetic reconnection?
it was found that the shape of the perpendicular current distribution in a current sheet
observed in a series of numerical simulations could be explained by a simple variational
principle. In this letter we would like to give a somewhat more general formulation of this

theory and its application to the problem of natural current profiles in tokamaks.

The electric current in a magnetized plasma consists of a parallel and a perpendicular
component with respect to the magnetic field, ; = j",, + L_. While the latter is fixed by
the plasma pressure distribution - it represents tue diamagnetic property of the plasma -,
Ju 18 a priori undetermined. Only the total current I can be controlled. Since in a plasma
in a strong external magnetic field parallel currents are easily induced, one usually has
Jn >> 71, while on the other hand j, is small enough, so that B, the magnetic field
generated by the parallel current, is small compared with the external potential field B,

and j,, is essentially parallel to Bj.




We consider an arbitrary low-f plasma configuration confined to a certain region V
and carrying an externally controlled current I. In the presence of an effective magnetic
reconnection process in the plasma one could expect the current distribution to relax to
a state of minimum magnetic energy under the constraint of constant total current, i.e.

obey the following variational principle
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where « is a Lagrange multiplier. (To make the second integral independant of the partic-

ular choice of F, V should be bounded by a magnetic surface.) It can, however, easily be
shown, that the solution of (1) with unrestrained variation is singular, B; =0 in V with
the current flowing on the bounding surface, which corresponds to the absolute minimum
of the magnetic energy and is obviously not of much interest for tokamaks. To obtain a
larger class of solutions the variation in (1) has to be performed in a different way. First
we note that the actual relaxation process is slow and therefore constitutes a sequence of
MHD equilibria. Furthermore energy and particle transport times are shorter than the
current profile relaxation time. Hence there is a continuous pressure redistribution be-
tween different magnetic surfaces, so that neighboring states should not be connected by
any dynamical constraints.

In the following we restrict ourselves to two-dimensional configurations which are de-
scribed by a single function, the flux function ¢. Consider a geometry with the coordinate
system £,n,¢, where ¢ is the ignorable coordinate. The external field By is assumed to
be in the ¢-direction and the field generated by the parallel current is B, = V¢ x Vq.
For By << By one has j, ~ 5./|V¢| with 5, = V¢ -V x B, . The equilibrium equation
tells us that j; is a function of ¢ and say £, where the dependence on ¢ is the impor-
tant one, which essentially determines the current distribution, while the £-dependence
is a geometry effect vanishing in the case of plane geometry. Hence in the second inte-
gral in (1) we have to insert the general equilibrium current distribution jc(¢, £), using
[7-dF = [j-dFd¢=[j.aV.

In this form the variational process is, however, not unambiguously defined. The general

variation of j, contains two contributions, one due to the variation of y, the other due to a
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change of the functional dependence on ¢, §j. = (35 /9vy)éy +5jg. The usual minimization
principle implied in eq.(1) would require to choose Sjg in such a way that §j, is a real current
variation satisfying Ampére’s law 65, = V¢ -V x (Véy x V¢), which yields the minimum
energy state ¥ = const mentioned above. By contrast we suggest the following extremum
principle, where we choose 5]} = 0, i.e. assume the functional dependence to be fixed

during the variation, which yields an equation for j.(¢). From the variational equation

S [wuxvsrav va 1= [weaw | =0 (2)
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we immediately obtain the Euler equation, using §¢ = 0 at the boundary,
aj.
ViV (VPR V)= ar—_., (3)
Y
The solution of (3) by satisfying the condition [ j.(¢)dV = I does in general not satisfy
the condition that the total current equals I, since the corresponding current density is
adj. /0y, except for j. such that
. aj
k= 03_1;! (4)

which gives
ge = f(€)evl. (5)

(The dependence on £ is determined by the equilibrium equation as we shall discuss below
for the case of axisymmetry.) In this sense solutions of the equilibrium equation with
the current profile (5) correspond to states of minimum magnetic energy subject to the
constraint of given total current. In contrast to the original variational principle (1),
however, this modified principle does not seem to allow a simple physical interpretation.

Let us first discuss the case of plane geometry, z,y, z, where j, = j.(¢). Here egs. (3),
(5) become

V2 = —de¥/e, (6)

There are two parameters a and A. While a is an amplitude scale factor of ¢ and is
hence essentially determined by the condition that the total current be equal to I, A,

which is related to the current profile width, is still free and should be determined by
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additional physics requirements. We thus find a one parameter family of profiles satisfying
the extremum principle (2). For a one-dimensional current sheet, as discussed in Ref. 2,

the solution of (5) is, with d¢/dz = —I for z — oo,

¥ &
A cosh ’_\:c
I
and the current profile
. A
dy = (8)
cosh? 2z
I

This is the well-known solution for a collisionless current sheet, where the exponential in
eq.(6) arises from the choice of a Maxwellian particle distribution. Here we now find that it
may be more generally valid, being the profile to which any current sheet tends to relax. In
fact, the numerical simulations of current sheet formation presented in Ref.2 show profiles
that are approximated by eq.(8) with surprising accuracy.

We now turn to the case of axisymmetry R, z, ¢, with ¢ being the ignorable coordinate,

where the equilibrium equation is

TA'Y = —jp = ~R($) - ZTT'(¥), (9)

with the modified Laplacian

3RROR 922 (10)

When this is compared with eq. (5), it is found that the ratio p’/TT" is constant and hence
eqs. (3) and (5) become
A*Y = —AuR? + 1 — p)e¥/=, (11)

Here p is essentially 3, the poloidal . We call the solution of eq. (11), suppleménted
by the condition % = 0 at the plasma boundary, the natural tokamak profile. Obviously,
the profiles of j, and p' are very similar and therefore strongly differ from equilibria with
peaked current and flat pressure profiles, which have recently been invoked in order to

separate the effects of shear and pressure gradients and thus reach higher stable B-values.
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To discuss the solutions of eq. (11) in more detail, let us consider the case of large aspect

ratio with circular cross-section. Since R ~ Ry, eq. (11) becomes

19 90y v/a
;gra = —)e 5 (12)

where r is the radial variable within the torus, R = Ry + rcosf. The solution of (12) is

1

with 8ay/(1 + 7)?a? = X. Introducing the total current I = 8ma<y/(1 + 7) to eliminate «,

and g, /qo = 770(0)/1I, the current profile assumes the form

9a

xal a3
(14 (2-1) 3)
do a?

which is also a well-known profile, the “peaked” profile introduced in Ref.3. Since in a

Jo =

sawtoothing discharge we have gy = 1, the profile parameter ¢,/go — 1 in eq. (13) is fixed
by prescribing I, and in this case the natural profile is uniquely determined. It should also
be noted that the solution of the unrestricted variational principle (1) corresponds to the
special case q;/qo — 0.

How do the natural profiles (14) relate to real current profiles in tokamaks, which are
always driven systems? The conventional school of thought is that for given average
values of T, n., etc. the heat conductivity x. is essentially fixed and the heat deposition
determines the profile T,(r), which in resistive equilibrium then determines the current
profile j(r) ~ (Te(r))?/?. By contrast, the hypothesis of profile consistency emphasizes the
primary role of the current profile, which tends to have some natural shape jo(r), while
X.(r) is such that, rather independently of the heat deposition, T is close to (jo(r))?/°.

Since in a tokamak j(r) is usually affected by MHD activity in the center and strong
cooling in the edge region enforcing j(a) ~ 0, it is only for g;/qo >> 1, where jp(a) <<
70(0), that j can be expected to be close to the corresponding natural profile. (In addition

tearing modes with m > 1 may locally modify the current profile.) Since 5o(r) ~ po(r),
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resistive equilibrium requires that T, ~ j(?/a and n, ~ Ty /2, which is not'inconsistent with
experimental observations, at least for ohmic discharges.

Deposition profiles of auxiliary heating which are usually broader than for ohmic heating
tend to drive the system away from the natural profiles and thus lead to stronger diffusion.
Only for divertor discharges allowing high T, at the plasma edge in the H-mode may broad
current profiles with finite j(a) be generated and approach the corresponding natural ones.
The considerable reduction of x. observed in this case is consistent with this picture.

Finally, it should be recalled that equilibria in the reversed field pinch (RFP), where
B, ~ B,, are determined by an energy principle* analogous to eq.(1). The difference
is that for the RFP internal magnetic reconnection is much faster than in the tokamak
and does not constitute a sequence of equilibria, and that the total helicity is the crucial
conserved quantity. In tokamaks helicity conservation seems to be important only during
rapid relaxation events such as sawtooth and major diruptions. It might also be interesting
to note that replacing the last term in eq.(1) by a very similar expression, fﬁ . 7dV , the
variational principle (1) yields a force free equilibrium just as in Taylor’s energy principle*.
In the tokamak approximation this solution corresponds to constant current density, which

is not much more relevant for tokamaks than the surface current solution of (1).
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