ANALYTICAL MODELLING OF IMPURITY TRANSPORT IN
TOROIDAL DEVICES

G. Fussmann

IPP III/105 August 1985




MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

ANALYTICAL MODELLING OF IMPURITY TRANSPORT IN
TOROIDAL DEVICES

G. Fussmann

IPP III/I05 August 1985

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphbysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit anf dem Gebiete der Plasmaphysik durchgefiibrt.




IPP III/105 G. Fussmann ANALYTICAL MODELLING OF IMPURITY
TRANSPORT IN TOROIDAL DEVICES

Abstract

This review deals with our knowledge of the fundamentals of impurity
transport in tokamaks and stellarators. Emphasis is put on the processes in
the edge region, which are of crucial importance for wall-produced impur-
ities. For the anomalous-transport model closed analytic expressions for the
stationary case are derived which allow the importance of various transport
and plasma parameters to be estimated. We also discuss some general features
of non-stationary problems. In particular, the definitions and essentials of
various characteristic times are discussed. Moreover, we elucidate the

questions of diffusive penetration and impurity screening.
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1. Introduction

The control of impurities is still one of the salient problems in nuclear
fusion devices such as tokamaks and stellarators. Although the impurity

concentrations have been reduced to tolerable levels (Ze < 2,

ff
30 %) in many experiments during the ohmic heating

Pr'adiation/Pinput <
phase by choosing suitable materials or by means of divertors, the impurity
problem again appears with additional heating when the power fluxes are
considerably increased. The whole impurity complex can be subdivided into
production of impurities, first ionization (deposition profiles), and
transport of the impurity ions, all three aspects being of equal
importance. It is therefore necessary, on the one hand, to know the
dominant mechanisms causing the production of a specific impurity, but, on
the other, one must also understand the transport of the released particles

to estimate the effect on the plasma performance.

This paper deals with the deposition and transport aspect for the purpose
of reviewing and discussing the basic ideas of impurity transport currently
prevailing. Most of the published theoretical work is devoted to the
transport in the inner plasma region with closed magnetic surfaces.
However, as outlined in Sec. 2, the actual impurity problem is generally
strongly governed by the screening processes in the relatively thin scrape-
off region. One of the main objectives of this paper is the derivation of
eqs. (18), (25) and (28), which allows us to calculate the impurity density
in the inner plasma region for a given stationary influx of neutral atoms.
A simplified formula for the same purpose was first obtained by Engelhardt
and Feneberg /1/, who assumed an anomalous diffusion coefficient D, and
imposed a hard-boundary condition by setting the impurity ion density e

_ equal to zero at the limiter edge. It was further assumed that the neutrals
are effectively ionized within a distance li from the edge. The relation
they obtained, n*(r=o0) = FO Ai/D , already shows the combined influence of
transport (D,) and deposition in the boundary region (Ai). A considerable
improvement of the above formula was presented by Engelhardt et al. in Ref.
/2/, where, in particular, the hard-boundary condition was replaced by a
loss term in the scrape-off layer (soft boundary). On the other hand, this
treatment also included some unrealistic idealizations (linear geometry,
ne = const.). Recently Lackner et al. /3/ derived an expression which is
identical with our eq. (18) for the case D, = const. and v, = 0. However, a
finite drift velocity v, - for which experimental evidence has been found

under certain plasma conditions /4/ - can have a drastic impact on the



results.

In Sec. 2.2.2 we discuss the impurity ion deposition profiles, which can be
properly taken into account by integrating Green's functions over the

source coordinate.

Valuable information on the transport processes can be inferred by studying
the temporal response of some spectroscopic signals in the case of short
time puffing or pellet injection of impurities. For this purpose we discuss
in Sec. 2.3 the time dependence of the solutions. By means of an eigenmode
analysis the relations between various characteristic times are elucidated.

Of great importance is the time constant T, discussed in Sec. 2.3.2, which

1
determines the decay or build-up of a stationary state. Finally, we treat
for a simple case the propagation of an impurity pulse. The solutions are
particularly of interest with respect to the plasma penetration probability

for particles deposited in the scrape-off.

For the purpose of illustration we refer to ASDEX data. An application of
the results to other devices should be possible without difficulties pro-
vided the relevant plasma parameters - in particular for the scrape-off
region - are available. Some experimental findings on impurity transport in
ASDEX are reported in Ref. /5/. More recent results including the impurity
behaviour in the case of additional heating will be published in a

forthcoming paper.

2. Impurity Transport Modelling

2.1 Model Equations

The starting point of our considerations is the continuity equation for an
impurity species in ionization stage Z:

an -+
el = g ] - = 1

= div [ +Q - S, (1)
In eq. (1) QZ and SZ are the source and sink terms for the particles, which
we do not need to specify in the following. As a next step we sum eq. (1)
over all ionization states, thereby defining the total ion density

N
n+ = ¥ n

’
2=1 &




and the total ion flux

> N o
R R ) r,.
Z=1

For the sum of the sources we have

b
Q =divr,
7= = @

-5
where I; is the flux of neutrals.

Furthermore, we exclude the recombination to neutrals within the plasma.

This approximation is in general well justified; exceptions may occur,
however, in cases of extremely low temperatures (Te < 3 eV) combined with
high electron densities (ne > 1013 cm_a) and good confinement conditions (D <
1000 cm2/s). Without such recombination processes the sum over all sinks of

ions must vanish and we obtain instead of eq. (1)

+

a -> -+
52—1— = -div I'" - div T (2)

For the specification of the fluxes we adopt cylindrical coordinates,
assuming a circular plasma cross-sectionj no toroidal or poloidal
asymmetries will be considered. Within the region of closed magnetic
surfaces r < a, we consider only perpendicular transport with the still

quite general ansatz

1 (3)

This notation not only includes by means of the term the case of

Viges
pressure-driven diffusion (Fz o B(nZTZ)/ar) but also aliowi one to consider
the influence of other parameters (e.g. aTi/BP, Bni/ar in neoclassical
theory). On the other hand, anomalous diffusion is likely to be caused by
fluctuating E-fields via E x B-drifts. In this case neither a Z nor an m, =
dependence is to be expected. We therefore simplify expression (3) further

by neglecting the Z-dependence of the transport quantities, which leads to

+
oy
+ on

" = (-, +v,n') e . (¥

- OF r

This expression has been found to describe the anomalous transport prevail-

ing in the majority of experimental cases /5/ (a review is given in Ref./6/).
It should be noted that relation (4) still offers a large measure of flexi-
bility. For example, neoclassical transport may still be simulated owing to the

dominant influence of the Te—profile, which actually controls the radial charge



separation. In such a case the charge state abundance fz = nZ/Z n, is first
calculated over the plasma cross-section assuming corona equilibrium. The
Z-dependence of the transport coefficients is then transferred into an r-

dependence according to

Dy(r) = L fz(r) Dlz(r),

Vy(r) Lf ¥y (r).
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Using these coefficients we can finally calculate in a first order

approximation of neoclassical transport the total ion density n*(r).

In the scrape-off region a < r < r. the additional fluxes parallel to the
magnetic field become essential. For a discussion of the transport

processes we refer to the following expression:

e an i 3nz .
]-'z = (_D_j_ _% + V.I. nz) er g (—D"Z TS + V"Z nz) ell' (5)

There is little information from the experiments on the transport quan-
tities in this region. With respect to the perpendicular part it is in
particular uncertain whether the drift term van, exists at all in this zone
of non-closed magnetic surfaces. The perpendicular diffusion, on the other
hand, is experimentally substantiated for the background plasma from

measured electron decay lengths

1
r2a

A= -G Inn)” (6)

and by studying deposition profiles of suprathermal protons on the neutral-
izer plates in ASDEX /7/. These experimental findings are compatible with
the assumption of a constant diffusion coefficient of D; = Dl(r=a) =

D;s' Moreover, because of the smallness of the scrape-off width w = r - a
(or, more specifically, A, which in general is even smaller) in comparison
with the minor radius, a weak radial dependence of D, is of little impor-
tance anyway. For the same reason the perpendicular drift term in eq. (5)
may be neglected. This can be verified by comparing it with the perpen-

dicular diffusion term, assuming v,(r > a) = v;a = const.:




The ratio is much smaller than unity since the drift parameter

o= V,,a/D, (7)
is typically of order one (see Sec. 2.2), whereas the ratio d/a with d =
Min (A,w) is in the range 0.1 - 0.01 for large devices like ASDEX (a = 40

cmy, d £ 2 cm).

Addressing now the parallel fluxes in eq. (5), one has to realize that
practically no direct information on the transport coefficients is avail-
able from the experiments. On the other hand, classical collision pro-—
cesses can be assumed to apply much better to the transport parallel to the
field lines than for the strongly reduced transport perpendicular to them,
Inserting the classical diffusion coefficient /8/
(kT.)S/Z

f72 e*z%1n A

R V)

Dyz =1, kTi/mZ - o

into eq. (5), we can compare the divergence of the parallel and perpendicu-

lar diffusion fluxes:

3 Bn
ar DLS ) D
3 . 1ls u 2 (8)
3 E)nZ D,z (_&- .
5? DI'IZ 3s

In eq. (8) L" is the characteristic length along the field lines. It is
about half the distance between two absorbing surfaces (limiter or divertor
plates) in the scrape-off and is of the order of the major torus circumfer-
ence 2T R_ (ASDEX: Ro = 165 cm, L" ® 1500 cm). For typical scrape-off

13 a3

conditions (Ti = 15 eV, n, = 1 x 10 y 2 =3, 1In A = 20 and m, = mass

of proton) we get D”z = J% 106 cm /s which must be compared with an ano-

malous value of D, ~ 6 x 103 cm?/s. Because of L,/d ~ 103 we find that the

3

right-hand side of eq. (8) is of order 10~ which means that parallel diffu-

sion can be neglected because of the very long gradient lengths. Any effec-



tive impurity exhaust parallel to the field line must therefore be attri-

buted to the streaming term v n, in eq. (5). As discussed by Neuhauser

/9/, the parallel streaming of tie impurities is effected by three mechan-
isms: (1) friction forces, which tend to transport the impurity ions
according to the streaming velocity of the background ions; (2) thermal
forces (a BTi/BS), which tend to drive the particles back from limiters or
neutralizer plates; and (3) electric forces (a 03@/3ds), which occur because
of the electric potentials needed to establish ambipolarity of ion and

electron fluxes.

Because of the various terms that influence the parallel transport, its
evaluation would require information on the plasma parameters, such as
temperatures, potentials and in particular the streaming velocity, as a
function of the scrape-off coordinates, which are not available. For this
reason and also for the sake of simplicity it has become common practice to
replace the term div ?; by a loss term n+T", where T ~1is the mean resi-
dence time for the impurity ions in the scrape-off region. One must be
aware, however, that such a replacement is a rather rough simplification
since in reality no particles are lost within the plasma volume. The
description would be more appropriate to a situation - which is unlikely to
be met in the experiments - where the particles rapidly bounce back and
forth between the limiters or neutralizer plates with a small probability
of absorption at the plates. All results based on this simplified treatment
are therefore to be used with caution in the boundary regionj; they are at
best correct in the sense that poloidal averaging has been applied. As far
as the impurity ions are coupled to the flow of the background plasma by
the friction forces, the residence time T, = L /v can be estimated from

the measured decay length A of the electron density (eq. 6) by using the
e e _ Di g
n? 38 7 Tis

relations Tﬁ =T and

A2 = Dyg * T, (9)

Using equations (2), (4) and (5) and considering the smallness of the

scrape-off width w = B, i « a, we finally end up with the following

equations:
s an’ +
n n
I. —a't—=; E T[DJ_ F A ¢ ] + QI(I'), for r S a, (103)




an" 32n+ n
Il ®Pig —ogimgs * Qppe)s forac<r<r,, (10b)
ar "
>
QI and QII being the source terms -div Fo in the two regions.

2.2 Stationary Solutions

2.2.1 Green's Functions

We look for the stationary solutions of eq. (10) in the case where the flux of
neutrals Fo(atoms/cmzs)originating from the wall is abruptly ionized

within a shell of radius r' and r' + dr'. The corresponding source distri-
bution is then presented by a delta function and we have to distinguish the

two cases:

case 1: r' > a, Q, =0, Q

II Po §(r-r'), (11a)

case 2: r' < a,

(=]
1

z I‘O%G(r-r'), Q 0. (11b)

II

The solutions of eq. (10) are the Green's functions n* = G1(r,r') and n¥ =
Gz(r,r') in cases | and 2, repectively. They satisfy the homogeneous equa-

tions for r £ r':

d dG (12a)
Frk (D, 4 vy G) =0, 0<Lr<a,
2
AZ l_% -G=0, a<frx Lo s
dr (12b)

G=C, e, (13a)

G=C_e f:‘*—* dr, (13b)

with



F(r) = i D, (%) dr, (13e)

in the case of eq. (12a), and

G = C, sinh (r/)), (13d)

3

Cu cosh (r/A) (13e)

G

for eq. (12b). By means of these functions the solution satisfying

the following conditions has to be constructed:

dG

-d—f ) = 0’ (1ua)
lim{G(a-€) - G(a+€)}= 0, (14b)
e~>0
dG d
lim {D,, S|, - Vi, Gla-e) - Dy 3| .} =0, (14e)
€0
G(r ) =0, (14d)
1im{G(r'-€) - G(r'+€)} = 0, (1le)
e—>0

and in addition

lim {Eg% e - | V)= _EQ ,
. r'-¢ dr |[r'+e D, (14f)
or

dG dG
lim { dr |r'-e _ﬁ% r'+E}=‘%T'ﬁgf;TT ’ (14g)
>0 1

Condition (14a) is equivalent to G(0) # » ; it also imposes a restriction on

the drift velocity (v, < 0 in the case of inward drift):

dv,

V.L(O) =0 and p: e S0 =0, (15)

With eq. (14d) we postulate complete absorption at the wall. Equations
(14b) and (14c) provide the continuity of the density and ion fluxes atr =a.
No discontinuity of the diffusion coefficient will be assumed, i.e.

Dia = D‘ls at r = a. At the source radius r = r' the density (G) is continu-
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ous (1l4e) but the fluxes have to jump by To or T a/r' (eq. 14f, 1lg).

In case 1, where the source is located

solution is given by: ~
a v, (1)

/ﬁ—{ BIT?Y dr
e b ]

in the scrape-off,

the complete

G, (r,r") = Gl(a,r')-gcosh &, a= bow’, “liea)
r'-a
cosh ( X ) r T
s TS sinh (_T—_)’ r'<r<r,
\Fin11 ( WA )

with A =vVD 1t and w = r
1S n W

- a the scrape-off width. The density at the

separatrix or limiter edge r = a is found to be

r -r'
W

3 )
Dys cosh (w/))

2 sinh (

G1(a,r') & Ly

(16b)

In the second case,with the sources located in the region of closed

magnetic surfaces r' < a, we obtain the following result:

-F(T)
. aD, W - e ~ "
eF(r)[e F(a) & }\3 coth(j\') i' W dr, 0 <r<r ,
: D =F(r)
_ F(r); -F(a) 27is w. a e .
G,(r,r') = Gy(a,r")4e [e # g coth(y) { NCIE dr, r' £ r<a, (17a)
1 rw—r
———— ¢+ ginh (x—), af<rir
Sinll(;) A L
with
G,(a,r") =T A tanh (¥)
22 o D, by (17b)

and F(r) according to eq. (13c).

By combining eqs. (16) and (17) the density



_}]_

on axis is found to be

Lors spcay s h(r“’-r)/ ol r'> a
¢(o,r') = ——D° i e Y /cosh (), o = By (18)
1s D i -F(r) dr
wy , 248 F(a) | e, ' < a.
tanh (3) + — e [ D(¥) T
A X e
The ion fluxes to the wall I' * = -D dG/dr| are
W L3 r=r
r cos h (rl_a), r' > a,
- # 0 (19)
w cosh (w/)) 1 s ¥' < a

Our results may be visualized by considering a case of moderate inward
drift velocity with a drift parameter of o = -2 (eq. (7)) and F(r) =
-(r/a)z. The following set of data has been found appropriate for the

description of the ohmic phase in D_-discharges in ASDEX: a = 40 cm,

2
w =8 em, D, = 4000 0m2/3 = const.,T" = 1 ms, A :Vﬁ't" = 2 cm and ¥, = -200

(r/a) em/s.

In Fig. 1 we have depicted the two profiles G1(r, r' = 42 cm) and

Gz(r, r' = 36 cm). Characteristic of the first case is the peaking of the
profile at the source location. This peaking is the more pronounced the
smaller the penetration depth s = P r'; it disappears for s > w. At

r = a the derivative jumps because of the discontinuity of v, (v,(r > a) =
0). According to eq. (19) the fraction of F;/Fo in the two cases is 0.057
and 0.037, respectively.

In Fig. 2 the central density according to eq. (18) is plotted as a func-
tion of the source radius with the inward drift velocity as a parameter
(assuming v,/D, = @ r/az). The figure demonstrates the sensitivity of the
impurity concentration to these variables. In Fig. 3a and 3b we show

the same function for the parameters T" and D; (assumed constant over the
whole cross-section). Whereas in the former case a monotonic increase with
T, is found, the curves cross at a source location of r' ~ 42 cm for

the latter parameter. The reason for this non-monotonic behaviour on D, can
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be explained from the fact that with decreasing D, the particles are better
confined - and driven to the centre by the inward drift - for large pene-
tration depths (r' £ a). For small penetration depths, however, the
probability of reaching._.the region r < a is reduced with decreasing Dl,thus

resulting in an enhancement of the screening efficiency.

2.2.2 Ion Source Distributions

The basic equation for the determination of the radial distribution of the
ion impurity sources is the continuity equation for the neutrals. With recom-

bination into the neutral state again being neglected, this equation is given by

=-divI -n n S, (20)

where S0 = So(Te) = <Uiove> is the ionization rate coefficient for the
neutrals. We consider the stationary case with cylindrical symmetry, putt-
ing Fo(r) = =T, with v > 0 for the neutral flux density originating from

the wall., The corresponding equation

S
1 d _ e 9
9 & B, Vod =

rn v o

(21)

can readily be integrated, yielding for the flux density versus radius

i
-5 == a4
r, = W5 (22)
'(r) = -n v = -T — e g
o o o ow T

The source distribution of the ions is then found to be

Tw n.S
-5 =2 4F
(r) = —-div T P | wod r 70
Q(r) = i o_lowl_l? Ee ' (23)

In Sec. 2.2.1 the prefactor Irowl . rw/r was already taken into account.
(Note that because of the plane approximation used for the scrape-off

i i ithi imi <Ry sl r /a.
the flux FO is uncertain within the limits |Tow| L %9 ow1 w/ )

We therefore have to use the normalized source function




r r

w o . w o .
-/ P(r)dr =il P(r) dr
a(r) = Lo 7 =P(x)e " ; (24a)
with
P(r) = ne(r) . SO(Te(r))/vo, (24b)

to calculate the total impurity density

Ty
n*(r) = J'G(r,r') ey dr”, (25a)

which for convenience may be subdivided into

a rw

nt(r) = g Gz(r,r') q(r')dr' + g G (r,r') q(r")dr’, (25b)

The normalization of expression (24)

Ty
[ -
o 9(r)dr =1 (25¢)

is provided insofar as the plasma centre is inaccessible to the neutrals,

i.e.
'y

exp(-/ PdTr) = 0.
o

The above relations are only correct in cases where the flux of neutrals is
both monodirectional and monoenergetic, a case which is generally not met
in reality. To discuss the importance of the velocity and angular distribu-
tions, we consider the case of iron sputtering at the wall. According to
Roth /10/ the distribution versus energy and angle of the sputtered Fe-

atoms can be described by

2/3

£ ] - cos® dE sin®8 de,

f(E,8) dE sin® d6 = const. L____—TE
(E+E0)

with E0 = 1.5 eV. Introducing p = cos® and w = E/Eo the normalized distri-
bution function reads

10 w ]2/3

f(w,u) = T [(w+1)4 H, (263)

with




_.]4_

o0 |
S f(w,u) dw dp = 1.
w=0 =0 (26b)

By means of egs. (26a) and (24) the averaged source function is obtained

from
| Tw
& g --——-,;]_f P dr
<q(r)> = P(xr) J [ e - T, o du, (27)
oo uvw
i - 2.3 x 105 cm/s. After integration

; _ " ¥ _
with P(r) = neSo/v and v¥ = (ZEO/mFe)

over angles we are left with

<q(r)> = P(r) ? E [—L' Fw P dr] ° - ——Elii—— dw (28a)
o 2 T 3 (w+|)8/3 :

where E (x) = fe t 2dt is the exponential integral of second order. By

Substltutlng w = t(1-t) eq. (28a) is brought into the more convenient form

r
<q(r)> = ITO P(x) [ E, [/(-OTE 5w 7% e ds (28b)
(a] r

Our results are again illustrated by referring to ASDEX data of ng and Te
boundary profiles. We distinguish the ohmic phase from the L and H-phases
13 3

during neutral injection (Ee 4 x 10 , Ip = 320 kA, B, = 2.2 T; L

and H: PNI = 2.85 MW; 1® 5 pt ). The corresponding profiles shown in Fig.
(4a) were taken from Ref. /11/; corrections of the order of Ar = 1 cm

for the actual position of the separatrix were also taken into acocunt.

In Fig. 4b we present the iron source functions before and after averag-
ing according to eqs. (24) and (28b). The ionization rate coefficient S, is
calculated after Lotz /12/. In Fig. LUb we show in addition the source
functions which are obtained after averaging over the angles only. It is
found that averaging over the angles shifts the source profiles back
towards the wall, whereas the averaging over velocity amplitudes has the
opposite effect. After all, averaging results in a broadening of the source
profiles. From Fig. Y4 it is also obvious that in each of the three cases
the ionic iron sources are located essentially in the scrape-off. In

Fig.5 weplotted the integrand G(0,r')<q(r')> of eq. (25a) assuming in all
three cases ohmic transport parameters as given in Sec. 2.2.1. The areas

below the curves represent the iron density on axis.

For a flux density of Fo = ]/cmzs the densities at r = 0 are found to be
+ -4 =3 -4 -3 + =l = =3
nog = 3:9x 10 " cem 7, n; =2,6x 10  cm ", n, = 5.7 x 10 " cm ",
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2.3 Time-dependent Solutions

2.3.1 General Properties of the Equations

Before treating more specific problems we elucidate some general features
of time-dependent diffusion. To this end we revert to eq. (2) and specify
the fluxes according to Sec. 2.1:

8n+

= —-div (—Egrad a2+ ¥ n+) + Q(¥). (29)

Note that apart from switching on (or off) the sources Q at t = 0, no
explicit time dependence is considered. For the following it is essential
that the transport quantities E (a tensor with components D, and D") and v
do not depend on n". This assumption will be justified for small impurity
concentrations when the reaction on the background plasma can be neglected.

In this case eq. (29) is a linear partial differential equation, which by

— >
means of the linear operator L = V + (DV - V) may be written as
on* + -
55— = LIn"] + Q(D). (30)

Since the right-hand side of this equation is independent of time and
because of the lack of time derivatives higher than first order, one

trivial consequence is the exclusion of oscillating solutions for t + =,

2.3.1.1 Complementarity

In this section we prove the complementarity between impurity build-up and

impurity decay.

Let us first consider impurity build-up. In this case we have the equation

8n1+ + > ( 1)
50— = LIn|1 + Q@®), 2

with the initial condition n;(O) = 0 and the stationary solution nT(t->m) =

ng, (7).
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Similarly, we have for the impurity decay

+
In

+
3¢ = Lin, 1. (32)

The initial function, however, is now the stationary distribution n;(O) =

N e Adding eqs. (31) and (32), we obtain for n = n: + n; by virtue of the

linearity of the operator L

on _

st = Linl +q, (33)

with n(0) = Ny - Since ng, was defined as the stationary solution of eq.
(31), which, however, is identical with eq. (33), we find %% = 0, or

n = n+ + 0 = const. (34)

1 2

The complementarity property expressed in relation (34) has been
experimentally documented in ASDEX. In Fig. 6 we show the intensity of a
(A=499.4 ﬁ, Li-like) Si XII line (H2 ohmic discharge, radiation peaking at
plasma centre) when SiHu was puffed continuously during the time interval
0.715 s £ £t € 1.115 s. Obviously, build-up and decay of Si in the discharge
are governed by the same time constants. This property is of course
expected in the case of pure diffusion transport; it is, however, not as
obvious when additional streaming must be taken into account. Emphasizing
the latter aspect we note that nothing can be learnt about inward or
outward streaming by comparing the temporal behaviour of build-up and decay

processes.

2.3.1.2 Eigenfunctions and Characteristic Times

In the last section we have seen that important information on the temporal
behaviour of the solutions can be obtained from the decay of the profiles.
Proceeding further along this line, we now look at the decay of the
probability function G of a single particle. This again leads us to the
concept of Green's function, which in the case of cylindrical symmetry has

to satisfy (see eq. (10))

9G
5t - Llel, (352)
with
=1 3 d
L = T r(D, i vy) - G(r—a)/Tu, (35b)
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in which © is the unit step function. In addition we have the initial

condition
G(ryr', t = 0) = §(r-r')/2mr, (35¢)

which guarantees that for t = 0 there is one particle per unit length of
the cylinder, and the boundary conditions

aG

o I 0. (354d)

G(rw, r*, tl = 0,

Once G(r,r',t) has been found, the solution for any source function
Q(r',t") = Fw(t') + ql{r") rw/r' with q normalized according to (25c) can be
obtained by integration (i.e. summing up the probabilities of the particles
having been deposited at r = r' a time interval t-t' ago):
S %
n+(r,t) = [/ J' G(r,r', t=t") * Q(r',t") - 2mr'dr'dt’. (36)
—0

5

For Green's function we make the separation ansatz G = e'“zD t/"=‘2U(p)/a2 in
*

eq. (35), where D is a characteristic value of D, and p = r/a. We are left

with the radial equation

a
o PE0; (37)

In connection with the boundary conditions (35d) eq. (37) poses an
eigenvalue problem of the Sturm-Liouville type /13/ (the transformation U =
y * exp (a.f'\.'_L/D_L dp) yields a self-adjoint equation for y). The following
properties are known:
a) The eigenvalues M, form an infinite set of discrete values: u? < ug < ug
... The eigenfunction Un has (n-1) zeros in the interval 0 < p < 1.
b) Orthogonality: In the above case one has for the normalized functions
Py

i Un(p) Um(p) 2mp dp = énm.

c) Completeness of the eigenfunctions:

8

n o

U () - U (") =6(p")2mp'.

n=1
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Owing to c) we immediately get

o0 _t/"[
Gp,p',t) =a2 £ e Py (o") U (p), (38a)
I].:] n n

with the partial decay times

2

ST (38b)
Hp D¥

Because of property a) the time for build-up or decay of a stationary
profile is essentially determined by T1.
By means of eq. (38) we are now in a position to discuss the relations
between particle confinement times defined in different ways. We elucidate
first the residence time of a particle. For this purpose we define the
probability of a particle being found within the plasma after the time t

has elapsed since its deposition at r = r'™:

\™

Pirt,t) = G(r,r',t) 2m r dr. (39)

QS i

Obviously, |P| = -dP/dt is the probability of losing the particle during
the time interval t...t + dt. The residence time is consequently defined as

the mean dwell time

[se]

t(r') = f |B| ¢t dt. (40a)
0
Because of lim t P = 0 we get by partial integration
t—=>o
t(r') = 5 P(r',t) dt. (40Db)

0
With eq. (38a) we obtain explicitly

[s0] pw
t(r') = I (8 Un(r'/a) J Un(p) 2m pdp. (41)
n=1 0

Another time constant frequently used to characterize the stationary

condition is the particle replacement time, formally defined by

TD = N/9. (42)



Here N is the number of particles within the plasma and ¢ = Pw o 21 I, 2m Ko

the total flux. For ® = const. we obtain by means of eq. (36)
1'w 17w t

Tp =/ J I G(r,r',t-t") q(r")dr' 27 r drdt', (u3)
0 0 =-x

and by inserting eq. (38a)

- E Py
T = L T J U (r'/a) q(") dr' [ U (p) 2mpdp. 4y
P 4=t ® o O g @ ks

Putting q = §(r-r') in eq. (U44), we notice that the source specific
replacement time Trep(r') is identical with t(r'). We have thus shown that
residence time and replacement time are identical in all cases. Both terms

can therefore be united in the "particle confinement time":
= t. (45)

In contrast to the decay time T1, which is essentially determined by the
transport in the inner plasma region, Tp largely depends on the source
distribution gq(r). There are obviously two ways for calculating T_: either

from eq. (44) or, by returning to eq. (42), from the stationary solution.

In the second way we obtain

1 rw rw
= S ] G(r,xr") q(r') dr' rdr, (46)
aFO 0 0

with G(r,r') according to egs. (16),(17). We recognize in eq. (44) the
Fourier series representation of eq. (46). An example of this relation is

given in the next section.

The order of magnitude of Tp can be estimated by considering the case D; =

D = const. and ¥, ® 0:

a
1
Tp(r') ~— [ G(r,r'") rdr = —E;-G(O,r')
aI; 0 2T
o

and by means of eq. (18)

!>a’

sinh @i;fljlcos h (;), r
T (") ~ = 47)

tanh (E) + % ln(%.j, r'< a.
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For r' = a and w > A we obtain

fagy gk, 4 /10
Tp(r a) D = 2 T . (us)

Thus, Tp depends only linearly on the minor radius and weakly on D and T“.

For ASDEX typical values of Tp are in the range of 2 - 20 ms,.

2.3.2 Hard-boundary Solutions in Cylindrical Geometry

Because of the complexity of eq. (37) time—dependent problems will in
general require numerical treatment. However, in the case of inner-volume
impurity sources (thermonuclear He production, impurity injection) as well

as for the analysis of impurity decay a substantial simplification can be
made by replacing the scrape-off region by an absorbing boundary (T, > 0). In
the following we derive some useful relations for the two basic cases VioE

0 and ¥, a r,assuming D, = D = const.

2.3.2.1 Diffusion without Drift

For the cited conditions eq. (37) becomes Bessel's equation

d du 2

Normalized solutions satisfying the boundary conditions U(1) = 0, U(0) #

are

Js (u_p)

U (p)m e,
v J](un) (50)

with the zeros My o= 2.4048, U, = 5.5200 ... (see Refs. /[14/, [/15/ for
numerical values and integral relations). The time dependent Green's

function is thus given by.

Jo(uno') g Jo(uno) --t/'rn
A ’ (51a)

©
G(D, O's t) = %

2
n=| ™ J) (un)

with

n 2D (51b)




...2]._

For t > 12 = 0.033 a2/D we have the approximation

‘t/Tl
G(p,P',t) ~1.18¢e [Jo(ulp') "I, Cuye) (51e)

~t/x
+2.33 3 G0 I Ge (e >,

The probability of finding the particle within the plasma after time t is

2 't/Tn

1 =
RO L ARy St e (52n)

n=1

with the approximation

' - g -t/T
P(p',t) ~ 1.60 e ! [Jo(ulp') - 0.66 ° J (") (e ')5'29] (52b)

For the confinement time we obtain according to eq. (41)

2
v _ 2a
Tp(p ) = 5

oo 1
s T, P

3 . (53)
n=1 Un Jl(un)

For the same quantity a simple expression can be derived by returning to eq.
(17) with A + 0

(54)

' a ; .
G(p,p') = -2 In p', for p < p
Inp, for 1 > p > p',

and applying eq. (46) with q(r') = §(r-r'):

a2 12
T,(0") = 55 (10 %) . (55)
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The identity of expressions (53) and (55) may be proved explicitly by

1
developing (1-p 2) in a Fourier-Bessel series. From eq. (55) we learn in
particular that the maximum confinement time for impurities deposited in

the plasma centre is given by Tp(O) = 32/4D = 1.44 T,

2.3.2.2 Combined Diffusion and Drift

With V, = Vap and Dy = D = const. eq. (39) passes over into

d dUu 2
HE;JCEE apU) +upuU=0, (56)

where the drift parameter O = Va = a/D has been introduced. The

transformation Z = a 02/2 leads to

2

d
- U)] + %a U=o0, (57a)

du
57 2 ¢

dz
which alternatively may be cast into the self-adjoint form

2
d -Z dU u =7
e ﬁ) - (] - E-{;l—) e U=20 (57b)

or the confluent hypergeometric form

atu e

—_— — ﬂ - - U__ =

2
Solutions of (57c¢) are the confl. hypergeom. functions M (1 - %a, 1, Z). A

more convenient form for o <0 is obtained by applying Kummer's relation /14/
M (a,b,Z) = e°M (b-a, b, -Z), which leads to

NI
©

2
Hp a 2
U (p) =c_ e MG 1, -5 o). (58a)
The series representation of M reads in this case

20, 20 20
(]+ -ﬁn—z)(l + 2 ']Jn—z)..-(l +(\)"l) 1_1'7

U.P
. Tl (58b)

(v)?
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The two smallest eigenvalues u?, ug calculated from M(p = 1) = 0 are
plotted in Fig. 7 as a function of g. We see that ug is nearly constant, thus
leading to T2 ~ 0.03 a2/D, whereas u? increases approximately exponentially

as a function of o . The decay (or build-up) time constant

2 -
2 ~ 0.173 e 0.17a 32

/D (59)

is thus increased in the case of an inward drift (o < 0) and decreased for

outward drifting particles.

In the two cases a = ¥ 2 the first eigenfunctions are elementary. Below we
give these normalized functions and also the probability (defined by eq.

(39)) of finding the particle in the plasma after time t > 7

2.
Inward drift o = =2: T, = a2/hD; T, = 0.14 T,
2
U, (o) = (-0 e 7,
ﬂ(]_e—z) (60)
o, —p'2 T,
P(p',t) ~1.70 (1-p %) e - e . (61)
Outward drift o = +2: T1 = a2/8D; T, = 0.24 T4
U, (P) =/1§: (1-02y, (62)
g TH/T,
P(P',t) ~ 1.50 (1-p ©) e . (63)

For illustration we apply the above results to an impurity injection
experiment. Figure 8 shows the decay in intensity of the H-like Ne X line
(x =12.13 ﬂ) emitted from the plasma centre. The neon was injected into

an ASDEX D_ ohmic discharge by means of a doped D, pellet (~1 % Ne) which

2 2
reached approximately half the minor radius. We see that already 20 ms
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after injection the intensity shows a slow exponential decay with a time
constant T1 = 75 ms, The time needed for establishing the ionization

equilibrium is estimated at Tion = (SX 1‘16)-1 < 10 ms, After this time the

measured intensity of the NeX line is representative for the total ion
density. After 250 ms the signal has attained the stationary level caused
by the recycling of the particles from the divertor (pumping can be
neglected on this time scale). From the measurement of 11 the diffusion
coefficient can be determined provided additional information on the drift
is available. This can be obtained in principle from measurements of the
impurity density profiles, which, however, cannot be performed with the
desired accuracy because of VUV calibration and other spectroscopic prob-
lems. For this reason there is an uncertainty with respect to the drift,
which for the ohmic phase is estimated to be in the range -2 < o < 0. By
means of relation (59) we thus get D within the limits 3700 - 5900 cmz/s.
The time constant T_ is found to be in the range 14 - 24 ms, which is in

2
agreement with the observation that for t > 20 ms only the first eigenmode

is of importance. This is shown more specifically by means of eq. (52b) on
the assumption of an effective deposition radius of p' = 0.6:

a = 0: P(t) ~ 0.87 » e ¥/T1 4 0.37 - &~ ¥/T2

In case of an inward drift we get from eq. (61)

& = =2: P(t) ~ 0.76 « e t/T1

The fraction of neon atoms remaining in the plasma at the end of the decay
phase after t = 200 ms is thus estimated at 5 % - 6 4. We notice that the
influence of drift on this result is rather small, The consideration of the
proper deposition profile, however, can have a much greater impact on the

result,
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2.3.3 Impurity Penetration Probability and Screening

During the stationary phase there is zero net flux of particles within the
regions without sources. This vanishing flux is actually provided by balanced
ingoing and outgoing fluxes. The magnitude of these balanced fluxes cannot be
obtained from the stationary solutions but require a time-dependent treatment
of the transport problem. The quantity of interest in this context is the
penetration probability P(r). By means of this quantity the outward fluxes are
found to be @;SE) =®0P(r), with ‘I’O being the incoming flux of neutrals. P(r) is
defined as the temporal maximum of the containment probability of a neutral
flux particle within the region of radius r. More specifically, we define for

a given source radius r' as in eq. (39)

P(r,r',tm Y5 for r' > r

ax
P(r,r') = 1 for r' £ r (64a)
with
r
P(rar':t) = G(E,r',t) 2w rdr (64b)
o

assuming r' > r, and

d
ﬁP(r,r',t) = 0. (64(’.‘.)

tmax
P(r) is finally obtained by a further integration over the source distribution
(eq. (27a)):

Ty
B(x)y =J Pilr,r") q(r') 2w ' A", (65)
)

In particular, P(a) is the probability of penetration into the region of
closed magnetic surfaces. Conversely, the fraction PS =1 = P(a) of the

neutral flux is lost directly from the scrape-off region; Ps is consequently

termed as the screening efficiency of the scrape-off.

We now prove the cited relation between the penetration probability and stationary

outward flux. It should first be noted that the outward flux at radius r < r' is

to be attributed to particles that have entered the discharge at times t <

t (r). On the other hand, particles which entered at t > t contribute to
max max
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the balanced inward flux. We thus have !

t

+ _ ) max ; ,
Fin(r) = (-Ds}- + vy) {) 21 ¢ ro * G(r,r',t) dt (66a) |
and |
I‘+ (r) = (-D B v,) H 2r 'l - G( ',t) dt (66b)
out or 1 R o Sl '

max :

Applying the operator 1l/r 3/9r r on both sides and assuming r < a, we get by

means of the differential equation (35)

13 + ; P T

= 5}— r Fout =-27M r FO . f L[G]dt = _21T T." 1"0 f a—t- dt, .
max tmax . :

9 + = ' '

T r Fout =2n r FD G(r,r ’tmax) .,

A further integration over r leads to our desired result (taking into account

Caax ™ 0 for: v € v and GLE,r",0) = &(r,x")/2n £*);
+ 2
{Dout = (DO ‘[ é G(r,r"tmax) 21 r dr + e(r_rr)} . (67)

We elucidate the above quantities by referring to a simplified soft-boundary
problem. We assume: linear geometry with no absorbing walls, Dl = const,

v, =0. Closed magnetic surfaces are within the region -a < x < +a; the scrape-
off layer with a mean residence time T,, extends from |x| > a to infinity.

Equation (35) is thus simplified to

2
22 =022 - 6(|x| - a) G/, (68)
oX

(o o]

We are looking for even solutions G(x) = G(-x) with [ G2 dx # ©, and with G
o
and 9G/9x continuous at x = a. The separation ansatz G = e'“th/azU(E) with £

= x/a leads to
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0 = E—% + uzU, for |E| <1,
dg
(69)
a%u 2 2
0=—+ (u“-K _7Hu, for |&E| > 1,
dg ¢

with KOZ = a2/D T, (i.e. Ko = a/), with )\ being the decay length).

For U2 = K02 we get a finite set of discrete solutions:

cos (u_£), €] < 1,

Un(g) = An —fKoz_Unz (|£| _])s Igl z L

cos U, * e

(70a)

Continuity of the derivative at £ = 1 yields the equation for the eigenvalues

2 i : :
(1 sin Un = cos | Kb un » which is equivalent to

|cos un| = un/K0 (70b)

with the secondary condition tan no > 0. The solutions of eq. (70b) are
illustrated in Fig. (9) for the case K.0 = 20, We realize that the number of
discrete eigenvalues is given by N = 1 + INT (Ko/ﬂ). With Ko -+ o (T" = 0), we
obtain the hard-boundary case with Un = (2n-1) 7/2, n = 1,2 ... ©». The prefac-

tor An is determined by normalization to

A = (1+ 1A/K02 - unz)—llz . (70¢)

oo

The orthonormality relation [ Un Um dg = anm for the above functions may be
—00

proved explicitly.

For uz > K02 the solutions of eq. (69) are given by

cos(u &), lE] <1 (71a)
U(k,g) = B {

cos 1 * cos [k(|E]|-1)] - E sink -+ sin [R(|E]|-1)], |E] > 1,

with k = VMZ-KOZ. There are no further conditions in this case for selecting
the eigenvalues. Hence, the values of k provide a continuous spectrum with
0 <k £ «, The pre-factor B, nowhas to be determined as a functon of k from

the orthonormality condition
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JdEU(k,E) * U(k',E) = §(k-k'), (71b)
leading to
o k+Ak
lim J d& U(k,&) [ dk' U(k',E) = 1. (71e)
Ak +0 - k-Ak

This latter relation yields

2

K
B, = [T (1 + —€%~ sinzu)]—]/z. (Z1lc)
k

Finally, we obtain Green's function analogously to eq. (38a):

N -ult/t
I e U (E) U(E') + (72)

2
o =kt/T
+ e S e ° U(k,E) U(k,E') dk ,
(o]

with G(&,£',0) = 1/2 86(E-£') + 1/2 6(E+') and 1, = a2/D. Because of sz t/T0
= t/T" the continuous part is of importance only for short times t < T,*
Nevertheless, this portion is essential for calculating the screening prob-
ability since it describes the initial broadening and decay of the probability

function in the scrape-off.

We demonstrate the solution given by eq. (72) by the reference set of data:
a = 40 cm, D = 4000 cmZ/s, E, = 1 x 10_3 s (i.e. KO =20, A = 2 cm, To =
0.4 s, Tl = TO/ul2 = 0.18 s). The source coordinate chosen is |E'] = 1.1,

i.e. two decay lengths away from the region of closed surfaces.

Figure (10) shows the function G together with its discrete and continuous
parts as a function of £ for t = T (the integral in eq. (72) is easily
evaluated by means of standard numerical methods). We see that the discrete
and continuous fractions cancel exactly in the inner region. Figure (11)
depicts the development of the probability function G in steps of time
tm==T" 2m_];for the purpose of presentation the corresponding curves have

been multiplied by gl (.= 15253 s:0)s
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We recognize from Fig. (11) an inward diffusion into the region |£[_§ 1 for a
period t < 2 T, = tax® Thereafter, this flux changes into an outward

flux because of the propagation of the pulse into the interior region. The
penetration probability is given by the area left of the pulse maximum.

After t ~ 128 ms = 0.7 T only the fundamental mode n = 1 of eq. (72) is left

and the profiles decay without a further change of shape.

To calculate the penetration probability, expression (72) is inte-

grated:

B v, :
P(E,E',t) =2/ G(£,E',t) dE. (73)
o]

This integration consists in replacing the functions Un(E) and U(k,£) in
eq. (72) by

sin(u_ [E])s  |E] <1 74
N . &l €] (74a)
W (E)=—
- Mo U_ cos _]/K2_ 2 (] -1)
. n n o Un
sin gy + —— (1 - e )’ 1g|>|
= 2 D
o "n
and
sin(u [E])> €] <1
ZBk 2
W(k,E) = T siny + l%f siny [cos (K|E|-1)-1] + (74b)
K

+ E cosi - sin(K|E|-1), |E] > 1.

The maximum of the function P(£,£',t) is obtained at time t = tmax’ with
tmax/To being a function of the variables &, £' and Ko' For this reason the
penetration probability P(§, &', tmax) is = in the simplified case con-
sidered - only a function of the same three variables. In Fig. 12 we have
plotted P(E, &', Ko) as a function of Ko with £ and £' as parameters. We
see from the figure that the penetration probability is a monotonically
decreasing function of 1(o = a/fﬁ_?" . For the penetration into the inner

region |£| < 1 we obtain for a typical case (l(,0 =20, &' =1+ /ﬁ?n = 1.05)
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a probability of 14 %. Under the same conditions the peneration probability
into the core region |£| < 0.5 amounts to 1.6 %. In this latter case the
penetration probability for [£'| # 1 can be estimated from the curve shown
in Fig. 12 by noting that tmax/'r0 x* const. and considering only the lowest

mode n=1., This leads to
BC0.5; £, KO) P05, £ Y KO) . UI(E')/UIU),

which for |£'| > 1 results in a reduction factor of exp [—Kb(|€'|~1)].

We finally notice that an increase of the penetration probability does not
necessarily lead to increased impurity densities. In fact, we have found in
Sec. 2.2 (Fig. 3b) that the stationary concentration is reduced with

growing D for source locations close to the separatrix. On the other hand,
the penetration probability is seen in Fig. 12 to increase monotonically
with D. This paradoxical behaviour can be understood by referring to

Fig. 13, which shows the residence probability P(£ = 0.8, E' =1,, t) as a
function of time with the two values D=4,000 and 10,000 cm2/s as para-
meters. We see that the penetration probability - the maxima of the curves

- is higher for the larger value of D. However, the particle confinement
time, which is represented by the area under the curve (eq. (40b)), is
smaller in this case. These relations may be described as follows: In the case
of low-diffusivity the screening efficiency is high and most of the
particles are lost directly from the scrape—off. The small fraction of
particles, however, that reaches the inner plasma region is confined for
long times. Conversely, in the case of high D, the particles first penetrate
into the plasma but leave it after a short time. For this reason the
ionization state of the outgoing particle flux in the scrape-off will

rise with increasing D.




3. Summary

When discussing impurity problems, it is appropriate to distinguish between
four processes: production, penetration of the neutrals, transport in the
scrape—off layer, and transport in the inner region of closed magnetic
surfaces. In the preceding sections we have studied the importance of the
last three processes. Because of the assumption of cylindrical symmetry our
treatment is suitable for impurities homogeneously produced at the walls
(e.g. by charge exchange sputtering). For limiter-produced impurities it is
probably necessary to have a more refined description - particularly in the
case of small penetration ranges of the neutrals — that takes into account

the possibility of particle re—deposition on the limiter.

The basic equations (10a) and (10b) were derived on the assumption of anom-—
alous transport over the whole plasma cross-section. The transport of the
particles perpendicular to the magnetic surfaces is described by combined
diffusion and streaming, with D, and v, being arbitrary functions of the
radius. This ansatz provides the necessary flexibility for simulating expe-
rimental observations; it is also appropriate for approximate description of
neo-classical transport. The weakest point in our analysis is presumably the
parallel transport in the scrape-off, for which no direct information from
the experiments exists. The parallel losses are characterized by a scrape-
off residence time T,. In addition to D;s’ the diffusion coefficient in the
scrape—off, and the functions D,(r) and v,(r), this time is another parame-

ter which may change when the experimental conditions are varied.

For stationary conditions the impurity density at the plasma center is given
by Green's function according to eq. (18), it being assumed that the given
flux of neutral impurity atoms is ionized at a fixed radius r'. This ex-
pression may be used for a rough estimation of the impurity density. Fur-
thermore, it is suitable for discussing the influence of the transport
quantities and the scrape-off width w. The inner transport parameters yield
a factor exp (—dfavl/Dl dr). In the case of inward drifting particles

(v, < 0), this factor describes the impurity accumulation in the plasma
center. For small drift velocities the impurity density on axis becomes
independent of both the inner transport parameters v, and D;. In this case
it is completely determined by the boundary quantities D;s’ T, and w and the

penetration depth s - r'. These parameters contribute the important

= rwall
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factor sinh (s//ﬁz__?;) in eq. (18). An increase of the penetration depth -
scaled to the decay length A = /D,T, (typically 1-2 cm) - thus results in a
nearly exponential rise of the impurity concentration. This sensitivity to
the penetration depth emphasizes the importance of the edge Te and n, pro-
files. These profiles determine via eq. (24b) the ionic source distribution
q(r). Equation (24a) gives this deposition profile for monoenergetic,
radially inward flying particles. For the case of sputtered Fe-atoms we also
investigated the influence of the velocity distribution. The tail of the
velocity distribution is of particular importance because of the large
penetration depth of the high-velocity particles. After all, it is found
that the monoenergetic, monodirectional approximation is already quite
suitable since the effect of long-ranging tail particles is compensated to a
great extent by an increase of the opacity when the isotropy of the
distribution is taken into account. Inserting the source term (28) into eq.
(25) gives the final result of the stationary problem. For small penetration
depth s «a, the concentration on axis is practically independent of the

minor radius a.

In the discussion of time-dependent problems, we concentrated mainly on the
general features of the solutions. A function comprising all of the general
features is the time-dependent Green's function, which describes the propa-
gation and decay of a §-pulse of particles. By means of expression (38) we
could show that the different formulations of the particle confinement time
Tp (i.e. residence time and replacement time) are actually identical. This
characteristic time can already be obtained from the stationary solution by
applying definition (42). For the impurities this confinement time is again
largely determined by the edge parameters; it is found to increase only

linearly with the minor radius.

Another important time constant is the decay time ‘H this being in general
much larger than Tp. This time constant is characteristic of the build-up or
decay of a stationary impurity level. According to eq. (38b) it is inde-
pendent of the source location and rises proportionally to aZ/D*, with D#*
being a characteristic value of the diffusion coefficient in the inner
plasma region. Equation (59) gives T for the case of combined diffusion and
radial drift. It is found that the build-up (or decay) of a stationary

impurity density is prolonged in the case of an inward drift. This prolonga-

tion is evidently caused by the concomitant rise of the stationary level.
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In the last section we elucidated the problems of diffusive penetration and
screening, which also require a time-dependent treatment. For the simplest
case of linear geometry an explicit expression for Green's function is
derived (eq. 72). The solution consists of a finite number of discrete
eigenstates and a continuum part. The transition from free-boundary to hard-
boundary relations is seen to take place at times t 2 T,,, when the continuum
part becomes negligible. By means of solution (72) typical screening effi-

ciencies of >80 % were calculated for particle deposition at r' = a + A.

The probability of reaching the core plasma (r/a < 0.5) is typically

in the range of 1 7. The screening efficiency is reduced with increasing
D. Such a reduction of screening, however, does not inevitably lead to
enhanced impurity densities. For source locations in the inner region
and close to the separatrix the opposite effect was found, which can be

explained by a reduction of the particle confinement time.

In comparison with numerical code calculations - based on the same formula-
tion of transport - our analytical results suffer from the fact that they do
not present the distribution of the various charge states over the plasma
cross—section, but rather give the sum over all ionic states. For the evalu-
ation of experimental data numerical calculations are therefore indispens-
able. On the other hand, the advantage of an analytic analysis is that it
provides us with a deeper understanding of the problem. A closed analytic
expression ultimately allows optimum orientation in a multi-dimensional
parameter space. Such orientation is in turn an indispensable prerequisite

for reasonable numerical work.
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Fig. 1: Impurity density G(r,r') as a function of radius r for the
source positions r'l = 42 cm and r‘2 = 35 cm (Vl= 200 r/a cm/s,
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Fig. 2: Central impurity density G(O,r') as a function of source radius

r' with the inward drift velocity v,, a8 2 parameter

(vy = vy, r/a, ro =1 em 2 5—1),
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Fig. 3: Central impurity density vs. source radius (F0=l cmﬁzs;l)with

the parameters 1, (3a) and D (3b).
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Fig. 4: a) Edge profiles of electron temperature and density for various

discharge conditions in ASDEX.
b) Ion source distributions in case of Fe-sputtering for the

profiles shown in a).

Solid lines: after averaging over the Feo-velocity distribution.
<qg> after averaging over angular distribution
Dotted lines: unidirectional, monoenergetic flux

(v, = 2.3 - 10° Ewjs)-
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Fig. 5: The integrand of eq. (25a) for the three cases shown in Fig. 4.
The area under the curves is representative for the central

impurity density n+(0).
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Fig. 6: Measurement of the Si XII line intensity in case of continuous

puffing of SiH4 in ASDEX for the time interval 0.715 < t <
1.115 s (solid line). Also shown: Intensity trace shifted by
At =0.4 s (dashed) and the sum of shifted and unshifted signals
(dotted). The constancy of the dotted line during the interval
1.1 = 1.5 s documents the complementarity of impurity build-up

and decay.
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Fig. 7: The two lowest eigenvalues uz

1 and ug vs. drift parameter o

according to eq. (58 b).
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Fig. 8: Log-plot of the measured intensity of Ne X vs. time. The neon

was injected into ASDEX by means of a doped pellet. The time

constant Tl determined from the dashed line amounts to 75 ms.
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Fig. 9: The eigenvalues U (circles) according to eq. (70 b).
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Fig. 10: Green's function G(£,£',t) according to eq. (72) plotted versus &
(solid line) for t =71, = 1 ms and £' = 1.1. The partial con-

tributions of the discrete (dashed) and the continuum spectrum

(dotted) are also shown.
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Propagation and decay of an impurity pulse vs. £ with the time
as a parameter. The amplitudes are magnified by the numbers
attached to the curves. The pulse originates as a S-function in

the scrape-off at £ = 1.1.
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Fig. 12: The penetration probability P (E,&',Ko) as a function of Ko. The
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Fig. 13: The residence probability P(£,E',t) as a function of time for

two values of the diffusion coefficient. The source coordinate

is £' = 1, the region of interest || < 0.8.
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