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ABSTRACT

The multigrid method has been applied to the solution of the two-dimensional ellip-
tic equation that governs axisymmetric ideal magnetohydrodynamic equilibrium. The
possibility of applying multigrid to the computation of axisymmetric equilibria in the

‘inverse coordinates’ formulation and to three-dimensional equilibrium and evolution
calculations is investigated.

This paper has been prepared for presentation at the 2nd European Conference on
Multigrid Methods, Kdéln, October 1-4, 1985.
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INTRODUCTION

In the magnetic confinement approach to controlled thermonuclear fusion, the hot
_ plasma is prevented from escaping by the use of a strong magnetic field. The v x B force
(velocity times magnetic field) inhibits motion of electrons and ions perpendicular to the
magnetic field, and the plasma particles are constrained in lowest order to follow helical
orbits ‘tied’ to a magnetic field line. In order to confine the plasma also with regard to
its motion along the field, configurations are employed in which the magnetic field lines
are enclosed in a toroidal region. The two main contenders in magnetic confinement
research are the tokamak, which is an axisymmetric device, and the stellarator, which
does not have a continuous symmetry. In either device, the magnetic field is generated
by a combination of external currents and currents flowing in the plasma, making the
configuration of plasma and magnetic field a nonlinear system.

We are concerned here with the application of multigrid methods to the computation
of magnetic confinement configurations. In this context the plasma may be considered
as an ideal magnetohydrodynamic (MHD) fluid, and the static equilibrium of plasma
and field is described by the system of equations,

V.B=0, (19)

(V x B) x B = Vp, (1%)

where B is the magnetic field and p is the kinetic pressure. (Rationalized units in which
po = 1 are employed). Despite its simple appearance the system (1) is extremely difficult
to solve numerically for general three-dimensional configurations, and a substantial
fraction of the production time of the Cray-1 computer at Garching is spent on this
problem. Typical calculations require ~ 10* iterations and take between 2 and 4 hours
of CPU-time in order to compute a single equilibrium to acceptable accuracy. To find
efficient methods for the solution of (1) is thus a major challenge for computational
plasma physics. In the axisymmetric case the system (1) may be reduced to a single
elliptic partial differential equation in the plane, which can be efficiently solved by a
variety of methods.

Specifically, we consider the application of multigrid to three classes of problems
in computational MHD: (1) Computation of axisymmetric equilibria on an Eulerian
grid. (2) Axisymmetric equilibria in the inverse coordinates formulation. (3) Three-
dimensional equilibrium and evolution calculations. Although fast numerical methods
for these three problems are of considerable interest, no previous investigation into the

use of multigrid for computations in magnetic confinement theory seems to exist.
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Problem (1) requires the solution of an almost linear, uniformly elliptic equation
(a nonlinearity occurs only in the right hand side), and application of multigrid is
straightforward. Our code achieves full multigrid efficiency, and is several times faster

than codes based on direct rapid elliptic solvers.

In regard to problem (2) a connection is noted between the inverse coordinates ap-
proach on one hand and grid generation through elliptic systems on the other. This
leads to a novel formulation of the inverse coordinates equilibrium problem as a quasi-
linear elliptic system, which is suitable for multigrid treatment. (A code has not been
written).

The discussion of problem (3) is also of an analytical nature. Local mode analysis
1s employed in order to develop a relaxation procedure, rather than for a posteriori
validation only. The best local relaxation scheme will still be slowly converging for two
classes of disturbances, viz. the slow magnetosonic and the shear Alfvén modes, in both
cases with the wavevector nearly transverse to the magnetic field. These are the lowest
frequency modes in the MHD spectrum. A satisfactory treatment of these troublesome
modes requires distributive line relaxation along the magnetic field and semi-coarsening
on magnetic surfaces; this emphasizes the need for an adaptive, field-tied grid for 3-D
MHD calculations. The proposed simple relaxation scheme can be suitable for implicit
ideal MHD evolution calculations on the slowest timescale.

The reader is assumed to be familiar with multigrid methods, as presented in par-

ticular in [1] and [2]. Useful reviews of the relevant MHD theory may be found in
[3]-(8].



1. A MULTIGRID CODE FOR AXISYMMETRIC EQUILIBRIUM

The Grad-Schliiter-Shafranov equation. A very substantial simplification in
the system (1) is afforded by the assumption of axisymmetry. Under this assumption
the equation V - B = 0 may be solved by choosing the representation,

B=FV¢+Vyx Vg,

where ¢ is the ignorable angle in the cylindrical (r, 4, z) coordinate system, and ¥ and

% are axisymmetric scalar functions. A similar representation is found for the current,
VxB=-A"YWV¢+VF x V¢,

where the operator A* is given by

09\ 0%y
. l“a?)“LF;f' (2)

. 5}
av=rg
- From the force balance equation (1%) one may next derive V¢ x Vp =0, VF x Vp = 0,
and VY x VF = 0. It is taken to follow that ¢, F', and p are functionally related,
and one writes F' = F(y) and p = p(¢). (These must be understood as local relations
in case a surface of constant ¢ has disconnected parts). Finally, consideration of force
balance along Vy leads to the Grad-Schliiter-Shafranov equation [7]-[9],

. __zdp_ dF
Ay = r(-i—'z W (3)

This equation is the basis for the study of axisymmetric ideal MHD equilibrium. For
given profiles p(¢) and F (%) it is an almost linear elliptic p.d.e., the nonlinearity occur-
ring only in the right hand side. The various methods (not including multigrid) that
have been used in the past to solve Eq. (3) have been reviewed in [10] and [11].

Discretization scheme. Conventional second order accurate discretization meth-
ods for the equilibrium equation (3), written as A*¢ = f(r,¢), are of the five point

molecule form,




All previous finite difference codes for the solution of (3) employ such a second order
method. Better methods are available for smooth f, in particular a fourth order accurate

‘compact’ discretization of the shape,
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Specifically: Consider a uniform rectangular mesh with spacing §r = h and 6z = k.
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Consider the natural splitting, &* = £, + L., and define the second order accurate

difference approximations £ and £ by,

1,/)(1" + h‘: z) - ¢(", Z) _ ¢'(fs z) — 'lb(r — h) z)

hos _ ¥
0= (Al ¥en) o) ¥

(L491(r,2) = 5 ($(r, 2 + K) — 29(r, 2) + ¥(r, 2 — ).

Then a fourth order discretization of A*¢ = f is obtained from the identity,

[ﬂi‘ + Lr 4 —112(112 + B LELE + Oont + k4)] )
: . (4)
— 2pn 2 pk
_(1+—h12 £,+—-12k E,)f.

A special treatment on the plasma-vacuum interface, on which f or its first order
derivatives may be discontinuous, is required in order to gain full advantage of the
higher accuracy obtained for the interior equations. (Such a treatment has not been

implemented in our code).

Performance of multigrid. A demonstration code has been written, which em-
ploys multigrid relaxation to solve Eq. (3) on a rectangular region subject to Dirichlet
boundary conditions. The mesh at level 1 has size (2' + 1) x (2 + 1), where 1 < ; the
coarsest grid therefore contains only one single interior point. The cycling algorithm is
of the full multigrid, full approximation storage variety, and employs adaptive switch-
ing. Full-weighting transfer is used for both the solution and the residuals, and bi-cubic
interpolation is used for the corrections. Red-black point relaxation is employed on all
grids except on the coarsest, where a nonlinear root-finding algorithm is employed. The
special treatment on the coarsest grid is necessary because the equation generally ad-
mits multiple solutions; the algorithm that is employed on the coarsest grid is designed

to find the interesting solution.



For an example calculation we assumed a right hand side in Eq. (3) of the form,

_r29(,¢,) - ¢ ¢ >0

0, ¥<0

fle,9) =

in which g is a second-degree polynomial and c is a constant. The contour defined by
¥ = 0 is the free boundary of the plasma. A calculation using 7 levels (the finest grid
has size 129 x 129) required 120 msec on the Cray-1 to solve Eq. (3) to the level of the
discretization error. The total number of passes over each of the levels 1-7 was 10, 19,
14, 8, 6, 4, and 2 respectively. The computing time was divided about evenly between
evaluation of the r.h.s., evaluation of the residuals, bi-cubic interpolation, and all other
chores.

Thus, full multigrid efficiency for the solution of the equation (3) has been achieved.
For a linear problem this code is about 2-3 times slower than the well-optimized fast
Buneman solver used at Garching, but for the more relevant nonlinear problems the
codes based on a direct elliptic solver require Picard iteration, and multigrid relaxation

is easily the fastest procedure available.




2. AXISYMMETRIC EQUILIBRIUM IN INVERSE COORDINATES

For stability and transport calculations related to axisymmetric configurations it is
required to have an explicit representation of the magnetic surfaces of the equilibrium
(the contours of constant ), which are in this case assumed to form a nested set that
converges to a single ‘magnetic axis’. Such a representation may be found by a numerical
mapping after having computed the equilibrium on a fixed spatial grid. In recent years,
however, a class of procedures has become popular in which the equilibrium is computed
in a formulation which immediately gives the spatial coordinates r and z as functions
of ¥ and n, where 5 is some angular variable. This ‘inverse variables’ method has been
employed in Refs. [12]-[15]. There is considerable freedom in the choice of the angular
variable . It is defined via orthogonality in [12], via a specification of the Jacobian in
[13] and [14], and in [15] it is suggested to choose n such that lines of constant 5 are
straight rays.

Surprisingly, in all these papers the authors fail to notice the immediate analogy
between the inverse variables approach to MHD equilibrium calculations and the method
of grid generation through elliptic equations [16], [17]. As a consequence they also
miss the most natural formulation of the inverse equilibrium problem, in which the
coordinate n is defined as the solution of an elliptic equation, resulting in a quasilinear
elliptic system of equations for r(%, ) and 2z(y, n). This formulation is discussed below,
as it is also the most convenient formulation for possible multigrid treatment.

Grid generation through elliptic equations. We first consider by way of exam-
ple the problem of constructing a boundary-fitted curvilinear coordinate system (¢!, £2)
to cover the pseudo-rectangular region G € R?. The Cartesian coordinates on R? are
(z1,72). G is to be mapped to the unit square in the (¢!, ¢2) plane, and the points
A, B, C, and D on the boundary G are to be mapped to (0,0), (0,1), {1,1), and
(1,0). Using the method of grid generation through elliptic equations, the curvilinear
coordinates ¢' are defined by Poisson equations,

A¢ = F, (5)

subject to Dirichlet conditions on dG: £! = 0 on AB, ¢! = 1 on CD, etc. In the
simplest case one chooses F* = 0, but a nonzero right hand side in Eq. (5) may be used
to obtain more control over the resulting mesh.

The expression for the Laplacian on the curvilinear coordinates ¢ is,

Au"————
75 9

(\/agu . e,) (6)
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(Summation over repeated indicss is understood). Substituting ¢* for u in the above

equation and considering Eq. (5) one finds,

1 3
Sl SR 7
and therefore,
. 0% - du
= g% - J _—
Au=g €3¢ +F 56 (7)

To obtain numerically the transformation ¥ — £ it is convenient to solve in inverse
coordinates, and obtain 7 as a function of ¢ rather than £ as a function of Z. (The
whole point of the grid generation is that differential equations may be more easily
solved on the transformed region). The components z; are obtained by solving

Az,—:O, i=l,2 (8)

on the unit square in the (¢!, %) plane, again subject to Dirichlet boundary conditions.

With A given by Eq. (7) this is a quasilinear elliptic system.

Application to axisymmetric equilibrium. The analogy between the above
model problem of grid generation and the inverse coordinates approach to axisymmetric
MHD equilibrium is quite obvious; one only has to replace A by A* and change from
a rectangular to a polar geometry, with the singularity at the magnetic axis. In a
curvilinear coordinate system (£, n) the operator A* has the representation,

9%y 0%u 8%y
= 29 £, 2 -
= |Vé| 352 +2(V V")aea +|Vn| o
5 . (9)
& * u
+ A€ -— 35 + A'p ——-an g

which corresponds to Eq. (7). For the transformed coordinate ¢ we may choose &€ = 4,
or any function of ¢ alone, so that A*¢ follows from the equilibrium equation (3), and
may be assumed known. The natural choice of the differential equation for  is A*y = 0.
From Eq. (2) it is seen that
Ar = —r~1
(10)
A'z=0
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Considering r and 2 as functions of ¢ and 5, Eq. (10) naturally remains valid, but the
_ operator A* is given by Eq. (9) instead of by Eq. (2). This quasi-linear elliptic system of
equations (10) governs the equilibrium in inverse coordinates. The boundary conditions
require periodicity in 1, specified r and z on the plasma boundary, and an appropriate
expansion near the magnetic axis.

The system (10) appears suitable for multigrid treatment, although it is more com-
plicated than the equilibrium equation in the form (3). The standard second order
discretization has a symmetric nine-point stencil, and an incomplete Cholesky decom-
position should probably be used for relaxation. (Alternating direction line relaxation
is an alternative, but point relaxation must not be employed on a polar grid). Higher
order discretizations would be of interest, in particular a spectral method in the angular

coordinate.




3. PROSPECTS FOR THREE- DIMENSIONAL CALCULATIONS

In this Section an analytical study of the use of multigrid for the difficult and (at
~ present) very expensive area of 3-D MHD computations is initiated. The system of
equations (1) is equivalent to the system that governs steady, inviscid, incompressible
flow, as can be seen by making the substitutions,
2
p v
B-v — ———
3 p p 2
Progress in solving the corresponding hydrodynamic equations is therefore of immediate

interest for magnetic confinement studies.

The Chodura and Schliiter approach. In attempting to develop a multigrid
relaxation procedure for 3-D equilibrium I have found it convenient to take as the
starting point the approach of Chodura and Schliiter 18], who employ a finite difference
discretization on a fixed spatial mesh of the system (1) in primitive variables.

The solution procedure employed by Chodura and Schliiter is designed to find a
constrained minimum of the potential energy, W, which is given by

W:iﬁ(%i+;€7)dn (11)

where T is the toroidal computational region, and 7 is the adiabatic index. Minimization
of W is performed through displacements of the form,

§B =V x (¢ x B)

(12)
bp=-V-(p§)

subject to £ = 0 on the boundary 8T. The relation p = p7 is assumed (p corresponds to
the mass density of the MHD fluid). Through these displacements, an arbitrary initial
plasma and field configuration is transformed under the constraints of mass and flux
conservation into a minimum energy state.

In leading order the change in energy due to the displacements (12) is given by

SW = -—'/‘(F . €)dv, (13)
T

where F = (V x B) x B — Vp. Therefore, a state of minimum energy under the
displacements (12) satisfies F = 0, and is a solution to the force balance equation (1%).
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The equation {1%) remains satisfied if it is satisfied initially. Eq. (13) also shows a
possible route to the energy minimum, viz. to choose at each iteration § = oF, where
a > 0 and « is sufficiently small to ensure stability, but this algorithm is prohibitively
slow. Chodura and Schliuter employ various acceleration methods, with impressive

results, but still require some 103-10* iterations for practical calculations.

A multigrid relaxation procedure. We now attempt to derive a relaxation pro-
cedure for the system (1) that effectively reduces short wavelength error components,
and may therefore be suitable in the context of multigrid. A finite difference discretiza-
tion of (1) on a staggered mesh is envisaged, but it turns out that the analysis of
relaxation procedures can largely be carried out without reference to the discretized

system of equations.

To satisfy flux conservation, V- B = 0, is of course easy. At each relaxation sweep
B may be updated by a distributive scheme of the form B «- B + §B, where éB = V.
To satisfy exactly V- B = 0 after the iteration sweep one would have to find x as the
solution to a Poisson equation, but here it suffices to approximate y locally by any
kind of relaxation prescription that is suitable for Poisson equations. Notice that the
replacement B +- B + Vy does not affect the force balance equation.

For the second equation, F == 0, the work of Chodura and Schhiter suggests a
relaxation scheme based on the coupled replacements B «+— B + 6B and p «— p + dp,
where 6p = v(p/p)dép, and where éB and §p are given by Eq. (12). These replacements
do not affect V- B = 0. The question is how to choose £ in Eq. (12) as a function of
the current residual F.

To answer this question one must consider the principal terms of the change 6F

under the displacements (12), viz. those terms in which £ is twice differentiated:

§F ~ (B-V)(B - V)¢ + (B +p)V(V - §)

(14)
~B(B-V)(V-{)-(B-V)V(B-¢)

(The operator V acts on £ only). Fourier analysis transforms 6P into §F and £ into é,
related by 6F ~ A- E‘, where

A = - B*(k}1+ (1 + B)kk — k(bk + kb)) (15)

where k is the wavevector, 8 == yp/B%, b = B/B, and k; = k-b. (8 is a small parameter
for magnetic confinement).
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The operator A may be inverted:
A™' = —(B%k2)~'(1+ p'bb — kk/kK?), (16)

and a desirable relaxation scheme must approximate E = —A7'F, at least for short
wavelength components. Of course A~! contains k, and is therefore not a local linear
operator. Various things can be tried, for instance to drop the term kk/k? and to
replace kﬁ by 2w~ 1(h;2 + h;z + h7?), where w is a constant of order unity, and h,,
hy, and h; are the local mesh spacings. Via this prescription one obtains a relaxation

procedure based on

where R is the operator,
O — = —9y— -
R:EB 2(h12+hy2+hz2) 1(1+ p~'bb). (18)

The large coefficient on bb in this relaxation prescription is worthy of note.

Further analysis of the proposed procedure. The relaxation scheme (17) must
now be analyzed in order to see whether all short wavelength error modes are effectively
reduced. Continuing with the linear analysis, and still considering principal terms only,

one finds,

SF=A R F

w . _ _ _ ~
- _E(hj +hy 2+ h7%) (k2 + (1 + B)kk — k;bk) - F.
It may be seen that the scheme is not satisfactory, as those modes for which
k!B and k1F

(approximately) are not well eliminated. (In addition there may be problems related
to the occurrence of different values of the grid spacing, but those difficulties are easily
taken care of by line relaxation).

The troublesome modes are the slow magnetosonic mode, for which F and B are
nearly parallel, and the shear Alfvén mode, for which B, F, and k form an orthogonal
triad. These are the lowest frequency modes (¥ — 0) in the MHD spectrum. The reason

that these modes are not well eliminated can also be understood on physical grounds.

Il




The perturbation related to the slow magnetosonic mode concerns the pressure only, and
is characterized by a long wavelength along the magnetic field and a short wavelength
across the field. As the restoring force for this perturbation acts along field lines, the
relaxation procedure only becomes effective when the mesh spacing corresponds to the
length scale along the field, but on such a mesh (assuming equal coarsening in all
directions) the perturbation wiil be nvisible due to the rapid variation across the field.
Similarly, the restoring force for the shear Alfvén mode is located in a plane in which the

mode has a Jong wavelength, but perpendicular to this plane there is a rapid variation.

Both the form of the operator A~ in Eq. (16) and the physical picture outlined above
point the way to a remedy. One needs line relaxation along the magnetic field (which
allows to retain ky in going from Ao R) to eliminate effectively the slow magnetosonic
mode, and either plane relaxation or {more likely) semi-coarsening within flux surfaces
to deal with the shear Alfvén mode. As the magnetic field configuration is unknown a
priori this requires an adaptive grid, approximately tied to the field. Development of
adaptive grid methods for 3-D MHD is also important for reasons of numerical accuracy,
. but no satisfactory algorithm exists at present. Nevertheless, multigrid in conjunction
with adaptive grid methods seems the most promising area of investigation towards
efficient 3-D MHD equilibrium computations.

For time dependent three-dimensional calculations the scheme derived above may
be more promising, as it would allow to follow accurately the evolution on the longest
ideal MHD timescale, while eliminating efficiently the faster modes.

i2



CONCLUSIONS

One objective in writing this paper has been to point out to both plasma physi-
cists and multigrid experts that certain problems in computational MHD are of shared
interest.

The axisymmetric equilibrium problem lends itself to a straightforward application
of the multigrid procedure, and this has resulted in a code that is ~ 3 times faster than
a code which uses a well optimized Buneman solver and Picard iteration. The main
interest in very fast 2-D equilibrium calculations is for real-time data interpretation
and control of an experiment, on a timescale of ~ 10 msec or less. Considering that in
monitoring an experiment one is solving a chain of similar problems, and that a grid of
modest size will suffice, our study has demonstrated at least the near-term feasibility of
this application.

The problem of computing axisymmetric equilibrium in the inverse coordinates for-
mulation is a more challenging (although hardly speculative) application of multigrid,
for wiich furthermore the relative gain over competing methods would be much larger,
as rapid direct solvers are not available. Previous formulations of the inverse equilibrium
problem are not well suited for multigrid treatment, but the analogy with grid genera-
- tion through elliptic equations shows the correct approach. In particular, any code for
elliptic grid generation that can handle a polar geometry should almost immediately be

applicable to the inverse coordinates MHD equilibrium problem.

The really difficult and expensive areas of work in computational MHD are the
stability eigenvalue problem for axisymmetric equilibria (which has not been addressed
in this paper), and the three-dimensional equilibrium and evolution problems. An
impression of the complexity of the 2-D stability problem can be gained by noticing that
it has required nearly a decade of work and the advent of the Cray-1 computer before the
main result from the existing stability codes was obtained, viz. the Troyon scaling law,
[19]. For three-dimensional equilibrium and evolution problems a multigrid approach
has been initiated here, but a fully satisfactory procedure has not yet been obtained. The
main outstanding problem for these 3-D computations is to develop adaptive methods,

in which the grid is adjusted to the (unknown) magnetic configuration.
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