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ABSTRACT

The method of function parametrization, developed by H. Wind for fast data evalua-
tion in high energy physics, is demonstrated in the context of controlled fusion research.
This method relies on a statistical analysis of a large data base of simulated experiments
in order to obtain a functional representation for intrinsic physical parameters of a sys-
tem in terms of the values of the measurements. Rapid determination of characteristic
equilibrium parameters of a tokamak discharge is shown to be a particularly indicated
application. The method is employed on the ASDEX experiment to determine the fol-
lowing parameters of the plasma: position of the magnetic axis, geometric center, and
current center; minor radius, elongation, and area of the plasma column; a normal-
ized safety factor at the plasma boundary; the Shafranov parameter g, + I;/2; the flux
difference between the plasma boundary and an external reference value; the position
of the lower and upper saddle points, and the intersections of the separatrix with the
four divertor plates. The relevant measurements consist of three differential polcidal
flux measurements, four poloidal field measurements, the current through the multipole
shaping coils, and the total plasma current. Function parametrization supplies a very
accurate interpretation of these data, which is now used for online data analysis, and is

also sufficiently fast to be suitable for real-time control of the plasma.

iii




INTRODUCTION

In the interpretation of tokamak diagnostics the amount of experimental informa-
tion that is utilized is often not limited by the rate at which measurements can be
made, but more by the rate at which the raw diagnostics can be interpreted. Clearly
then, efficient methods of data analysis are highly desirable. A very efficient procedure,
function parametrization, was developed by H. Wind (CERN) for the purpose of mo-
mentum determination from spark chamber data (1], [2], and was recently proposed
for tokamak physics applications [3]. Although this method has not previously been
noticed outside the high energy physics field, it has a much wider range of applicability,
and can be considered whenever many measurements are to be made with the same
diagnostic setup. The application described in this paper concerns the determination

of characteristic equilibrium parameters from magnetic measurements on a tokamak.

Function parametrization relies on an analysis of a large data set of simulated ex-
periments, aiming to obtain an optimal representation of some simple functional form
for intrinsic physical parameters of a system in terms of the values of the measurements.
Statistical techniques for dimension reduction and multiple regression are used in the
analysis. The resulting function may be chosen to involve only low-order polynomials in
only a few linear combinations of the original measurements; this function can therefore

be evaluated very rapidly, and needs only minimal hardware facilities.

Three steps have to be made for this method of experimental data evaluation. (1) A
numerical model of the experiment is used to generate a data base of simulated states
of the physical system, in which each state is represented by the values of the relevant
physical parameters and of the associated measurements. (2) This data base is made
the object of a statistical analysis, with the aim to provide a relatively simple function
that expresses the physical parameters in terms of the measurements. (3) The resulting

function is then employed for the fast interpretation of real measurements.

Determination of characteristic equilibrium parameters of a magnetically confined
plasma is a particularly indicated application. The MHD model provides a well defined
and generally accepted connection between the unknown intrinsic plasma parameters,
the externally applied fields, and the magnetic measurements. Identification of the po-
sition and the profile of the plasma column is the basis for interpretation of practically
all other diagnostics, and therefore requires an efficient algorithm. Here we describe
a successful application of function parametrization for the interpretation of magnetic
measurements on the ASDEX tokamak. It is shown that the method provides simple
and very accurate approximations for a range of geometric and other parameters char-

acterising the equilibrium configuration. These approximations are presently in use for
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fast data analysis between discharges, but they are also suitable for real-time control of
the experiment.

The paper is organized into three main Sections. A mathematical description of the
method is given in Section 1, followed by a report on the ASDEX study in Section 2.

In Section 3 a proposal for future developments is outlined. Preliminary versions of this

work have appeared in an internal report [3] and in conference contributions [4]-[8].



1. MATHEMATICAL DESCRIPTION

Preliminaries. A classical physical system is considered, of which P denotes a
typical state. The system may have any number of degrees of freedom, but interest will
be restricted to a (partial) characterization by n intrinsic real parameters, represented
collectively by a point p € R". In the experimental situation p is to be estimated
from the readings of m measurements, represented by a point g € R™. It is assumed
that p is completely specified by P, but that @ may be a stochastic function of P, the
stochasticity being due to random errors in the measurement process. We will write
p =Pp(P) and q = q(P).

The aim of the function parametrization is to obtain some reasonably simple func-
tion, F : R™ — R", such that for any state P the associated p(P) and q(P) satisfy
p = F(q) + e for a sufficiently small error term e. The functional form of F may
typically be chosen as a low-order polynoriial in only a few linear combinations of the
components of q. The unknown coefficients in F are then determined by analysis of
a data base containing the values of the parameters p, and of the measurements q,
corresponding to N simulated states P, (1 < a@ < N). This is a problem of function
fitting over scattered data in the high-dimensional space R™, for which techniques from
multivariate statistical analysis are appropriate. To a statistician the q, are the ‘con-
ditions’, the p, are the ‘responses’, F is a ‘regression’, and function fitting is called
regression analysis. The terminology of conditions and responses is very unnatural in
the present context, and we will refer to these instead as the independent and the de-
pendent variables, or as the measurements and the physical parameters. Otherwise the

terminology from statistical analysis is retained.

The n physical parameters need not all be independent, and even if no exact relations
exist between them, the nature of the measurements may in practice allow only a limited
number of combinations to be determined independently. Let ny denote that number
of independently determinable combinations. Then it must be that m > ng, and for
a well diagnosed experiment in fact m > ng, while for an accurate statistical analysis
it is furthermore required that N > m. For the applications that we have in mind, P
formally has infinitely many degrees of freedom, ny < 10, n is arbitrary, m ~ 10 — 100,
and N ~ 10° — 10%.

The data base. In the first stage a code is employed to generate a data base. This
code must be suited to compute possible states of the physical system over the whole
of the system’s regime, and must also contain a model for the measurements. The code

will take certain numerically convenient parameters as input, and produce p and q as

3




<

results. The input parameters are varied, and for each successful calculation, indexed
by a, the values p, and q, are saved. As the subsequent automatic analysis will only
detect dependencies that are reflected in the data base, one must ensure that every
parameter or combination of parameters that can vary in the actual experiment is also
varied when generating these data. At best, one employs a suitable pseudo-random

variation of the code parameters in order to generate the data base.

Dimension reduction. Since the dimensionality m of the space of the measure-
ments may be of the order of several tens in many cases, and since a linear representation
for p in terms of q is not expected to suffice, the dimensionality of the space of trial
functions with which the physical parameters will be fitted can be very large. A poly-
nomial model of degree I, for instance, has ~ m!/I! degrees of freedom for each physical
parameter. It is therefore necessary to first reduce the number of independent variables
{the components of q) by means of a transformation to a lower-dimensional space. A
second aim for this transformation of variables must be to eliminate or reduce multi-
collinearity (near linear dependencies) between the data points, and thus to improve the
conditioning of the regression problem {7, ch. 8]. Multicollinearity is likely to be present
whenever the number of measurements is much larger than the number of independently
measurable physical parameters; specific causes may be some underlying smoothness in
the data, or any explicit physical constraint that relates different measurements.

A method for dimension reduction and elimination of multicollinearity that is widely
used in statistics is based on principal component analysis (PCA) {7, ch. 8], [8, ch. 8].
From the N suitably scaled pseudo-measurements q,, each of which is a point in R™,

the sample mean, § = N=! 3" _q,, and the m x m sample dispersion matrix.

S=N"Y (a0 - @)(aa - )7, (1)

are calculated. S is symmetric and positive semi-definite. An eigenanalysis yields
m eigenvalues, A? > ... > A2 > 0, with corresponding orthonormal eigenvectors
aj),...,8,. Any measurement vector g may be resolved along these eigenvectors to
obtain a set of transformed measurements, z; = a; - (@ — @). This is the principal com-
ponent transformation, and the z,; are the principal components of the measurement
vector q.

The transformed measurements (z;);<;<n, are linearly independent within the sam-
ple, have zero mean, and variance A;. One of the aims, the reduction of multicollinearity,
has therefore been achieved, but if all m components z; are retained, the dimension-

ality of the problem is not reduced. The assumption underlying a regression analysis

e



based on PCA is that the most significant information will be contained in the first few
principal components, (z;)i<i<m,» where mg < m, and preferably my < m. These mg
components are called the ‘significant components’, and the associated first s eigenvec-
tors a; are the ‘significant variables’. The desired dimension reduction is thus achieved
through the transformation R™ — R™o defined by x = AT - (q — §), where A is the
matrix that has columns a; (1 < 3 < mg). The selection of m( will be based on an
inspection of the behaviour of the sequence of eigenvalues, but no universally accepted
prescription exists. One hard criterion is that one must choose my > ng. On the other
hand the principal components corresponding to smaller eigenvalues are more difficult
to measure accurately, and a study of the effect of measurement errors will provide an

upper bound on the reasonable values for my.

The use of PCA for dimension reduction is motivated by the idea that those linear
combinations of the measurements (‘affine’ combinations in mathematical terminology)
that display the largest variance are also the best suited for the interpretation of the
data. In practice, however, significant information may well be concealed in linear
combinations of the measurements that show relatively little variation, or alternatively,
some measurements may vary widely without much correlation with the physical pa-
rameters that are to be determined. A preliminary linear or nonlinear transformation
of variables on the basis of physical insight will then be beneficial. PCA is invariant
only under orthogonal transformations; it is not invariant under scaling of variables, or

under more general linear transformations.

We may remark that principal component analysis is not the only possible procedure
for dimension reduction. Perhaps even more popular, but less satisfactory for our type
of application, is simple discarding of variables. The use of canonical correlation analysis

[8, ch. 10] was discussed in our earlier work [3].

Regression analysis. Having defined the linear transformation q — x it is next
necessary to face the task of fitting the, in general nonlinear, relation between x and p.
The problem has been simplified by the dimension reduction obtained with the trans-
formation q@ — x, and it is expected to be better conditioned through the elimination

of multicollinearity.

It is desired to find for each component p; (1 < 7 < n) a regression, p; = f;(x) +¢;,
to fit the data (x4, Pa)i<a<ny. A polynomial model, of the form

p; = chj ) H ¢k,’(a:l'/rl-) + €5 (2)
k i=1
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is suitable. Here, the multi-index k has my components ky, ..., k,,, in the nonnegative
integers, the cy; are the unknown regression coefficients, which are determined by a least-
squares fitting procedure over the data base, (¢x)r>0 is some family of polynomials, r;

is a suitable scaling factor for the component z;, and ¢; is the error term.

An upper bound on some norm of k must be supplied in order to make the model
finite, and in addition one can employ with the above model some form of subset re-
gression, the objective being to retain in the final expression only the terms which make
a significant contribution to the goodness-of-fit. A variety of algorithms exists for de-
ciding which terms to retain and which to discard; see for instance [7, ch. 7], or [9,
ch. 6].

This completes the construction of the function parametrization, p = F(q) + e,
which is thus given by Eq. (2) together with the relation x = AT - (q — @). In order to
test the adequacy of the regression function it is proper to generate a new, independent
collection of simulated experiments, and to evaluate the magnitude of the error term e

from this second set of data.

We remark again that a significant effort may be involved in generating and ana-
lyzing the data base, but that the evaluation of the final function — and this is the

operation that has to be performed many times — is almost trivial.

Treatment of erroneous signals. An attractive feature of the principal compo-
nent analysis, also pointed out by Wind [1], [2], is that the least significani components
can be used to provide constraints on the data. These constraints make it possible
to test whether actual measurements are consistent with the model that was used to

generate the data base, and also to automatically correct failing signals.

Specifically, let us assume that the principal component analysis has been performed
on simulated measurements that have been scaled and transformed in such a way that
they are assumed in the experiment to suffer independent random errors coming from
a normal distribution having mean 0 and width o. Now for each actual measurement q

we define

(3)

where (z;)1<i<m i8 the complete set of principal components (significant and insignifi-
cant) associated with q.

In this case, x? will have average value ~ m, and much larger values of x? indicate
either an error in the measurements, or a violation of some assumption that was em-

ployed in generating the data base. If it is known that one or more specific components
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of the measured q are in error, then these components can be restored to that set of
values by which the quadratic form y? is minimized. This requires only the solution of

a system of linear equations having dimension equal to the number of failing signals.




2. APPLICATION TO THE ASDEX MAGNETIC DATA ANALYSIS

Description. As an initial study we applied function parametrization to the de-
termination of a limited set of characteristic equilibrium parameters for the ASDEX
experiment, using only magnetic signals measured outside the plasma. Important fea-
tures of the geometry of ASDEX are displayed in Fig. 1, which shows the location of
the vacuum vessel, the divertor plates, the poloidal field and flux measuring coils, and

an example equilibrium plasma configuration.

The relevant measurements for our study consist of three differential flux measure-
ments, four measurements of the component of the poloidal field tangential tc the mea-
suring contour, the current through the multipole shaping coils, and the toroidal plasma
current. However, the plasma current is scaled out of the problem, so that 8 indepen-
dent measurements remain. With reference to Fig. 1 these are 13 — 91, ¥4 — ¥2, Y3 — ¢4,
B, B;, B3, By, and I,,p, in each case normalized to unit plasma current, I, = 1.

The physical parameters to be determined are

(i Baici) position of the magnetic axis

[eert; Zourr) position of the current center

(rgeom s Zgeom) position of the geometric center

a, b horizontal and vertical minor radius

b/a elongation

A area of the poloidal cross-section

Bp +1:/2 Shafranov parameter

q95n normalized safety factor

Yy — U relative flux value at the plasma boundary
(i, 2a1) position of the lower saddle point

(rz2, 222) position of the upper saddle point

Y2 — Yrt flux difference between the two saddle points
ok B intersections of separatrix and divertor plates

The current center is defined by r2, I, = [r%5,dS and zcur J; = [ 25, dS, where the
integrals are taken over the poloidal cross section of the plasma. These integrals can be
rigorously evaluated from the external magnetic measurements [10]. Furthermore, v is
the flux at the plasma boundary and ¥, = %(gb, + Y2 + Y3 + ¥4). These fluxes, and also
¥;1 and ¥,2, have been scaled to correspond to unit plasma current. The normalized
safety factor ggs, is the value of the safety factor at the contour ¢ — ¢, = 0.95- (¥, — ¥a),
scaled to unit plasma current and unit toroidal field coil current (¢, denotes the flux
on the magnetic axis). The subscripts indicating the divertor plates are mnemonic for

bottom-inner, bottom-outer, top-inner, and top-outer.
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The data base was generated using the Garching equilibrium code {11], which after
significant optimization in view of these calculations now computes an equilibrium on
our 64 x 128 grid in ~ 0.6 sec. on the Cray 1. The free parameters of the code were
randomly varied in order to cover the operating regime of the ASDEX experiment in
the divertor mode, and for each of the ~ 4000 calculated equilibria the corresponding

magnetic measurements and physical parameters were recorded.

Results. A principal component analysis of the correlation matrix obtained from
the simulated measurements gave the following sequence of eigenvalues: 3.67, 1.91, 1.39,
0.99, 2.01-1072,1.12-1072,1.90-1073, 8.93-10~%. (Using the correlation matrix instead
of the dispersion matrix is equivalent to scaling all measurements in such a way that

they have unit variance).

It thus appeared that 4 significant variables should be retained for the regression
analysis. Of these four, the first two are even under up-down reflection of the equilib-
rium, and together already provide a measure of the radial position and of g, + I;/2.
The third significant variable is odd under reflection, and is related to the vertical po-
sition of the plasma, and the fourth one (again even under reflection) is essentially the
multipole current. The four least significant components cannot be recovered accurately

from beneath the error level of realistic measurements.

Further analysis showed that the measurement of the multipole current is of little
overall importance, but is mainly relevant for the determination of the intersection
of the separatrix with the divertor plates. After experimenting with various possible
regression models we selected a model that is second order in the first three significant

variables, and first order in the fourth: For each of the physical parameters p,

p = co + 1z} + c2zh + c3zh + cqzly + 5 Ha(z))
(4)

+ ceT TH + c17 7y + ca Ha(zh) + cozhzh + croHa(zh) + €

where z! = z;/); and Hz(z) = (z? — 1)/v/2. The coefficients ¢o,...,cio are to be
determined, and ¢ is the error term. These particular basis functions have been chosen

in order to obtain an approximately orthonormal family.

Most of the physical parameters exhibit a first-derivative discontinuity in their de-
pendence upon the measurements, which is due to the fact that the x-point defining
the plasma boundary can lie either in the lower or in the upper half plane. One may
visualize this first-derivative discontinuity by considering the behaviour of (for instance)
the plasma minor radius, as the center of gravity of the plasma cross section is moved

smoothly from a position in the lower half plane to the corresponding position in the
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upper half. At first the plasma boundary is defined by the lower x-point, and the minor
radius increases as the plasma center moves away from this x-point. Upon crossing
the meridian plane, the plasma boundary becomes dependent upon the upper x-point,
and the minor radius decreases as the plasma is shifted further upwards. The relation
between plasma minor radius and vertical position is non-smooth as the meridian plane
is crossed, and this lack of smoothness is also present in the relation between the minor
radius and the measured data. Separate fits were therefore used for the two cases when
the boundary x-point is located in the lower or in the upper half plane respectively. The
fits were constrained to match continuously for up-down symmetric configurations. (A
similar procedure would be required for modelling a limiter experiment, when an inside

and an outside limiter are both present).

The results obtained with this model for some representative physical parameters

are shown in Table I.

Table I

parameter  average  minimum maximum variance €6 =0.0) & =0.1)

Tazis 1.722 1.630 1.830 56-107% 2.2-107% 4.1.1073
Teurr 1.710 1.612 1.824 56-107%2 3.1-107% 3.4-10°3
Fgeons 1.661 1.515 1.807 5.7-1072 2.8-1073 5.1-10°3
Erris 0 —-0.100 0.100 541023107 ""'58-10"3
Zears 0 —0.102 0.102 54-1072 2.5.10% 6.0-10"3
- od 0 ~0.134 0.13¢4  7.3-107%2 9.8-107% 1.2.1072
a 0.367 0.290 0.463 3.0%:1072" 38310735 62102

b 0.358 0.295 0.438 2.5:10=2.,1.9-10"% 4.7.10°2

b/a  0.978 0.796 1.033 3.2-1072 8.1-10"% 8.5-103
A 0.416 0.271 0.592 6.1-1072 55.107% 1.2-10°2
Bp+1:/2 1.791 0.563 3.428 6.3-1071 1.2.1072 4.4-10"2

Qosn 5.07-1072 3.26-10"%2 862-10"2 9.1-1073 1.8-10~% 2.4-10"3
Yy — ¥, 839-107 3.64-1077 1.31-100% 1.7-1077 1.3-10~% 3.0 108

) 1.550 1.530 1.570 1.1,:1052 .53 -107% .5.4:10-3
222 0.447 0.417 0.483 121022, 461073 , 4,71073
2y 0.836 0.685 0.934 46-1072 3.2-107% 7.1-.1073
210 0.862 0.764 0.965 4,1-10-2 _3.3.1073  6.4-10-1

For each of the parameters, Table I shows first the average, minimum, and maximum

values occurring in the data base, and the standard deviation about the average. The
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last two columns show the standard error, g of the model in Eq (4), first for exact
measurements (§ = 0.0), and then for measurements that have been randomly perturbed
by a term coming from a normal distribution of zero mean and width equal to a fraction
6 = 0.1 of the variance of the measurements. SI units are employed throughout.

It is seen that the accuracy of the approximations obtained by function param-
etrization is indeed very good, not just for ‘perfect’ data, but also in the presence of
measurement errors. Notice that the column labelled ‘variance’ shows the standard
error associated with a very naive method of data interpretation, viz. ignoring the data
and assuming that each physical parameter always has its average value. (The root
mean square error, evaluated from the data base, of the assumption that any physical
parameter always has its average value, is just the variance of that physical parameter).
The quality of any other method of data interpretation may be evaluated not just in
absolute terms, but also in relation to this naive procedure.

Besides Eq. (4) we tried several other regression models, up to a complete third
order polynomial model in the first four principal comonents, and a complete quadratic
model in six principal components. The third order polynomial model provides only
marginally more accurate results than Eq. (4), whereas the model involving six principal
components is more accurate for ideal measurements, but less accurate at realistic error
levels. The choice of Eq. (4) was then motivated by its simplicity.

In the analysis of a different, related set of data we also tried an approach in which
the (infinitely many) terms in a multivariate Taylor series model were ranked in a
particular linear order, and added one by one to the model equation until an asymptotic
error level was attained. The criterion for defining the linear order was the eigenvalue
product associated with the Taylor series term; e.g. associated with the term z%z, is
the eigenvalue product A?X,. Clearly all eigenvectors must be < 1 for this ranking to
make sense, but this is easily achieved by scaling. We envisage that this approach could
be useful for situations in which more complicated models than Eq. (4) are required, in
particular when it is used in conjunction with some form of stepwise regression.

As presently incorporated into the ASDEX data analysis, function parametrization
is used to provide a complete picture of the time evolution of the quantities rgeom, Zgeom;
Yazis — Tgeom, Qosn and B, + l;/2, immediately after every shot. Furthermore the time
derivative of the quantity ¥, — ¥, is used to correct the loop voltage measured by the
flux loops to the actual value pervailing at the plasma surface: this is important for an
accurate evaluation of the electromagnetic power flux into the plasma column during
phases with strong dynamics, like during pellet injection.

Additional parameters characteristic of the field configuration and needed for the

interpretation of other diagnostics can be evaluated at arbitrary instances, or their
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evolution can be displayed. This group encompasses particularly the location of the
intersection points between the divertor target plates and the separatrix, as well as the
distance between the separatrix and antenna elements or probes in the plasma boundary

region.

Comparison with other methods. Until now, the online analysis of magnetic
measurements on ASDEX has been done using the FILM code, in which these measure-
ments are fitted using a model that represents the plasma by a single wire current in
an unknown location, and that contains two free parameters to describe the horizontal
and vertical external fields.

The Shafranov parameter §, + I;/2 and the radial shift of the geometric center of
the plasma with respect to the machine center (A = rgeom — fmack) have been computed
on the basis of Shafranov’s method [12], which relies on the assumptions of large as-
pect ratio, small radial shift, up-down symmetry, and circular cross section. Given an
estimate of the plasma minor radius a, the theory of [12] provides linear expressions for
Bp + 1;/2 and A in terms of the measurements. In the implementation on ASDEX this
method employed a different set of diagnostics, sc we do not have a direct comparison
between the Shafranov theory and the new method. However, we have compared the
best possible linear formula for §, + I;/2 and A (obtained from a regression analysis
assuming a linear model in terms of all the original measurements) with the formula
obtained by function parametrization as described earlier. The result is that for all of
the parameters r4.is, Teurry Tgeom, and Bp + 1;/2, the optimal linear fit gives about twice
as large an error as the fit obtained by function parametrization. This discrepancy is
primarily due to the fact that in our application of function parametrization we have
different fits depending upon the location of the separatrix x-point, and thereby obtain
a more accurate representation for asymmetric configurations; the quadratic terms in

Eq. (4) are small for these parameters.

Timing and storage requirements. In view of the limited number of magnetic
probes installed on ASDEX and the simplicity of the model, Eq. (4), it is not surprising
that the function parametrization method of data interpretation is very fast for the
present application. In fact, the time required for the analysis is completely dominated
by the time needed to retrieve the data from disk, and therefore we refrain from giving
absolute timing figures for this study.

It is perhaps of more interest to estimate the required number of floating point
operations (flops) for the analysis of one time slice on an experiment such as JET, which
has many more magnetic diagnostics, and also more freedom in plasma shaping. To

project m measurements onto 6 principal components (this number appears reasonable)
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requires ~ 12m flops. There are many different ways in which to code the algorithm for
correction of failing signals, but ~ 12m flops is easily achieved. A quadratic model in
the 6 principal components has 28 terms, so to approximate n physical parameters using
such a model requires ~ 56n flops. Assuming then m = 32 and n = 25, and adding
30% overhead, we arrive at ~ 3000 flops, of which the majority occur in matrix-vector

multiplication.

The storage requirement for the matrix defining the principal component transfor-
mation and the matrix of coefficients in the regression is m? + 28n words, which is
trivial.

For real-time use it will be desirable to evaluate the approximations in a time that is
less than the skin-time of the vacuum vessel, although there can be no need to stay very
far below that bound. The skin-time is typically 3-10 milliseconds (3 ms on JET). It is
seen that a small processor, having a few kilowords of 32-bit store and a speed of ~ 5
Mflops/sec for modest size matrix-vector multiplication, will meet these requirements
with ample room to spare. Evidently the function parametrization method of data
interpretation is suitable for real-time control.
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3. FURTHER PROSPECTS

The principal advantage of the use of function parametrization is that the compu-
tationally intensive part of the procedure — the elaborate model calculations and the
statistical analysis — has to be carried out only once during the lifetime of a diag-
nostic set-up or device, whereas the calculations needed in the application involve only
simple algebra. An additional advantage in comparison with more traditional methods
for rapid data interpretation, relying on analytic approximations derived by considera-
tion of exactly solvable special models, is that function parametrization is designed to
find an optimal representation within a rather large class of algebraic functions, and
may therefore well be more accurate than the traditional method. In situations where
many measurements are made using the same experimental set-up the ultimate gain in

diagnostic capabilities can obviously be very large.

It is planned to employ this method on the ASDEX Upgrade tokamak, planned to
come into operation in late 1988, for real-time analysis of a wide spectrum of diagnostic
signals whose use in a feedback loop for the control of discharge parameters is neces-
sary or desirable. Present-day tokamak operation still proceeds in many parameters
via trial and error, giving completely reproducible results and the quasistationary dis-
charge behaviour required for a reactor only under rather narrowly defined conditions.
Particularly the experience on ASDEX has shown that a dramatic improvement in this
respect can be obtained by feedback control, at least for those parameters included in
the control loop, like plasma current, position, and density. Evidently the number of
additional knobs (plasma cross-section shaping, power and composition of additional
heating, pellet injection, impurity injection, and pumping) has raised significantly the
possibilities for active control, but has also dramatically underlined (e.g. by the fail-
ure so far to produce stationary discharge conditions near the ideal MHD S-limits) the
actual need for it.

The principal obstacle to the use of additional diagnostic input at present is the
impossibility to digest it sn real time to give a more detailed picture of the discharge
conditions. As ASDEX Upgrade makes a significant technical effort for similarity to a
reactor in the machine aspects of the control problem (notably the choice of the poloidal
field coils distant from the plasma) it is consistent to strive for a similar advance also
in the other aspects (diagnostics, feedback system, software) of this problem.

For the application on ASDEX Upgrade it is planned to have an integrated package
of diagnostics giving real-time information, under all discharge conditions, including the
main option of strongly non-circular, high 8, equilibria, about

1) location of the plasma boundary,

14




2) intersections of the separatrix and the divertor targe. plates,

3) plasma energy content,

4) shape of interior flux surfaces,

5) electron temperature profile,

6) electron density profile,

7) current density profile,

8) impurity density distribution and plasma rotation.

Diagnostics to be used for this will be,

A) system of current, voltage and flux loops, and magnetic probes,
B) array of FIR interferometers,

C) electron cyclotron resonance measurements of electron temperature,
D) thermography camera observing the divertor plates,

E) soft X-ray pinhole cameras.

An inherent advantage of the function parametrization method of data analysis is
its ability to mix information from different types of diagnostics. Important is that
these diagnostics complement each other to give together a unique interpretation of the
discharge conditions. That this is the case for the set (A)-(E) for a determination of
(1)-(8) we will describe below. Obviously additional diagnostics (e.g. bolometry) can
be added to give further real-time information for inclusion into fzedback loops; their
connection to the above package however will most probably occur only in the direction
that they will use information (particularly the flux-surface topography) provided by
the above system.

The physical model to be used for producing simulated diagnostic results is the
axisymmetric MHD equilibrium equation. For each configuration of equilibriuin flux
surfaces we assume a range of profiles of electron temperature T, electron density n.,
and impurity radiation I,,, using the facts that T, and n. should be functions of ¥ only
and that I, should be a function of ¢ and R, where the R dependence arises from
the possibility of rotation and the resulting accumulation of impurities at the large
R side of a flux surface due to the effect of the centrifugal force. The latter effect
(elegantly documented by recent tomography results of Smeulders on ASDEX [13])
leads to impurity radiation profiles of the form I, (¢, R) = f(¢)exp(a(y¥)R?) (with
a(y) depending on toroidal rotation frequency, dominating impurity mass, and ion
temperature), so that only two functions of 1 are needed to prescribe it.

The flux functions n., T¢, f, and a (naturally parametrized so that they each contain
only a few truly independent variables) yield distinctive signals in each of the diagnostics,
which contain information both about the profiles of these flux functions, and also about
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the flux surface topology. To the latter point the chosen diagnostic set in particular

yields mutually complementing information:

A) contains good information about the flux surface shape at the boundary and in the
outer zones of the discharge (besides I;, 8,+1;/2, and — for noncircular cross section

— some information on [;);

B) has information about the flux surface structure in the density gradient zone (apart
from giving simultaneously the density profile);

C) contains information about the radial position of the magnetic axis and about the
inside and outside intersection points of the near-axis flux surfaces with a horizontal
plane;

D) improves the accuracy of the magnetic determination of the separatrix in the region
where it is quantitatively most important;

E) contains information of the 2-d structure of the interior flux surfaces (by choice of
appropriate filters it can be guaranteed that the radiation indeed is dominated by
these interior zones — contrary to the situation with general bolometry).

Obviously the distinction of this method to previous approaches (apart from the speed

in evaluation) is in the simultaneous use of information: e.g. the soft X-ray signals alone

do not allow to determine the flux surface structure in the presence of unknown rotation,
but can do it in combination with T.(R) signals in a single plane. At the same time
profiles are determined for the important discharge parameters even in geometrically

complex situations.
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FIGURE CAPTIONS

Fig. 1. Poloidal cross-section through the ASDEX experiment. Measurements of
the poloidal field and flux, By,..., Bs and ¥y,..., ¥4 are made at the locations shown.
The measurement Iy, is the current through each of the two main multipole shaping
coils, which are marked with the symbol @. Each of the four smaller multipole coils next
to the divertor entrances carries a return current — g Imp. Notice that the equilibria in

our data base are in general not up-down symmetric.
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