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THE INTERPRETATION OF TOKAMAK MAGNETIC
DIAGNOSTICS: STATUS AND PROSPECTS

B.J. BRAAMS

ABSTRACT

The analytical theory and the computational methods that are available for the
determination of MHD equilibrium characteristics from magnetic measurements on ax-
isymmetric systems are reviewed and developed. The interpretation of these measure-
ments relies to a large extent on two classes of integral relations due to L.E. Zakharov
and V.D. Shafranov. Following and extending their work we provide an inventory of
useful integral relations, including the contributions due to pressure anisotropy and
plasma rotation. Effective methods to evaluate the required integrals from imperfect
measurements are considered. A full equilibrium analysis of the magnetic diagnostics
implies a determination of the current profile, consistent with the equations of MHD
equilibrium, aiming at an optimal fit between the corresponding calculated magnetic
field and the measured data. Published approaches to this problem are evaluated, and
a novel fast algorithm is proposed. Instead of the full equilibrium analysis several more
limited problems are often considered, for which faster methods are available. The de-
termination of only the plasma boundary requires the solution of a Cauchy problem, or
similar, for an elliptic equation. The published approaches are compared. Analytical
theory provides approximations that are suitable for the rapid estimation of charac-
teristic parameters, related to the plasma current, position, shape of the cross-section,
pressure and internal inductance. Very efficient algorithms may be obtained when this
theory is employed in conjunction with the method of function parametrization. These
algorithms are well suited to real-time control of the plasma.

Appendices present a discussion of the boundary conditions for the MHD equilib-
rium problem, a compendium of analytical solutions to the homogeneous equilibrium
equation, and a re-examination of the possibility of determining the current distribution
from knowledge of only the shape of the flux surfaces.
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INTRODUCTION

The accurate and rapid determination of the magnetohydrodynamic (MHD) equi-
librium configuration is of much importance for magnetic confinement experiments,
be it for the purpose of feedback control of the plasma during machine operation, for
the immediate on-line data analysis that takes place between successive discharges, or
for the more extensive off-line analysis of an experiment. Measurements of the exter-
nal magnetic field and flux provide the most basic information on the electromagnetic
properties of the confined plasma, and are fundamental to the feedback control and to
the further analysis of a discharge. A range of algorithms for the interpretation of these
magnetic diagnostics is required, with different priorities as regards the speed vs. the
accuracy or the scope of the computations. On the fastest timescale relevant to active
control of a discharge (typically one to several milliseconds for tokamak operation, de-
pending upon the skin-time of the vacuum vessel) one requires at least an estimate of
the plasma position. Somewhat slower at present are the algorithms that determine
accurately the location of the plasma boundary and compute estimates for such char-
acteristic equilibrium parameters as the poloidal # and the internal inductance. The
complete determination of the equilibrium configuration and its time evolution is not
yet a matter of routine. For all these tasks it is fair to say that significant advances in
the sophistication and/or the speed of the analysis would be most welcome.

The subject matter of this paper is the analytical theory and the computational
methods that are available for the determination of MHD equilibrium characteristics
from magnetic measurements on axisymmetric systems, in particular on tokamaks. The
paper contains both a critical review of existing practices, and an exposition of some
innovations in the analysis of magnetic measurements that have recently been developed
by the author. In particular, it is shown that the accurate estimation of a wide set of
characteristic equilibrium parameters can easily be done in the 1 millisecond timescale
relevant to active control, and methods are proposed that will allow even a full 2-D MHD
equilibrium analysis of the plasma to be performed in only a few tens of milliseconds on
present computing equipment. The paper should be of interest not only to those plasma
physicists who are directly involved with magnetic diagnostics on a tokamak, but also
to those who are involved with the interpretation of other basic plasma diagnostics or
with machine control, and to workers in computational MHD.

The paper is divided into two main parts. Sections 1-3 are of an analytical nature,
and provide the fundamental equations that are required for the interpretation of mag-
netic measurements in the context of MHD equilibrium theory. Sections 4-7 are oriented
towards computation, and discuss the various numerical approaches to the analysis of
these diagnostics. The remainder of this introduction provides a more detailed outline
of the paper. Specific references to the literature can be be found in the appropriate
Sections, and are therefore omitted here.

In Section 1 the equations and boundary conditions that govern axisymmetric con-
finement are summarized, both for the case of static, ideal MHD, and in the presence
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of pressure anisotropy and plasma rotation. Some useful properties of the equations are
listed. The discussion of the boundary conditions is to some extent original.

Section 2 is concerned with one of the two classes of integral relations that were first
discussed by L.E. Zakharov and V.D. Shafranov. This class of integral relations relies
on Maxwell’s equations only, and relates measurements of the magnetic field and flux
made outside the plasma to moments of the current distribution in the interior. These
moments involve solutions of the homogeneous equilibrium equation. Several families
of analytical solutions are exhibited, and the issue of their completeness is discussed.

Section 3 is concerned with the other class of integral relations of Zakharov and
Shafranov. This class relies on an equation for MHD equilibrium in addition to Maxwell’s
equations, and relates the measured field and flux to moments of the energy density in
the plasma. Following and extending the work of Cooper and Wootton, these relations
are generalized to include the contributions due to pressure anisotropy and plasma
rotation.

Section 4 contains an unconventional treatment of a rather elementary problem:
the accurate approximation of the integrals of Sections 2 and 3 from imperfect mea-
surements. The relevance of concepts from the numerical treatment of ill-conditioned
equations and from statistical analysis is stressed.

Section 5 deals with methods for the difficult inverse problem of obtaining a com-
plete solution to the equation for axisymmetric equilibrium, including a determination
of free parameters that describe the current profile. We review the literature, and pro-
pose a novel algorithm to interleave the two iterative processes: the optimization of
current profile parameters and the solution of the nonlinear equilibrium equation. In
combination with a multigrid approach, this algorithm may yield a code that computes
the complete equilibrium almost in real-time.

In Section 6 fast specialized methods for a more limited problem are discussed, viz.
the determination of the plasma boundary contour and of the field on this contour from
the external magnetic measurements. This involves a solution of one of the classical
ill-posed problems of mathematical physics: the integration of an elliptic equation from
Cauchy boundary data (or a similar problem). This problem, however, is well under-
stood, and can easily be made well-posed in the sense of Tikhonov. The published
approaches are compared.

Section 7 then deals with fast methods that seek to determine only a set of global
parameters describing the plasma, such as the plasma current, position, shape, pressure
and internal inductance. Existing methods for this problem generally require a prelimi-
nary identification of the plasma boundary, and then employ analytical approximations
that have been derived on the basis of a large aspect ratio expansion and a specific
model for the plasma current distribution. Our recent work has shown that Wind’s
method of function parametrization can provide simple and accurate expressions that
are suitable for real-time control of the experiment.

There are three Appendices. Appendix A contains a discussion of the free-field
boundary conditions and their reduction to an integral equation over a finite bound-
ary, and also dcals with the accurate discretization of all possible boundary conditions.
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Appendix B provides several families of analytical solutions to the homogeneous equi-
librium equation, appropriate to different coordinate systems. Appendix C re-examines
the problem, first posed by Christiansen and Taylor, of the determination of the current
profile from knowledge of only the shape of the flux surfaces.




1. FUNDAMENTAL RELATIONS FOR AXISYMMETRIC CONFINEMENT

This Section serves to define some of the notation that will be employed throughout
the paper, and to collect for later reference several important facts about axisymmetric
magnetic fields and magnetohydrodynamic (MHD) equilibrium. For more information
one is referred to the original literature, notably [1]-[8], and to standard texts and
review papers [9]-[17].

Preliminaries. Throughout the paper, use is made of a righthanded cylindrical
(r, ¢, 2) coordinate system, and where not noted otherwise, all occurring fields are as-
sumed to be symmetric with respect to rotations about r = 0. An axisymmetric toroi-
dal region T serves as the domain for the discussions. T should completely enclose the
plasma, and may also contain a vacuum region and material regions. The cross-section
of T in the poloidal (half-}plane (¢ = 0 and r > 0) is denoted as 1, and AT and 02
are the boundaries of T' and ). dV is the volume element on T, dS the area element
on {1, dA the area element on 8T, and ds the line element on 9Q. (dV = 2rrdS and
dA = 2rrds). The positive orientation on 90 is such that {1 lies to the right. The
normal and tangential derivatives on 311 are denoted as 3/dn and 8/3s. 1 is assumed
to be bounded, and 81l must be piecewise smooth. As a matter of convenience it will
also be assumed that {2 is bounded away from r = 0, but in many cases this restriction
can be removed with little effort. {) need not be simply connected.

The general concern in this work will be with how to derive information on the
magnetic field and the plasma in T (or 1) from knowledge of the magnetic field on 8T
(601). In applications, 8T will be a surface on or near which the magnetic probes are
located, most often the inner or outer surface of the vacuum vessel.

In MHD confinement theory the magnetic permeability, p,,, is usually assumed to
be equal to the vacuum permeability, po, throughout the domain of interest. This
is appropriate for the plasma and vacuum regions (all plasma currents being written
explicitely), but in the context of the interpretation of magnetic measurements one may
be forced to consider the presence of other material media as well, such as the vacuum
vessel and perhaps passive conductors located inside 91, and we therefore generally
allow a spatially varying permeability. Only linear magnetic material is considered
in 01; the presence of nonlinear media causes substantial computational difficulties.
Furthermore, all nonconducting material has p,, = po to sufficient accuracy for it to
be treated here as if it were part of the vacuum region. Accordingly we assume a
decomposition of €1 as {1, + {1, + {l; into a plasma region, a vacuum region, and a
coil region, and in 2, + €1, we assume pp, = pg. The exterior region (the complement
of Q1 in the right half-plane) is denoted as T, (£1.). About this region we assume only
axisymmetry; it may carry any axisymmetric distribution of currents, and may also
contain nonlinear magnetic material (i.e. iron).

The magnetic field. In the case of axial symmetry the divergence-free magnetic
field, B, may be represented as

B = FV¢ + V¢ x V¢, (1.1)
4




in terms of two scalar functions, F' and . F is related to the toroidal field by F = rB,,
and ¢ is related to the toroidal component of the vector potential by ¢ = rA4;,. From
Ampere’s law, V x H = J, where H = u!B, a similar representation for the current is
obtained,

J= _leﬂ YVé + V(#;'IF) x V¢, (12)
where the operator £*, in a coordinate-invariant representation, is the following,
L =1r2u, V- (r2u-l Vy). (1.3)

We consider L* to be defined only for axisymmetric scalar fields. From Eq. (1.2) it
follows that 1 satisfies the elliptic equation,

L% = —pmrai, (1.4)

where 7; is the toroidal current density.
For the case of uniform permeability, g, = po, L* reduces to the operator A*,

AY =12V (r2Vy)

_( £ 3,/,) " f’f_’é (1.5)
ar ar 92?2
We also introduce the operator L,

Ly =pz' V- (km VY), (1.6)

which reduces to the Laplacian, A, for uniform permeability. In a current-free region
one may employ the representation H = Vg, and V-B = 0 is then equivalent to £Lg =0

Some useful identities. Green’s first identity for £* is the following:
f rlu WL xdS = f rlu-ly ox ds — f rlu-1Vy - Vxds, {17
0 a0 dn 0

and Green’s second identity (Green’s theorem) is:
2 15 e dx ay
L=V Lty — xL*y)dS = ¢ byt :
-/;) 2 ﬂm (d}ﬂ X Xﬁ ‘b) an ¢ # ( 371. X Bn) ds (1 8)

Here, 0/0n is the outward normal derivative on 80. These identities are easily obtained
by application of the divergence theorem to the appropriate expressions on the torus T'.
Similar relations, with a factor ru,, instead of r~!p-! hold for L.

We now turn to Green’s third identity for the operator L£*. Let the function G(r,r )
satisfy the equation £*G = p,,r'8(r — ') in 2, where G is considered as a function of r
at fixed r'. Boundary conditions on G are not specified, so this function is determined
up to an arbitrary solution to the homogeneous equation. Then G is known as a
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Green function for the operator £*, and Green’s third identity (Green’s representation
theorem) holds:

Y(r') = -fncj, ds+£ 1 -l(w_—ca"’) ds. (1.9)

Particularly useful specific Green’s functions are obtained by imposing homogeneous
boundary conditions (either Dirichlet, Neumann, or mixed conditions, as appropriate
for the problem at hand), which are furthermore independent of »’. Thanks to the factor
pmr' in the right hand side of the equation £*G = p,,,r'é(r —r'), these Green functions
satisfy the symmetry property, G(r,r') = G(¢', r).

If the external region {1, also contains only linear magnetic material then {2 may be
expanded to fill the right half plane, 2 + Q,, and if the specific Green function Gj is
then chosen to satisfy the free-field boundary conditions, Go(r,r') — 0 as |r| — co and
as r — 0, then the following simple representation is obtained from Eq. (1.9),

Y(r') = -j;]m Goje dS. (1.10)

Thus, Go(r,r') is the influence function, equal to flux at position r' due to a (negative)
unit current at position r. One is thereby led to define,

(') = - [ Goj S,
N

(1.11)
V@)= ¢ (R -agt) ds

an

so that ¢ = ¢ + ¢* according to Eq. (1.9). The function %° is homogeneous on the
exterior region {1, and ¢' is homogeneous in the interior of 1. ¥ may be understood
as that part of the flux function that is due to the currents in Q, while ¢* is associated
with currents in the exterior region.

An analytical expression for Gy is available if p,, = po everywhere:

Golr,7') = £2V/rr" (E(k?) iy ¢ kz/z)K(kz))
1

Bt (L1 0~ L 1)

(1.12)

where
12 4ry’

T (r+ )2+ (2-2)%

K (k?) and E(k?) are the complete elliptic integrals of the first and second kind, as in
[18] and [19], whereas Rr and R are Carlson’s forms of the elliptic integrals [20],
which are used in [21, ch. S21]. The function Gy defined in (1.12) is called the free
space Green function. Even if magnetic material is present one may employ this free
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space Green function in Eqgs. (1.10) and (1.11), provided that all magnetization currents
are treated as true currents.

The following relations between A* and A are sometimes useful [11]. For any suffi-
ciently differentiable axisymmetric field £,

A‘( gf) 0 Af, (1.13)
and
-1 %A‘E N A(r-l %f-). (1.14)

Both A* and A commute with 8/3dz.

Ideal MHD equilibrium. In ideal MHD equilibrium theory the magnetic field
equations, V-B = 0 and V x !B = J, are supplemented by a single equation of force
balance, Vp = J x B, where p is the kinetic pressure of the plasma. It is furthermore
assumed that g, = pp. Employing the representation (1.1) there are three unknown
scalar fields: ¢, F, and p. Invoking axisymmetry one derives the relations, V¢ x Vp = 0
(from B-Vp = 0 and Eq. (1.1)), VF x Vp = 0 (from J - Vp = 0 and Eq. (1.2)), and, for
good measure, V¢ x VF = 0 (from toroidal force balance). It is taken to follow that,
locally, ¢, F', and p are functionally related, and one writes F' = F(¢) and p = p(¥).
(It bears saying that these relations need not hold globally in the case when a surface of
constant ¢ has disconnected parts, as occurs in configurations having a divertor or an
internal separatrix.) Consideration of force balance along V4 then leads to the following
expression for the toroidal current in the plasma,

dF
=1 —-1
Jt—rw"i"f F 'p

and to what is commonly referred to as the Grad-Shafranov equation [1]-[3] for the flux
function v,

(1.15)

dp dF
p T dy’
This ‘almost linear’ elliptic equation is the basis for the study of axisymmetric ideal
MHD. Notice that in the context of interpretation of experimental data, the functions
p(¥) and F(¢) must be regarded as unknown.

The ideal MHD force balance equation can be written in conservation form (9],
V - T =0, where the stress tensor T is

A = —por? (1.16)

T = (p+ B%/2p)! - p;'BB. (1.17)
A convenient related form in terms of the flux functions is the following,
1 -2 2 2 "-‘2
Vp+ 2 or IV (F— [VY[) + V- (# V$Vy) =0, (1.18)

as follows easily from Eq. (1.17).




Pressure anisotropy and plasma rotation. MHD equilibrium in the presence
of anisotropy and flow is described in part by the following system of equations:

V-B=0, V.pv=0,
pv-Vv=(Vxp'B)yxB-V.P, (1.19)
vxB =V,

where p is the mass density of the plasma, v is the flow velocity, P is the pressure
tensor, and @ is the electric potential. The general anisotropic pressure tensor has the
form P = p, 1+ (p) — p.)BB/B?, where p, and p, are the perpendicular and parallel
pressures. Two additional thermodynamic equations are required for p, and py, but the
proper choice of these equations is open to dispute. One possibility is provided by the
Chew-Goldberger-Low (CGL) equations [4], valid in the collisionless limit,

v-v(p*‘fz) =0, v-V(%) =0, (1.20)

Alternatively it is possible to assume isotropy, p, = p; (= p), and then either adiabatic
flow,

v-V(p/p’) =0, (1.20%)
where 7 is the adiabatic index (y = 5/3), or constant temperature on flux surfaces,
B V(p/p) = 0. (1.20°)

We do not know of a reduction of this complete system of equations to a system
consisting of a single elliptic equation and a family of free flux functions, as for the
case of static, ideal MHD. (For ideal MHD with flow such a reduction is given in [22]-
[25]). Here we only show the derivation of a simple relation between v and B, which is
independent of anisotropy.

First, V.B =0 and V - pv = 0 are solved by introducing the representations,

B=FVé+Vyx Ve,

(1.21)
pv = GV + Vw x Vg,

so that there are eight unknown scalar fields: ¢, F,w, G, p, p., p;, and ®. FromvxB =
V®, it follows, by taking the inner product with B, v, and V¢, that V¢ x V& = 0,
VwxV® =0, and V¢ x Vw = 0, so that w and ® are functions of ¢ alone. Then from
(vxB)- V¢ =V Vy it follows that

r2p71(G-u'F)=9, (1.22)

which is also a function of ¢ alone. Thus, pv = w'B + r2p®'V¢. The mass flow can be
decomposed on each individual flux surface into a divergence-free flow along B and a
rigid toroidal rotation.




.

The conservation form of the force balance equation, V- T = 0, is obtained with
T= (p. + B%/2uo)1 + pvv — ou; ' BB, (1.23)
where o = 1+ po(p. — py)/B?. The related form in terms of the scalar functions is,
SV(p. + oy + 127G + | Vul?))
+ 5TV (oug (F? = [V9P) = (G ~ [Vuf) (124)
+ V- (rlopg'VYVyY — r2p71VwVw) = 0.
Eqgs. (1.23) and (1.24) will be useful in Section 3.

Boundary conditions and auxiliary equations. The MHD equilibrium prob-
lem is supplied with both external and internal boundary conditions, and furthermore is
usually posed as a parameter estimation problem, thus requiring additional constraint
equations. The external boundary conditions may be local conditions, or they may have
the form of a boundary integral equation. -

The familiar local external boundary conditions prescribe the value of ay) +0v/dn
on 911, for given functions a and B. Dirichlet and Neumann conditions arise as spe-
cial cases. Such boundary conditions may be obtained by fitting a curve through a
sufficiently dense set of local field and flux measurements made on 0.

Alternatively the external boundary conditions may prescribe the behaviour of the
solution on the axis (r = 0) and at infinity. Such conditions are obtained when the field
due to currents in external coils, ¥.,, is known. On the finite computational domain 0,
these free-field boundary conditions may be replaced by an integral equation relating v
and dy/dn on 41},

o(r') f g 06 _f ap, -1 0¥ -1 '
—2-;1/’(1')“*' {m" B ¢3_n ds = an" Fom G“a; ds + pp, Yer(r'), (1.25)

for ' € 90. Here, p(r') is the exterior angle subtended by 80 at the point ' € 90,
and G(r,r') is the Green function for the problem, defined by the equation £*G =
Pmr'6(r — r'), subject to the boundary condition G — 0 as r — 0 or as |r| — co.
Eq. (1.25) is a novel formulation of the free-field boundary conditions, although it is
closely related to the formulation due to Von Hagenow and Lackner [28]. It is derived
and discussed in Appendix A.

Nonlocal boundary conditions involving integrals of ¢ and 8y/dn on 40 can also
arise from magnetic measurements using extended probes, or from measurements made
not exactly on 911.

The internal boundary conditions (interface conditions) require the continuity of
the normal component of B and of the tangential component of H on all interfaces (in
the absence of skin currents). Furthermore, in the free boundary problem, the plasma
boundary contour 911, is unknown a priori, and must be determined as part of the
solution. The proper characterization of {1, may vary somewhat from experiment
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to experiment, but a generally valid criterion is that {I, shall be the largest simply
connected region that is bounded by an isocontour of ¢ and that is wholly contained
within a given limiting contour L. The plasma has a limiter geometry if 301, and L have
a point in common, otherwise it has a divertor geometry (and then 80, passes through
a saddle point of ¢). In the vacuum region the pressure must vanish and the toroidal
magnetic field must have the form By = r—!Fp, for some constant Fy. If no singular
current density is allowed on 91}, then p and F musi satisfy the interface conditions
p=0and F = F, on 9Q,.

Additional constraints are required when the plasma current profile (or the con-
tribution of other currents) is given in parametric form, or is treated as functionally
unknown. In particular, a formulation is common in which the plasma current profile is
given only up to an undetermined constant factor, and in which the value of the total
current provides the necessary additional constraint. The value, v, of the flux function
on 91}, is also in almost all cases an unknown parameter in the current profile, to be
determined as part of the solution. In the context of the interpretation of diagnostics
there should further be some freedom in the shape of the current profile, and typically
one to three additional free parameters are employed. A problem statement involving a
functionally unknown current profile could be appropriate when a sufficiently sensitive
set of diagnostics (more than just the external magnetic measurements) is to be inter-
preted. In a different context, the problem with a functionally unknown current profile
arises when the g-profile is specified instead.

The various problem statements that are of interest to us may finally be classified
as follows.

PO: Fixed plasma boundary. The plasma fills the complete computational domain
(2, = N), and the boundary condition stipulates ¢ = ¢, on 8. (¢, constant).

P1: Free plasma boundary, local boundary conditions. 2, C 2, and boundary con-
ditions that prescribe ay + 9y /dn on 31). Interface conditions on the free
contour 11,.

P2: Free plasma boundary, nonlocal boundary conditions. 2, C Q2, and typically an
integral equation boundary condition on 3Q). Interface conditions on the free
contour 911,.

In each case the problem may require also the estimation of one or more parameters.
In addition the problem classes P0’, P1' and P2' are considered, in which the profile
rj. is regarded as functionally unknown.
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2. MOMENTS OF THE TOROIDAL CURRENT DENSITY

This Section is concerned with a class of integral relations that express moments
of the toroidal current density in {1 as integrals of linear combinations of the poloidal
magnetic field components on d1). In the context of magnetic confinement theory these
integral relations were first given by Zakharov and Shafranov [27], but they appear in
potential theory as an immediate corollary of Green’s theorem. The moments involve
solutions to the homogeneous equilibrium equation, and various families of solutions are
provided here and in Appendix B.

An integral relation. Let y be an arbitrary function that satisfies the homoge-
neous equilibrium equation, £*x = 0 in 1, and let ¢ be the poloidal flux function,
which satisfies £*¢ = —p,,rj;. Then by application of Green’s second identity for the
operator L*, Eq. (1.8), to the pair (x, ¥), one obtains the fundamental integral relation
for the evaluation of moments of the toroidal current density,

. e o B dx ay
1 1
fnm ds = fan rlm (P50~ x5 ) ds. (2.1)

Notice that L*x = 0 implies § r=1u1(8x/8n)ds = 0, so in Eq. (2.1) there is no
dependence upon the choice of the arbitrary additive constant in the potential 4. This
can be made manifest by introducing together with x also a conjugate function, £,
according to the equation,

V(r ' unté) = pn'Vx x V4, (2-2)

which indeed admits a solution subject to £*x = 0. This definition implies the identity
r=lu-18x/0n = —8(r~'u;1€)/8s, where 8/38s is the derivative along 811 in the positive
direction (clockwise on the outer boundary). By partial integration one may then
eliminate ¢ from Eq. (2.1) in favor of d¢/3s to obtain

/;xj: as = J{m it (655~ x 3E) s
= f ,u,;,l(an + XBa) ds (2'3)
a0
=f (¢H, + xH,) ds
an

as an alternative form for Eq. (2.1).
In the usual cylindrical coordinates the relation between x and ¢, Eq. (2.2), may be
expressed as
d , 2f )
'a_; (T l#mlf) === lﬂ'ml 5;

@ ;g cyps = ey OX
'é';(r p’mE)_r Bm 'a—;‘

(2.4)
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The function ¢ satisfies the equation £(r~!p-1¢) = 0, where £ has been introduced in
Eq. (1.6). Notice also that L(r~!pu!x) = xL(r 1p.}).

In [27] the following different derivation of the above integral relation was given.
Let the fields q and g satisfy u;'V x q = V(u;!g). Then,

/q-Jdefq-(VX#rT;IB)dV

T T
=/;(v-(,u;,‘Bxq)+u;‘B-(qu))dV
=L(V-(p;‘qu)+B-V(#519)) av

= f ((km'B x q) -0 + gp,'B - n) dA.
oT

These identities do not require the assumption of axisymmetry. The previous result for
the axisymmetric case is obtained when one sets q = xV¢ and g = r—1£. In contrast
to [27], the conjugate pair of functions (x, £) has been defined in the present work in
such a way that they have the same physical dimension. Our function x corresponds to
f of [27], and our £ is rg in their notation.

Plasma current and position. Specific analytical instances of these integral re-
lations can only be given for the case of constant permeability. Let us therefore tem-
porarily assume that {2 contains only the plasma and vacuum regions, 1 = {1, + Q1,, so
that pm = po and L* = A*. Four simple independent pairs of conjugate solutions (x, &)
to A'x =0and A(r~1¢) =0are: (x=1,£=0),(x =0, =71), (x =2, = —rlogr),
and (x = r?, € = 2rz). These moments lead to the following specific integral relations,

fJ'f.dS =f py ' B, ds, (2.5)
Q a0
0= f ug'rB, ds, (2.6)
an
f zj5dS = f pg ' (=rlogr B, + 2B,) ds, (2.7)
0 an
f r2j, dS = f‘ pgt(2rzB, + r’B,) ds. (2.8)
0 anN

The first two will be recognized as the integral forms of Vx H=J and V-B =0, but
the higher moments would not have been evident a priori. These equations suggest a
characterization of the plasma position, (r., 2.), according to the identities,

It Z/Jg dS (2.9)
1

=l Z/zj; ds (2.10)
Q

T3I¢=-/’T2].¢ s (2.11)
Q
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The current center (r, z.) defined here is an intrinsic plasma property (not dependent
upon the position of the contour 30 as long as it completely encloses the plasma and
encloses no other currents), which furthermore can be rigorously evaluated from external
magnetic measurements. Alternative characterizations of the plasma position are: a
geometric center of plasma cross-section, or the position of the magnetic axis. These
characterizations are more difficult to obtain from external measurements, and the
plasma cross-section may not be a rigorously defined concept.

It is to be noted that Eqgs. (2.10) and (2.11) are perfectly valid as definstson of 2.
and r., but that the corresponding relations (2.7) and (2.8) are not immediately suitable
for the computation of these quantities. In particular the uncritical use of Eq. (2.8) to
compute r. is not to be recommended. Instead, after having obtained preliminary
estimates ro and zp for the plasma position (e.g. as the center of the vacuum vessel), r.
and z. should be computed from the relations,

(2e — 20) 1t = f bt (—rlog "B, + (z— zg)B,) ds (2.12)
an ro

(r2 =)L, = f i (Zr(z — 20)Bn + (r? - rg)B,) ds (2.13)
an

This computation may be iterated in order to obtain (rc,z.) as that pair (ro, 2o) that
causes the vanishing of some reasonable discrete approximation (in terms of the magnetic
measurements) to the right hand sides of (2.12) and (2.13).

Higher moments. Specification of ¢ and dy/dn on 911 is equivalent to the speci-
fication of ¢ on 911 together with the moments of j; with respect to a family of solutions
{xi}i to L*x = 0 that is complete on f1: ¢; = [[; x;5: dS. The second specification is
very useful for the interpretation of magnetic measurements, as will be seen in Sections
5-7, and there is therefore an interest in (complete) families of higher moments of the
toroidal current density.

Analytical families of conjugate pairs of solutions to A*y = 0 and A(r~!£) =0 can
be generated in a number of ways. Zakharov and Shafranov |27, Eq. (61)] provide the
first few even terms in a sequence of homogeneous polynomial solutions (but beware
of two errors in that equation). In our notation, and extended to all orders, these
polynomial solutions are the family defined by,

[ n/2)-1
— _a\—k (n—1)!/2 2k+2 n—2k—2
Xn = kZ::O ) Tz T ¢ '
. (2.14)
i _a\—k (n —1)! 2%k+1_n—2k—1
&n = g ) oo ” ° '
\ T

for n > 0, together with the pair (xo = 1, o = 0). This family is not complete on any
region that is of interest for tokamak studies. Polynomial solutions to the homogeneous
equilibrium equation have also been discussed in Refs. [28]-[30].
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Elementary solutions to the homogeneous equilibrium equation can also be found
by allowing a factor Inr or a power of Vr? + 22. Further analytical solutions may be
obtained through separation of variables, in either cylindrical, spherical, or toroidal
coordinates. All these forms are provided in Appendix B.

Finally, a family of solutions to £*x = 0 may be generated by numerical solution
of the elliptic equation for some family of boundary conditions for dy/dn on 80Q). This
latter route is the only one available when the permeability in ) is not constant, and is
also the most suitable procedure for general shapes of the region (1.
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3. MOMENTS INVOLVING A GENERALIZED PRESSURE

This Section is concerned with a class of integral relations that allow to express
certain area (resp. volume) integrals of an energy density in {2 (or T') in terms of contour
(surface) integrals of quadratic combinations of the magnetic field components on 3}
(8T). In contrast to the relations of Section 2, which were derived using only the
electromagnetic equations, V-B =0 and V x H = J, the following relations are based
also on an equation for the plasma equilibrium. In first instance the force balance
equation for static, ideal MHD equilibrium will be assumed, viz. Vp = J x B. The
resulting class of integral relations was first given in general form by Zakharov and
Shafranov [27], although two important special cases had been given earlier [31]. In
second instance we will consider the modifications due to pressure anisotropy and plasma
rotation, thereby extending the work of Cooper and Wootton [32], who considered only
the two cases of [31].

Throughout this Section it will be assumed that {} contains only a plasma and a
vacuum region, {1 = 1, + {1,, as clearly an MHD force balance equation should not
be assumed to hold in the coil region, {}.. In fact, application of the following integral
relations is usually preceded by an identification of the plasma boundary and of the
magnetic field on this boundary, using methods that are discussed in Section 6, in
which case one may identily {1 = {1,. By a generalized pressure we understand any
local expression in terms of p and B (and p, p., p and v in the nonideal case) that has
the physical dimension of a pressure.

An integral relation for static, ideal MHD equilibrium. Consider the equi-
librium equation in the form of Eq. (1.18). Taking the scalar product with an arbitrary
axisymmetric poloidal vector field Q gives,

1
0=Q [Vp+ Z_L.ar-?vw? R VY + V- (Er?ww)].

The constant Fy is the value of F' on the plasma boundary and in the vacuum region
(related to the vacuum toroidal field by Fy = rByy), which has been inserted here for
convenience at a later stage. In order to arrive at a meaningful integral relation we
rewrite this identity in a form that contains a total divergence,

pV -Q+ —21 (F? - FA)V - (r2Q)
Ho
1 _ 1_
+ VY (r Q- V- (r 2Q)l) .V
e 1 o2 2 2 | ,
— % [pq+_2#0r (F? ~ F§ ~ [991)Q + -r~?Vy vy Q].

This identity is next integrated over the volume of the torus, the divergence term being
expressed as a surface integral, and this surface integral is simplified by employing that
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p=0and FZ2 — F? = 0 on T. We choose to re-express the ensueing integrals over T
and 8T as integrals over 1 and 9, and arrive at the following identity,

[rlpv-Q+ (2 - BV - (2q)
0 2p0

1 _ 1 5
V. (r?vQ- ;v (2Q)) - vy| ds (3.1)

=4 (@ V¥)(V¥ 1) - HVYP(Q-n)] ds.

Mo Jan 2
This is the desired integral relation. Specific choices of the vector field Q thus allow to
express certain volume integrals of a generalized pressure in terms of surface integrals
of quadratic combinations of the magnetic field components on 411.

The integral in the left hand side of Eq. (3.1) is unfortunately not an invariant
quantity, but depends on the choice of the region T (or ), because although p and
F? — F? vanish outside the plasma, V¢ does not. In many applications of these relations
dQ1 is identified with the plasma boundary in order to obtain intrinsic plasma properties,
but in other cases 91 is taken as the measuring contour on the vacuum vessel.

Notice also the following closely related form,

/r v Q-+ 2L(F2 - F})V-(r-2Q)| ds
g s (3.2)
~- [(@-vwyias,

in which all integrals are invariant quantities, but in which the data on 0 do not enter.

An alternative derivation. A related but different derivation suggested by the
work of Cooper and Wootton [32] is also worth noting. Let Q be an arbitrary vector
field. Starting with the force balance equation in conservation form, V- T = 0, the
following sequence of identities is derived:

o:frq-(v-r)dv
:[T(V-(T-Q)—T:VQ)dV
:f;rn- T-QdA—'/;T:VQdV

Inserting now T from Eq. (1.17), and using the fact that p = 0 on 8T, it follows that

f[(p+_1_32)V-q— lB-vq-B]dV
1 1
=-f [37°@Q ) -(B QB n) s
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This relation is valid independent of axisymmetry. In the axisymmetric case, the
form Eq. (3.3) is equivalent to the earlier form, Eq. (3.1), as will be shown. First, without
loss of generality Q may be required to be an axisymmetric vector field. Second, there
is no reason to include a toroidal component in Q. For suppose Q = xV¢; then one
obtains the integral relation,

f rBiB-V(r~2x)dV = f r~!B;B,x dS,

T aT

which is anyway trivial from B - V(rB;) = 0. Indeed, toroidal force balance was used
earlier to prove that rB; is constant on flux surfaces. Next, restricting Q to be an
axisymmetric vector field without toroidal component, one may separate in Eq. (3.3)
the contributions of the toroidal and the poloidal fields, and subtract from both sides
the contribution due to the vacuum toroidal field. This vacuum field is B,y = FyV¢,
with Fy constant, and one uses the identities

1 1
L 1) - R e i Al

2p0 Q Ko
and B, - VQ-B, =0, and B, - VQ - B; = 0. The result is the following form of the

integral relation:

By VQ By = El—Bazorzv : ("_ZQ)
Ko

[[p9-Q+ 5 (82 - By Q)
! Ko

_ uluB"' (va- %(v -Q)l) -B,|av (3.4)
= BT[-;-B,?Q-n—(Q-Bp)(Bp-n)] dA

To simplify the right hand side it has been used that B? — B = 0 on 8T. The final
manipulations needed to demonstrate that this relation is equivalent to the earlier form,
Eq. (3.1), may be left to the reader. We will henceforth work mainly with the last form,
Eq. (3.4).

Pressure anisotropy and plasma rotation. It is a straightforward matter to
repeat the derivation that lead to Eqs. (3.1) and (3.4), but starting from Eqgs. (1.24) or
(1.23). This leads to the identities,

[r[3n+p+ 2 (9P + 67 V- Q

2 _ 2
+ (- 56?) v ()
Fo (3.5)

- - e 4 1 : :
5 (u_oww - p7'VxVx) 1 (r2VQ - (V- (r2Q))1)| dS
Ll i y1 . .n _1 2 -
" ko Jon (@ V9)(V¥ ) - SIV¥P(Q n)| ds,
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and equivalently,

L[%(Pu +pL+ )V -Q+ (0_4832;)___% iF %Pvtz) 2V . (r2Q)
(B o) (Y2 37 @) 5
- plo ar[Z B;Q-n-(B, Q)(B, n)] dA.

This equation is related to the static, ideal MHD relation through the substitutions,

1
P = S(m+p+ev?),
7
B} - B}, — 0B}~ B}~ poptf, 30
B,B, — o0B,B, - jgpvyv,,

and this indicates how pressure anisotropy and plasma rotation will affect the determi-
nation from magnetic measurements of the plasma parameters f;, puy, and I,.

Definition of the parameters (;, p;, and [;. A variety of definitions for these
characteristic plasma parameters exists, and there would be good reason to avoid all of
them and work directly with expressions for the energy content in the plasma: volume
integrals of p, of (B? — B%)) /20, and of Bg /2p0 (dotless multiplication taking precedence
over division). We therefore define,

B? — Bm p
Wr = pdV, Wy = av, W = o dV (3.8)
T, i 2o % T, 2

where T}, is the plasma volume. As p and B? — B2 vanish outside the plasma, the quan-
tities Wr and W)y are completely unambiguous. Wy is dependent on which 4 contour
is identified as the plasma boundary, and is therefore not such a good intrinsic plasma
property. In order to obtain the most suitable and unumbiguous dimensionless charac-
terizations of the energy content of the plasma we propose the following definitions:

4
Br = pdV,
I unr('Ifz Tp
2
pp= -t f Bi — By dv, (3.9)
por It Jr,  2po

B?
!i = 4 T/ 4 dV
poredi JT, 2o

where I, is the toroidal plasma current and r, is defined by Eq. (2.11).

The particular scaling factor i—p.g rcI? has been chosen because it gives the customary
cylindrical limit, is an intrinsic plasma property, and can be rigorously determined from
the external measurements. Instead of the present normalizing energy (a) %pgrcl? one
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also sees (b) SuoRoI?, (<) V (B2)/2uo, (d) V B2 /2uo, (€) paV I2/87S, or (1) poV IP/25%,
where Rj is the major radius of the confinement vessel, V is the plasma volume, S is
the area of the poloidal cross-section of the plasma, s is the cirumference of the poloidal
cross-section, and

(B?) :j{ B,ds [ ¢ B;'ds
"‘;” g 2"”” (3.10)
52 Koty
3a 1+n2(21ra)

in which a is the plasma minor radius and & = b/a the elongation. Occasionally one
also sees definitions in which the integrals of p, (B? — Bf)/2p0, and B2/2p are taken
over the poloidal cross-section instead of over the volume, and the normalizing constant
is reduced by a factor 27r. or the equivalent.

In our opinion the choice (a) is preferable to any of these alternatives. (b) is not an
intrinsic plasma property. (c) is singular for a plasma bounded by a magnetic separatrix,
and is therefore suspect in all cases. (d) contains two geometric quantities (a and «)
of which the definition for unsymmetric configurations in particular is ambiguous. (e)
and (f) are closest to our definition, and preferable to (b)—(d), but still have to make
reference to the plasma boundary, thereby introducing an unnecessary ambiguity in the
definitions of Sy and p;. Finally, those definitions in which the integrals are taken over
the plasma cross-section instead of over the plasma volume lose the rigorous connection
with the energy content in the plasma.

Some specific multipole moments. Three important instances from the general
class of integral relations given by Eq. (3.4) follow. The integrals sj, s3, and s3 can all
be rigorously determined from knowledge of the magnetic field on 91l.

(1) Selecting Q = re, + ze,:

2

8 = 3p + + L2 )dV 3.11
: f:r( i 20 2#0) i)

In the case when T is the plasma volume, s is related to 38y — pur + I;.
(2) Selecting Q = e,:

B? - B2 B?
PRER LS e 1 3.12
5 /;' (p 2p0 2#0) (212

When T is the plasma volume, s; is related to By + pr + ;.
(3) Selecting Q = re,:

£y fr(Zp P B—g) v (3.13)

Ho

When T is the plasma volume, s3 is related to 26y + I;.
The integrals s; and s, were given in [31]. They can be combined to eliminate one
of the three quantities 8y, s, and /;; in particular, after eliminating ur they provide an
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estimate for B1+1;/2. This calculation does involve a large aspect ratio approximation,
because the expression for s has a factor r~! in the integration, and that for s; does
not. If an independent measurement of uy is available (a diamagnetic flux loop), then
separate estimates can also be obtained for 87 and /;. L.L. Lao [33] employs s3 together
with s; and s in order to obtain a separate identification of 8y and I;, without the use
of a diamagnetic measurement. This approach relies on the volume average (B2 /puo)
being different from (B;‘; /2po0). It provides analytical underpinning for the empirical
observation (discussed further in Section 5) that full MHD equilibrium calculations allow
a separate identification of f; and [; for sufficiently large deviations from circularity.

Systematic sets of moments. The class of all axisymmetric poloidal vector fields
is still too large to deal with in a systematic manner. In order to see how much further
Q may be restricted without loss of information it helps to consider the case where T
coincides with the plasma boundary. (No measurements further out can provide more
information on the plasma). In this case the right hand side of Eq. (3.4) reduces to

1 2

f; - Tto B;Q ndA

and it is seen that Q may be restricted to any class of axisymmetric, poloidal fields for

which (Q-n) generates a complete set of functions on 0. Using this freedom, Eq. (3.4)

may be simplified in several ways:

(a) Let Q = Vy, where A*y = 0; this eliminates the toroidal field term. A complete
basis of solutions to A*x = 0 can be obtained in a variety of ways, the most generally
useful analytical approach being separation in toroidal coordinates. See Appendix B.

(b) Let Q = V¢, where A¢ = 0; this eliminates the pressure term. Separation in
toroidal coordinates is again indicated.

(c) Let Q, +1Q. = f(r + iz) for analytic f (and i = /—1); this simplifies the poloidal
field term to a form that invoives only Bg . Analytic function theory provides many
different bases of solutions, of which the set of monomials, f = w™ and f = —1w™,
for w = (r — ro) + (2 — 29) and (ro, 20) an interior point of 1, is the simplest.

The choices (a) and (b) do not quite provide a complete set of solutions for Q, as the

differential equation imposes a certain consistency constraint on the boundary values

of (Vx - m); all functions Q constructed by method (a) satisfy § r=!(Q -n)ds =0, and
those constructed by method (b) satisfy § #(Q -n)ds = 0. Therefore, to a complete set

of solutions obtained from either A*y = 0 or from A¢ = 0 one additional function Q

must be added for which (Q - n) does not satisfy the associated constraint. A function

that is suitable for either case (a) or case (b) is Q = (r — ro)e, + (z — zp)e., where

(70, 20) is an interior point of Q.

The first few integrals obtained by method (c) will now be shown explicitely. For
that purpose we define the generalized pressures Py and P; according to,

1
Py=p+ 2——(33 —Btzo)s
Ho

: (3.14)

1
Pi=p-— B? - B%) + — B2,
1=Pp %(z i0) 2p0 7
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Notice that Py vanishes outside the plasma, and therefore the contribution of Py to the
integrals is an invariant quantity (in the sense introduced earlier, viz. independent of
the precise location of the contour 811). The contribution of P; does not have that
pleasant property.

Then, selecting f =1, Q = e,:

f r=1P, dV
T

/OdV
T

/(2P0 +rlzP))dV
T

Selecting f = —1, Q = —e.:

Selecting f = w, Q = ze, + ye,:

Selecting f = —1w, Q = ye, — ze.:
[ r"yPl av
T
Selecting f = w?, Q = (2% — y?)e, + 2zye.:
f (4zPy + r~1(2? — y?)Py) dV
T
Selecting f = —1w?, Q = 2zye, + (y? — z2)e,:
f (4yPy + 2r lzyPy) dV
T
All the above integrals can be rigorously evaluated from the external magnetic measure-
ments. Notice that whenever both Py and P, appear in an integral, the contribution
of P is less by a factor involving the inverse aspect ratio. It appears that moments of

Py may be of some special interest, considering in particular that these moments are
invariant quantities.
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4. EVALUATION OF THE CURRENT MOMENTS FROM MEASURED DATA

In this Section we are concerned with the problem of constructing numerical ap-
proximations in terms of the magnetic measurements for the boundary integrals that
occurred in Sections 2 and 3. It is shown how methods that are familiar from the treat-
ment of ill-posed linear equations and from multivariate statistical analysis can be used
to obtain accurate discrete approximations, and an approach to the robust treatment
of failing or wildly erroneous signals is initiated. The methods that are discussed in
this Section are applicable in a wide variety of circumstances, and for many readers this
may be the most valuable part of the paper. It should also serve as an introduction,
in a linear context, to the method of function parametrization [34]-(36], to which we
return in Section 7. For a general discussion of the physical characteristics of the various
kinds of magnetic diagnostics we refer to [37] and [38], while [39] provides a detailed
discussion of the engineering issues related to the implementation of these diagnostics
on one particular machine (TFTR).

General considerations. In practice there may arise several complications when
an integral such as §, p'(£B, + xBs)ds, for given functions ¢ and , is to be ap-
proximated from the magnetic measurements: (a) Only a finite set of measurements of
B, and B, is made, and the precise nature of these measurements is dictated more by
engineering considerations than by considerations from numerical analysis. (b) Actu-
ally, instead of a local B, or B, one often measures integrals of type §,, w;(s)By(s)ds
or §,q wi(s)B,(s)ds. (c) Bp, and B, may be measured on different contours, or not
even on smooth contours at all. (d) The measurements involve a random error. (e)
Sometimes an individual signal may be completely wrong.

Complication (e) will be ignored initially, but we return to it in the final subsec-
tion. The discussion here will be restricted to the problem of the approximation of the
integrals given in Section 2, which are linear in the magnetic field components, but the
analogous treatment for the integrals of Section 3 can easily be developed by the reader.

Let numerical approximations in terms of m measurements, {g;}1<;<m, be wanted
for a collection of n moments, {p;}1<;<n. Each of the ¢; and p; is defined by a linear
expression in terms of the poloidal components of the magnetic field on 8Q). For each
moment one may therefore postulate a numerical approximation that is linear in the
measurements: p; =~ ) .c;qi, or p =~ CTq. (C has size m x n). The problem is to
determine an optimal coefficient matrix C. Presumably, C, once determined, will be
used many times, and we assume that efficiency in obtaining this matrix is not an issue.

A linear equation. By numerical simulation and/or in the course of calibrating the
diagnostic system, one may obtain for a large number of current distributions (indexed
by a, 1 < a < N) the values of the current moments, p,, and of the corresponding
measurements, q,. One may then attempt to determine the matrix C by straightforward
least squares optimization:

C to minimize Z Wo ||Pa — C‘Tqaﬂz/ za Wa, (4.1)

22




for given nonnegative weights w,. The averaging over « that is implicit in Eq. (4.1) will
henceforth be denoted by the bracket pair (-), so the objective function above becomes
(Ilp — €% q|?). The minimum is attained for C determined by

)

{a@") - €= (ap"), (4.2)

which has a unique solution provided that {(qqT) is not singular.

The obvious difficulty with this line of approach is that (qqT) is likely to be very
ill-conditioned. Routine methods are however available for dealing with such near-
singularity in a system of linear equations in order to obtain an approximate solution
that is stable with respect to small changes in the data. Numerical analysts refer to
[40]-[42], and employ some form of quasi-inversion; either by selecting a least-squares
solution in a subspace on which (qq”) is well-conditioned (‘truncation’), or through
the introduction of a stabilizing functional (‘damping’). Statisticians employ the same
methods, but call these principal components regression and ridge regression respec-
tively; see for instance [43, ch. 8], [44, ch. 8], and [45, ch. 6]. A quick review of these
methods is given in the next subsection.

First, however, it is useful to provide a slight generalization of (4.1) and (4.2), namely
to allow also a constant term in the linear relation between p and q. Thus we seek to
determine coefficients py and C so as to obtain in a stable manner an approximate
minimum of the objective function,

I={|lp-po— C"ql?). (4.3)
The minimum of this function is attained for C given by
{(@a-a)a-a7) C=(a-a-»), (4.4)

and po = p — €7q, in which § = (q) and p = (p). The matrix that occurs on the left
hand side of Eq. (4.4) is the (sample) dispersion matrix associated with the data (qq)a,

5=(a-a)(a-a") (4.5)

The generalization to Eqgs. (4.3) and (4.4) is needed already if all the magnetic mea-
surements and moments are scaled to correspond to unit plasma current.

Stable solution methods. The dispersion matrix S is symmetric and positive
semi-definite, and therefore has m eigenvalues, A? > ... > A2 > 0, with corresponding
orthonormal eigenvectors, ay,...,a,,. Then,

5= E Aaal, s1= Z A 2a;aT (4.6)
1=1 )

(the inverse existing only if all A? > 0). Ill-conditioning of S is equivalent to A2, /A? « 1,
and in order to make Eq. (4.4) well-posed it is necessary to reduce in some sense the

influence of the smaller eigenvalues.
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The first popular procedure for obtaining a stable approximate solution to the linear
equation (4.4) is variously known as truncation, selection, quasi-inversion, or principal
components regression. The method is simply to truncate the expansion for S~ ! given
in Eq. (4.6) at some index my < m (possibly mo < m), and thus to set

c=3"xaal((a-q)p - p)7) (4.7)

i=1

The choice of the value of mg must depend on the accuracy with which the measurements
are made. In particular, if the measurements q are assumed to suffer independent
random errors coming from a normal distribution with mean 0 and width o, then a
value of mg should be chosen such that Afno ~ g2, A preliminary transformation of
the measurements in order to make the expected distribution of their errors equal and
independent is therefore advisable.

The other popular procedure for obtaining a stable approximate solution to Eq. (4.4)
is to employ damping (equivalently, to employ a stabilizing functional, ridge regression).
Using that approach, S is replaced in Eq. (4.4) by S+ 021, with 0? a (small) parameter,
so that

=Y el ((a- 2@ - P (438)

More generally one can use S+ E, for any well-conditioned positive definite E, and thus
determine C from the equation

(S+E)-C={a-a)p-p)). (4.9)

Increasing o2 or E makes the matrix equation better conditioned, but also increases the
bias in the resulting coefficients C. In the present context a good case can be made for
the damping method, when E is chosen to correspond to an estimate of the dispersion
matrix for the random errors in the measurements. Then (assuming S was computed
from idealized data) the coefficient matrix C will be optimal in a least squares sense for
the actual measurements.

Further discussion. An important aspect of the above procedure is that it can
work well with measurements that would be less suitable if analytical procedures were
to be used to derive the approximations for p in terms of q. For instance, returning
to our original concern of obtaining the value of the integral §,, p(€By + xB,)ds
from measured data, the use of analytical approximations would favor equidistant point
measurements of the magnetic field, whereas more accurate data are obtained with
somewhat extended coils, and the distribution of the coils over the vacuum vessel will
anyway be restricted by engineering considerations. Local measurements of the poloidal
field in particular suffer from alignment errors and from perturbations due to (nonax-
isymmetric) nearby eddy currents, and these measurements should almost certainly be
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abandoned in favor of measurements made using saddle loops and partial or variable-
winding Rogowski coils.

The proposed procedure can easily be employed so as to make good use of redundant
information, such as a mixture of point B, measurements, partial or variable-winding
Rogowski coils, full flux loops, saddle coils, and data on the currents in the external
poloidal field generating coils. It is furthermore possible to combine this procedure with
any standard method that yields a numerical approximation for the moments in terms
of the measurements, namely by applying the presently described methods in a defect
correction manner [46]. (A statistician would consider this to be a Bayesian procedure).
This has the numerical advantage that a stronger stabilizing term can be employed to
achieve comparable overall accuracy.

Treatment of erroneous measurements. As the magnetic signals are used both
for machine control and for routine data analysis, it is particularly important to have
an algorithm that will deal effectively and efficiently with failing or erroneous signals.
On the common assumption of normally distributed errors it has been said that “ev-
erybody trusts it [...] for experimenters believe it is a mathematical theorem, whereas
the mathematicians see it as an experimental fact.” (see (47, p. 2]). We consider now
how to deal with departures from normality.

Let us define for any measurement vector q the transformed measurement vector
x = AT(q—q), where Ais the matrix that has as columns the eigenvectorsa, (1 < 1 < m)
of the dispersion matrix. The original simulated measurements, q,, shall have been
scaled (and perhaps transformed) in such a way that they are assumed in the experiment
to suffer independent random errors coming from a normal distribution having mean 0
and width 0. We introduce the functional J(q; o),

m 2
J(q;0) = ; ATIIJ (4.10)
Then (J) ~ m, and measured values q**? for which J(q®?;0) > m are suspect.

Consider now an actual measurement, q°*?. If it is known that one or more specific
components g;' 7 are in error, then these components can be restored to that set of values
by which the quadratic form J is minimized. This is a simple and valuable procedure,
immediately available as a by-product of an eigenanalysis on S, and requires only the
solution of a system of linear equations having dimension equal to the number of failing
signals.

It is however far from easy to design a procedure that will decide effectively and
efficiently whether one (or more!) signals really are wrong. The preferred approach
for related problems in statistical analysis is to use a robust method [47], (48], viz.
a method that is not overly sensitive to outlying data without requiring their explicit
identification. (The simplest example is the use of the median rather than the mean for
estimating a location).
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One robust procedure to deal with possibly corrupt data q®*? would be the following:
routinely perform the subsequent data analysis in terms of a vector @ = q°*? +h, where
h is such that

J(@*? +h;0) <m
R (4.11)
[|k||; is minimal
where || - [|; is the /; norm. In fact there is a choice of other norms that are preferable

to I; from a computational point of view and that also lead to a robust procedure; see
[47, ch. 6]. An algorithm as outlined above must necessarily be nonlinear, and some
further investigation will be required in order to develop a fully satisfactery procedure.
Nevertheless, the simple structure of the objective function J provides confidence that
such a procedure can be developed.
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5. FULL EQUILIBRIUM DETERMINATION FROM MAGNETIC MEASUREMENTS

The problem that is considered in this Section is the complete solution of the equa-
tion for axisymmetric ideal MHD equilibrium, including the approximate determination
of the profiles pop'(¢) and FF'(¢), aiming at an optimal fit to the external magnetic
measurements. We review the published studies in this area, initially concentrating on
the physical content of the work, and then comparing the various numerical methods
that have been employed. We also propose a novel fast algorithm for the current profile
determination.

The discussion will be restricted to isotropic, static equilibria, for which the repre-
sentation j; = r dp/dy+r~'uy ' FdF /dy holds in Q2,, with a parametrization p = p(¢, @)
and F' = F(¢,&). The problem is then to determine the parameter vector @, the value
of the flux function at the plasma boundary, ¥, the plasma boundary contour 8Q,, and
the solution ¢(r, 2).

General considerations. In order to allow a determination of the profiles pop'
and FF' the available measurements must provide sufficient redundancy beyond what
is required to solve the elliptic boundary value problem for ¢ with a known current
profile, Eq. (1.16). For instance one may have data for both ¢ and d¢¥/dn on 80, or
alternatively one may know thé contribution to the field due to the currents in external
coils and in addition have some local measurements of the total magnetic field. In either
case the determination of pop’ and FF' from the external field measurements is a typical
difficult ‘inverse’ problem, and is certainly ill-posed [40]-[42], if no further restrictions
on these profiles are given. The fundamental task for the numerical analyst is thus to
find a suitable method of quasi-inversion or stabilization for this problem.

There is, however, remarkably little mathematical understanding. Even in straight
geometry (the limit of infinite aspect ratio), in which the equilibrium is governed by a
Poisson equation with only one unknown profile function, Ay = — f(¢), the basic ques-
tions of the existence and uniqueness of solutions to the inverse problem are unanswered.
A special case that is understood arises in straight geometry, when in addition the mea-
surements are consistent with a solution that has concentric circular flux surfaces; in
that case the measurements are automatically consistent with any profile function that
gives the correct total current, and there is therefore an infinite degeneracy. In toroidal
geometry there exists also a family of equilibria, all having the same flux surfaces, that
is degenerate with respect to the interpretation of the magnetic measurements [49]-
[52]. This is discussed further in Appendix C. It is not known whether any degeneracy
remains in case the measurements do not correspond to one of these special cases, but
it is clear that the problem remains ill-posed. The fundamental difficulty is that the
magnetic field measurements are sensitive only to poloidal variations in the current pro-
file, whereas f(¢) in straight geometry, or pop'(¥) and FF'(¢) in toroidal geometry,
primarily influence the radial distribution of the current.
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The studies of Luxon and Brown. The first published extensive numerical stud-
ies that involved a current profile optimization aiming to fit a set of magnetic measure-
ments were done for the Doublet IIa and Doublet III experiments, and were presented
in [63]. This paper gave clear indications about the possibilities and limitations of the
magnetics analysis, and we review it here in some detail.

The Doublet III studies reported in [63] are based on a system of magnetic diag-
nostics consisting of 24 one-turn loops, measuring the poloidal flux near each of the
24 poloidal field shaping coils, and 12 partial Rogowski coils, measuring the average
poloidal field over a segment spanning two field-shaping coils in the poloidal direction.
A plasma current measurement obtained from a full Rogowski coil is used for compari-
son purposes only, and there is no diamagnetic measurement. The arrangement of these
diagnostics and of the polcidal field shaping coils on Doublet III is illustrated in Fig. 1.
(This Figure also shows the location of 11 point magnetic field probes, which have been
used in different work).

Luxon and Brown employ a variety of current profiles, of which the following (with
unimportant change in notation) is illustrative,

RN ssime :
e a(ﬁ%wt (1- ﬁ)T) g(¥in)  infl (5.1)
0 in 01,
where
g(¥;7) = exp(—7*(1 — 9)?). (5.2)

The normalized flux function J; is defined by J = (Y — ¥)/(Ya — ¥3), where ¢, is the
value of ¢ on the magnetic axis and ; is the value on the plasma boundary (these are
not known a priori). The quantity Ry is a characteristic radius of the machine.

The free parameters, a, f, and v, are selected to minimize the (chi-squared) cost
function,

. )2
Jzzm—a;al (5.3)

where B; and B; are the measured and the calculated values of some component of the
poloidal field at position 1, and o; is the standard error of the measurement. The f?,-
are calculated as functions of (@, f3,4) by solving the equilibrium equation subject to
boundary conditions obtained from the measurements of the poloidal flux 4. (These
boundary conditions are imposed in an indirect manner. The ‘infinite domain’ Green
function equilibrium solver GAQ [54] is employed, and the currents in the external
coils are adjusted in order to let the computed solution match the boundary data for
). Minimization of J as a function of (a,f3,7) is carried out using a standard library
routine.

By comparison of Eq. (5.1) with the equilibrium relation, Eq. (1.16), one sees that the
term containing r/ Ry corresponds to the contribution of uop’, and the term containing
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Ry /r corresponds to FF'. The parameters «, # and 7 may be seen to be related roughly
to the toroidal current, the poloidal 3, and the internal inductance (or the peakedness
of the current profile). Notice that the parametrization in Eq. (5.1) assigns the same
shape, g({[;v; 7), but independent weighting factors to the contributions from pop' and
from FF'in the current density.

Luxon and Brown give contour plots of J as a function of # and 7, for fixed, op-
timal a. A well-defined minimum generally exists for non-circular equilibria, but for
near-circular equilibria the contours become very elongated ellipses, and a separate
identification of § and 7 is no longer possible. This is understood to correspond to
the impossibility of separately determining Sy and [;/2 for circular cross-section. They
proceed to study different expressions for the current profile, including some with four
free parameters instead of three, but conclude that three parameters, equivalent to I,
Br, and l;, are adequate to fit the magnetic measurements. Determination of a fourth
parameter becomes marginally possible only at the most highly shaped equilibria.

Approximately the same minimum value of J, and near-identical values for I;, gy,
and /; at the optimum, are obtained for a variety of mathematical parametrizations,
indicating that (for noncircular cross-section) these three physical parameters are indeed
well-determined by the external magnetic measurements. For circular cross-section one
is only able to determine the two parameters I, and f; + I;/2. Other properties of
the plasma which are reported to be accurately determined by the magnetic analysis
are the location of the plasma boundary (and as a consequence also the value of the
safety factor at the boundary), and the position of the magnetic axis. For the plasma
boundary this comes as no surprise; we will see in Section 6 that the plasma boundary
is well determined even without the need for a determination of the current profile in
the plasma. As regards the location of the magnetic axis the result is less transparent,
as analytical approximations for the magnitude of the shift of the magnetic axis with
respect to the geometric center of the cross-section have to rely on a specific model for
the current distribution in the interior of the plasma. Apparently this shift is not too
sensitive to the actual current distribution.

As the determination of a fourth parameter in the current profile is at best marginally
possible, it follows that the magnetic measurements alone do not provide sufficient
information to determine separately the shape of the ugp’ and FF' terms. Additional
information, in particular a measurement of the location of the ¢ = 1 surface, is employed
in the analysis of D-III data in order to obtain a more accurate current profile.

MHD equilibrium determination on JET. Descriptions of the experimental
system and of the various codes employed for magnetic data analysis on the JET toka-
mak have been given in [55] and [56]. Here we are concerned with the methods for
full MHD equilibrium analysis, developed by J. Blum and co-workers, and described in
[67]-[60]. The physics content of these studies is very similar to the work of [63], but
the numerical methods employed are entirely different.

On JET the poloidal flux function is measured at 14 locations on the outside surface
of the vacuum vessel, using 8 full flux loops and 14 saddle coils. The component of
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the poloidal field tangential to the vacuum vessel is measured by a system of 18 local
magnetic probes, mounted on the inside of the vessel. An independent measurement
of the plasma current is available, but not used in the work described here, and no
mention is made of a diamagnetic flux measurement. Fig. 2 shows the layout of the
JET magnetic diagnostics.

For the JET studies the current profile is parametrized as,

“(ﬂ%g(':’;i m)+(1 —ﬁ)@g({b"; 1) i,
0 in 0,

= (5.4)

where, as in [63], 1}; = (¢ — ¥»)/(¥a — ¥») (in which ¢, and ¢, are the value of ¥ on
the magnetic axis and on the boundary), and Ry is a characteristic radius of the device.
For the profile function g(;+) either a polynomial

9(%;7) = ¥ + 19? (5.5%)

or a power function

9(¥;7) = 9" (5.5%)

is selected. There are at most four free parameters, «, 8, 71 and 72, but one or two of
these may be fixed in advance, or it may be required that 4; = 7,.

As in the work of [63], the optimization criterion is minimization of a cost function,
J, defined in terms of the poloidal field measurements, Eq. (5.3), whereas the measured
flux values provide the boundary conditions for the equilibrium solver. Information on
the the currents in external coils is not needed as input, nor is it obtained from the
analysis. The equilibrium solvers used at JET are the IDENTB and IDENTC codes,
which are related to the SCED code of J. Blum [68]. These codes employ a finite
element discretization together with a Newton iteration scheme, as described in detail
in [60).

The JET studies show that from the magnetic measurements alone, two or three
parameters can be determined: I, and By + I;/2 for low-£, near-circular plasmas, and
I, Br, and [; for non-circular plasma or at high f. The minimum elongation for which
(at low B, and with the magnetic diagnostics available) the parameters 8; and [; can be
separated is reported to lie around b/a ~ 1.25. An indication of the minimum 8y + I;/2
for which f; and /; can be separated at circular cross-section is not available.

The IDENTC code allows specification of the value of the pressure on axis, or of the
radial profile of the pressure, in addition to the magnetic data. With this additional
information one more parameter in the current profile can be determined, separating
and [; in the circular case, and providing both the coefficients 4, and 42 for elongated
cross-sections. This experience is consistent with the results obtained in the D-III
modelling.
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A study for ASDEX. Winter and Albert present in [61] a method for deter-
mining the separatrix location from magnetic measurements, with application to the
ASDEX tokamak. The next Section will discuss specialized methods for plasma bound-
ary identification, but as Winter and Albert rely on a solution of the MHD equilibrium
equation, their work is discussed here.

Only a limited number of local magnetic measurements is available on ASDEX: the
toroidal plasmai current, and two flux- and two field measurements (one of each on the
outer and on the inner side of the cross-section), and these are reduced further to three
signals by considering only I, and the difference signals 64 and 6 B,. However, in [61]
the field due to the external currents is also assumed to be known.

Their current profile parametrization has the form,

ii=a(pp+ (1=72)F + 1) (5.6)
r

in the plasma region {p, and j; = 0 in {J,. In the present case, Ry is the major radius

of the geometric center of the plasma boundary, and {b' =Y — Y.

As ASDEX has a near-circular cross-section, a separate identification of the param-
eter B is not expected to be feasable (this is confirmed by the analysis). Winter and
Albert therefore supply an estimate of # based on other information, and perform the
minimization of the cost function over the parameters a and <4 only. The Garching free
boundary equilibrium code [26], which solves the equilibrium equation for given exter-
nal field, is employed, and the three measured signals mentioned before are all available
for the the profile determination.

The procedure has been tested on numerically generated magnetic field data, which
may correspond to a different functional form for the current profile than the one used
in the reconstruction, Eq. (5.6). Good agreement between the reconstructed magnetic
measurements and the input data is obtained at the optimum (a,) for a range of
estimated B, and over this range the computed separatrix location remains relatively
immobile. This confirms that § is not well determined by the magnetic analysis, and
shows that the separatrix location is well determined. Winter and Albert report that
Br + 1;/2 is also accurately determined.

An interesting limitation on the performance of the reconstruction algorithm is
noted in [61]. A current distribution according to Eq. (5.6) has I; values in the range
0.8 < I; < 2.2 (they claim). If the guessed input value of § is such that the correct value
of B;+1;/2 cannot be reproduced using this current distribution, then it turns out that
there may also be a large error in the computed separatrix location. This is to be taken
as an injunction to employ a current profile parametrization that admits a sufficiently
large range of [; values.

Recent work for Doublet III. L.L. Lao et al. describe in [62] a new code for
MHD equilibrium determination, EFIT, which is significantly faster than the code used
by Luxon (53], and has been employed for routine analysis of the D-III magnetic mea-
surements.
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The diagnostics used in EFIT include the 24 flux loops and 12 partial Rogowski
coils that were used also in [63], and furthermore include 11 local magnetic field probes,
one full Rogowski loop, and optionally a diamagnetic flux loop. The layout of these
diagnostics on D-III has been shown in Fig. 1. In addition the value of the safety factor
on axis, g,, may be specified as input to EFIT.

The two terms in the plasma current profile, corresponding to uop' and to F'F', are
parametrized using a polynomial model, constrained by j; = 0 on the plasma boundary.
Good results are obtained by using a third degree polynomial for pop' and a linear
function for FF', whence

fi = (al;,[:—i— a2$2 -+ as$3)r -+ ﬁlar_l (5.7)

in 0,, and j; = 0 in 0,, where again J; = (Y — ¥»)/(¥a — ¥p). Alternatively a second
degree polynomial model for both pop’ and F'F' has been used.

An ‘infinite domain’ equilibrium solver is employed in EFIT, and the vector of
unknowns contains the profile parameters (aj, a2, a3, ;) as well as the values of the
currents in the external coils. The optimization criterion is a cost function defined in
terms of all the measurements and any constraints between the profile parameters:

J = z (M M Z (5.8)

where N,, and N. denote the number of measurements and the number of constraints,
M;, M;, and o; denote the measured value, the computed value, and the error associated
with the 1-th measurement, and H;, H;, and ¢; denote the given value, the computed
value, and the uncertainty associated with the ¢-th constraint.

The results described in [62] are consistent with those obtained by Luxon and Brown
[63], and in the JET studies [566]. Without a specification of g, or a diamagnetic mea-
surement, two independent parameters can be determined for approximately circular
plasmas, and three for elongated configurations. Assuming isotropic pressure, a dia-
magnetic measurement allows to separate f; and [; in the circular case. Specification
of g, allows to determine a fourth parameter.

Good agreement is found between the diamagnetic f; and the f; obtained from
poloidal field and flux measurements for elongated plasma (b/a > 1.15) “covering a
wide range of plasma operating conditions”. Unfortunately there is no quantitative
discussion in [62] of the influence of high power neutral injection (which will cause
the pressure to become anisotropic) on the difference between these two methods for
determining f;.

Recent work for Tuman 3. A recent code for full equilibrium determination from
magnetic measurements on the Tuman-3 tokamak was described in [63]. The diagnostics
used in this work include measurements of the poloidal flux function along two different
contours L; and L, encircling the plasma column, an independent measurement of the
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toroidal plasma current, and a diamagnetic measurement. The parametrization for the
plasma current is

o = an(oad + (1 = a2)§?) -+ Ar(Bad + (1 - BT (5.9)
in 2y, 7y = 0 in Q,, where again ¢ = (¥ — ¥3)/(¥Ya — ¥p)-

A Green function method is employed to solve the equilibrium equation (1.16) for
given parameters (ay, az, f1, f2), subject to Dirichlet boundary conditions obtained from
the flux measurements on the contour L, (presumably L, is located outside L;). The
parameters are determined in a two stage procedure. For given values a; and f; the
parameters a; and f; are determined from the condition of reproducing exactly the
measured toroidal current and diamagnetic flux, while a3 and B3 themselves are deter-
mined from the condition of chi-squared minimization of the error in the measurements

made on L, viz. minimization of the cost function,

-

N
J=N* (—'!"—;5‘-0-)—2 (5.10)
i=1 t

Here, N is the number of measurements made on Ly, ¥; is the measured value and v,
the computed value of the flux function at location 1, and o; is the standard error of
the i-th measurement.

Consistent with all the studies described previously, the Tuman-3 studies show that
only three independent parameters can be determined using this set of diagnostics;
the parameters as and B; cannot be separated. Along each line of constant J in the
(a2, B2) plane, the resulting current profile shows very little change. Ref. [63] suggests
that beyond the plasma current and the diamagnetic flux also the internal inductance {;,
the poloidal beta f,, the safety factor on the plasma boundary g, and the safety factor
on axis, g, are well determined by the magnetic analysis. As regards ¢, a more specific
investigation seems desirable, as all other work suggests that the Tuman-3 diagnostics
would not suffice for the accurate determination of this parameter.

Possibilities and limitations of magnetic analysis. All the studies described
above show that the external magnetic measurements, even if these include a diamag-
netic flux loop, provide only limited information on the interior structure of the plasma
current profile. One obtains the plasma current [;, the parameters f; and /;, the plasma
boundary 9Q1,, the current center (r., 2.), the position of the magnetic axis (r,, 2,), and
the safety factor on the boundary, ¢,. The field due to the external currents is ac-
curately obtained even if these currents are not measured, and with that information
included, only three of the characteristic plasma parameters (namely I;, 8y, and [;), can
be considered to be genuinely independent.

In Sections 6 and 7 we will discuss fast specialized methods for the identification of
the plasma boundary and for the determination of characteristic parameters of the equi-
librium, including all the parameters listed above. It will be seen that these methods
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can be both very efficient and accurate, and the full equilibrium analysis as described
in this Section is therefore not required for routine data analysis, but only to provide
a standard of comparison for the more rapid and specialized methods. In fact it must
be recognized that the full equilibrium analysis over-fits the data, by producing a com-
plete solution to the equilibrium equation in the interior of the plasma, although the
measurements only warrant a specification of some integral characteristics. The danger
exists that those physicists who are not familiar with the limitations of the magnetics
analysis will hold for real also those details of the ‘solution’ that are strongly dependent
upon the specific mathematical parametrization that is employed.

An important virtue of the studies described above is that they have demonstrated
the limitations to the analysis of magnetic measurements alone. Clearly it remains a
desirable objective to be able to determine on a routine basis the complete MHD equilib-
rium configuration and its time evolution throughout a discharge, and the methods used
in the above studies will remain relevant for equilibrium determination from an appro-
priate extended set of diagnostics. The possible réle of information on the safety factor
on axis, gu, or the location of the ¢ = 1 surface (if it exists) has already been demon-
strated. Significant additional information on the current profile in the interior of the
plasma could come from Faraday rotation measurements [64]-[67], where it would be
important to analyze these measurements in conjunction with the magnetic diagnostics,
and not in isolation. Further diagnostic input could be in the form of purely geometric
information on the shape of the flux surfaces (as available from electron temperature
measurements in particular). The use of such geometric information for current profile
determination was proposed by Christiansen and Taylor [68], and is developed further
in Appendix C.

It should be pointed out that some codes exist for equilibrium determination from
a consistent analysis of a wide range of diagnostic systems, notably the ZORNOC code
[69], [70], developed for the analysis of ISX-B data, and the TRANSP code [71], de-
veloped at Princeton, but neither of these codes appears suitable for routine analysis of
many time slices for a single discharge. Development of procedures for efficient MHD

equilibrium analysis based on a range of diagnostic systems remains an open challenge.

Comparison. of numerical methods. So far in this Section the review of pub-
lished work has concentrated on the physics content of the studies, without more than
a brief mention of the numerical procedures employed. We now turn to that issue.

First it must be pointed out that each of the groups whose work was discussed
above has used a different equilibrium solver; we have seen finite difference methods
involving a Buneman rapid solver, a finite element method employing Newton itera-
tion, a ‘moments’ method, and even the Green function method (which must compete
with unaccelerated relaxation and Gaussian elimination for being the worst possible

procedure). Another, more fundamental, distinction is that between the use of a ‘finite
domain’ or an ‘infinite domain’ equilibrium solver, corresponding respectively to fitting i
only to local measurements of the field and flux, and to using also information on the :
currents in external coils. These distinctions are not the subject of this paper, but they
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should be noticed as a warning against facile comparisons between the the work of the
different groups.

The optimization problem, determining the current profile that fits best to the
magnetic measurements, contains two different sources of nonlinearity. First there is
the complicated dependence of the cost function, J, on the unknown parameters, while
for fixed parameter values the solution of the p.d.e., Eq. (1.16), is also in general a
nonlinear problem. One would like to have a reasonably efficient numerical scheme for
the combined problem.

In the work of Luxon and Brown [53] the iterative procedures for these two non-
linearities are nested: an outer iteration varies the estimated values of the parameters,
and for each parameter set the cost function is evaluated from a fully converged solution
to the differential equation. In fact, the Jacobian of J with respect to variations in the
parameters is also evaluated repeatedly, and this has to be done numerically, so that
the p.d.e. must be solved even more often. This treatment of the outer nonlinearity,
together with the use of an inefficient basic equilibrium solver, explains the extremely
long running times of the algorithm of [63].

In Blum’s work [57]-(60] the equilibrium equation is discretized by a finite element
method, which is solved using Newton iteration [68]. For the combined parameter
estimation and equilibrium problem again a Newton iteration scheme is employed, as
described in detail in the forthcoming book [60]. This leads to an efficient algorithm,
with running time quoted as several seconds on a Cray-1.

In the work of Winter and Albert [81] (following a suggestion of K. Lackner), and
also in work of Lao et al. [62], a functional form for the current density is employed that
is linear in the unknown parameters: porj = ), @,;¢:(r,%¥). This makes it possible to
interleave the two iterative procedures in a relatively straightforward manner. At stage
n of the procedure one has the approximate parameter vector @) and the approxi-
mate solution ¥%(*). Then the following linear problems are solved by a suitable direct
method: for each 1 the inhomogeneous equation, A":/)E"“) = —gi(r,¥™) in 0, subject
to homogeneous boundary conditions [1/)5-““1 = 0 on 411), and in addition the homo-
geneous equation, A*x("+1) = 0, with the correct inhomogeneous boundary conditions.
(In the standard case the boundary conditions are linear, and x has to be computed
only once). Next @™*1) and #("+1) are computed from the solution to a linear least
squares problem; with

p=xtt ey ap!" Y (5.11)

@(m+1) ig that parameter vector & by which the cost function J(¢) is minimized, and
¥(n+1) js the corresponding minimizing function 1.

A widely used method to solve the equilibrium problem with known current profile
is to employ Picard iteration, solving at each stage L*¢(**1) = —pu,rji(r,¥)) by the
use of a rapid direct solver [26]. The work involved in the procedure for equilibrium
determination that is employed in [61] and [62] is seen to be a small multiple (corre-
sponding to the number of free parameters in the current profile) of the work involved
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in the solution of the problem with known current profile via Picard iteration. A signif-
icant limitation is that the form of the profile is restricted to be linear in the unknown
parameters.

Fast optimization of parameters. It appears possible to construct a consider-
ably faster algorithm for the optimization (with respect to the measured data) of the
parameters describing the current profile, and this without requiring that the parame-
ters enter linearly in the profile; it may be assumed that rj = f(r, ¥, @) in the plasma,
without specific restrictions on the functional form of f. The proposal is to determine
the parameters & not from the requirement of obtaining a best fit o the external mag-
netic measurements directly, but rather from the requirement of obtaining a best fit to
a set of moments of the current, as obtained from these measurements according to the
theory of Section 2.

We take as the starting point any efficient algorithm for solution of the equilibrium
equation with known current profile (nonlinear in ¥); our favorite method, and the
fastest available, is multigrid relaxation [72]-[75], but some form of Picard iteration
based on a rapid direct solver [26] or a Newton iteration scheme as used by Blum [58]
is also suitable. Next, in between the iterations of this basic equilibrium solver we
interleave the parameter optimization procedure, correcting the parameters @ in order
to improve the fit between the moments derived from the measured data and those
computed from rj (¢, &). In this way the correction to the parameters is found by
purely algebraic methods, and does not require the solution of any auxiliary p.d.e. as
does the method of [61] and [62].

Notice that this proposed procedure is closely related to the usual way in which
a total current constraint is imposed on the equilibrium problem. In that case one
is asked to determine ¢ and A such that A*¢) = —Auerf(r, ) subject to the integral
constraint A fn fdS = I, for given current shape function f and total current I;. No
one writing a standard equilibrium code would seek to impose this constraint in the
manner of [63]. Instead, after each iteration of the equilibrium solver, A is adjusted
in order to obtain the desired total current. This standard procedure may obviously
be extended to more than one constraint, and also to an overdetermined system, to be
solved in a least-squares sense.

The author’s present equilibrium code [74], {75] was written purely to provide a
‘proof of principle’ for multigrid as a method for computing MHD equilibrium. The
code solves equation (1.16) subject to Dirichlet boundary conditions on a rectangle,
which is of no practical interest. However, as a demonstration code it has been entirely
successful, achieving full multigrid efficiency, and solving the equilibrium equation (for
nonlinear right hand side) on a 128 x 128 grid in ~ 120 msec on the Cray-1. In the
context of the interpretation of experimental data a much coarser grid will be adequate,
and it becomes realistic to strive for full MHD equilibrium determination in ~ 20 msec
on a Cray-1. This is in fact close to the timescale that is relevant for active control of
an experiment.

36




6. FAST IDENTIFICATION OF THE PLASMA BOUNDARY

In this Section we consider fast specialized methods for the determination of the
plasma boundary contour 41, and of the magnetic field on 91}, from the external
magnetic measurements. Knowledge of the location of the plasma boundary is important
for control of the experiment, and if in addition the field on the plasma boundary is
known, then the theory presented in Section 3 can be used to obtain estimates for a
number of internal plasma parameters.

General considerations. As for the more general profile determination problem
discussed in the previous Section, the measurements may provide data about both ¢
and 3¢ /dn on 911, or they may provide a specification of the field due to the external
currents, together with some local field measurements. The basis for all fast specialized
methods for plasma boundary identification, and the reason that this problem can be
solved without the need for a complete determination of the plasma equilibrium, is that
in the vacuum region, 1,, bounded by 91, and 911, the flux function ¢ satisfies the
homogeneous equation, £*4 = 0. A solution to this equation that is valid in a region
including 1,, and that agrees with the given boundary conditions, therefore suffices
in principle to determine the plasma boundary, which will be taken to be the largest
closed flux surface inside a given limiting contour. Thus, if both ¢ and 3y//dn are given
on 011, the plasma boundary identification problem appears as one of the classical ill-
posed problems (in the sense of Hadamard): the integration of an elliptic equation from
Cauchy boundary data. A similar ill-posed type of problem arises in case the boundary
conditions include a specification of the field produced by the external currents.

Fortunately, the Cauchy problem for elliptic equations is well-understood [40]-[42].
Stable solution methods may be obtained either by restricting the class of allowed solu-
tions ¢ on 1, to an appropriate finite-dimensional space (truncation, quasi-inversion),
or through the introduction of a stabilizing functional (damping), or through a combina-
tion of these two methods. Most of the successful procedures for fast plasma boundary
identification therefore rely on an approximation of the flux function ¥ by a finite series
in terms of solutions to the homogeneous equilibrium equation,

N
‘IB - 'PO + Z: éjx_j) (6'1)
j=1
in which ¥° represents any known contribution to the flux function (this term may
be absent), and in which the basis functions x; all satisfy the homogeneous equation,
L*x; = 0, on some (annular) region {1y that is known to include the vacuum region 1,.
The coefficients ¢; are to be determined from the measured data.
Let us denote the relevant actual measurements by y;, where 1 < 1+ < M. The
expectation values of the measurements depend linearly on the magnetic field and flux,
and there exists therefore a response matrix @ such that

N
§i=90+) Qijt;, 1<i<M (6.2)
J=1
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where 9; is the expectation value of the i-th measurement when the flux function ¢ is
given by Eq. (6.1). §? is associated with ¥* and the matrix element Q;; is associated
with x;. The response matrix @ will be assumed to be known exactly.

The usual least squares approach to determining the coefficients ¢; is to minimize
the (chi-squared) cost function,

M (v — §:)?
J=Y A (6.3)
=1 o.‘.
where o, is the standard error of the 1-th measurement, and the relation (6.2) is assumed.
This minimization criterion gives rise to a linear representation for the coefficients (¢;);
in terms of the measurements (y;);. Whether this procedure is stable depends on the
choice of the basis functions x;. A more general approach is to replace the cost function
J of (6.3) by a function J, of the form,

P oY it 1 Gl (6.4)
= S el € e ™ = .
=1 0';‘-)' =1 nf ’

where ¢, (¢c;);, and (7,); are constants. The second term in J, is intended to provide
numerical stabilization, and reflects a priori knowledge about the range of values for
the coefficients ¢;. One may set c; to some ‘average’ value of ¢; over all possible states
of the system, and set n; to a measure for the dispersion of the values of ¢;. Then € is
a tuning constant of order unity.

With the minimization criterion (6.4) the coefficients (¢;); are still linearly related
to the measurements (y;);, and the matrix elements in this linear relation can be pre-
computed. Specifically, these matrix elements are obtained by inversion of the relation,

(@' D;'Q+¢D;")e = @D, (y - §°) + €Dy e, (6.5)

where D, = diag(c?) and D, = diag(rp}). In this way a stable approximation ¥ to
the true flux function ¥ in the vacuum region {1, is rapidly computed, after which the
plasma boundary 802, is obtained by finding the largest closed flux surface inside the
given limiting contour. A stable approximation to the magnetic field on 81, is obtained
at the same time. Inside the plasma region 1, the function ¥ must not be considered
an approximation to the true flux function .

In most cases the series (6.1) splits naturally into two parts: an interior solution U,
which is regular throughout 0 and is associated with a current distribution outside (2,
and an exterior solution ¢, which is associated with the plasma currents. The treatment
of the exterior solution is critical for the plasma boundary identification problem, as this
is the part that causes the problem to be ill-posed. The interior solution may be known
from measurements of the currents in external coils, or it may be computed directly
from the magnetic measurements via Green’s representation theorem in the form of
Eq. (1.11), or it may be found together with the exterior solution through optimization
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of Eq. (6.3) or (6.4). In any case, the computation of the interior solution is a stable
process.

A variety of different representations for the field due to the plasma current has been
used; the most important ones being an expansion of the field in toroidal eigenfunctions
[76]-(79], a discrete current filament model (80]-[83], [33], [82], and a representation
via a single layer potential on a control surface [67], [80], (84]. The field due to the
external currents is sometimes assumed known [80]-(83]. It has also been represented
by an expansion having undetermined coefficients, either based on a filament model [33],
[62], or on toroidal eigenfunctions [76]-[79]. A Green function or single layer potential
approach has been used ia Refs. [67], [60], and [84]. The following three subsections
review in more detail the studies based on an expansion in toroidal harmonics, on a
filamentary current model, and on a single layer potential.

Expansion in toroidal harmonics. One well established stable method to in-
tegrate the equation A*¢) = 0 inwards from the boundary data on 811, is to employ
a truncated series expansion in toroidal eigenfunctions of the homogeneous equation.

The toroidal (¢, n) coordinate system about the point (r = ro, 2z = 2), where rq > 0, is
defined by

{ r=rg sinh s‘/(COSh ¢ —cos n) ( )
6.6

z — 29 = rosinn/(cosh ¢ — cosn)

where ¢ > 0, 0 < < 27, and the ignorable coordinate ¢ is ignored. The contour
defined by ¢ = ¢ is a circle in the right half-plane, having radius rgsinh ¢y and center
at (r = ro coth ¢o, z = 2). The corresponding torus has aspect ratio cosh ¢p. The circle
degcnerates to the singular point (r = ryp,z = z) for ¢¢ — oo, and to the axis of
symmetry, r = 0, for ¢y — 0. The metric coefficients of the coordinate system are given
by he = hy = ro/(cosh¢ — cosn) and h, = rosinh ¢/(cosh ¢ — cosn).

The most general solution to A*y = 0 outside the singular point is given by ¢ =
Y' 4 ¢, where

T

ro sinh ¢ = .
M[Z anQu_l(COShg)cos(nq)

3 : (6.7)

+ z biQi_%(cosh ¢) sin(nr))] :
n=1

and
o0

[z a;Pnl_%(cosh ¢) cos(nn)
N (6.8)

+ ) biPL_,(cosh) sin(nr,-)] .

n=1

rosinh ¢

v/cosh¢ —cosn

v =

P™ and Q™ are Legendre functions, for which we follow the notation of [18] and [19]
(See also Appendix C). The interior solution ¢’ is finite throughout the right half plane,
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and corresponds to a field due to currents located on the axis r = 0 and at oo, while
the exterior solution ¢ has a singularity at (rg, 2p), and corresponds to the field of a
multipole current distribution at the singular point.
Similar series representations may be derived for the magnetic field components,
1 9y 1 dy
—_— e — —— B = —_—— 6.9
by rhy 8¢’ § rhy 0n’ (6:9)
It will be noticed that (having to deal with orthogonal coordinate systems only) we
do not use tensor notation here or elsewhere in the paper, but we have defined B, =
B V¢/|V¢| and B, = B- Vn/|Vn|. The explicit representations follow easily from the
relations,

. 1 6( rgsinhg‘
rhe ¢ \\/cosh¢ —cosn

_ Vfcosh¢ —cosn 1 1 0 0 1 o
= - (n+ 5)((?7, - E)Coqun—é - ncoshg‘Qn_% - EQH}) (6.10)
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m 1 1 0 0 g
_ Lol ol 3 6.11

= 2 (n > )cosn P?_, —ncosh¢ P)_ +2Pn+ ) (6.11)

_ Yeoshg—cosn 1, 1y 0 g ’
and

1 4 ro sinh ¢

7y o0 (Ve =eory ")

J/cosh¢ —cosn 2 - e
_ V/cos i cosn(n;rlsm((n_l)q)_ncoshgsm(mzH" 1sm((n+1)n))
0

(6.12)
and

1 2 ro sinh ¢ )
m an ( .,m(m;))
v/cosh¢ —cosn (n +vl
ro 2

v/cosh¢ — cosn

—Leos((n + 1))
(6.13)
By truncating the series for ¢ and for the magnetic field components, and demanding
that the corresponding field and flux on 89 provide a least squares fit to the measured

data, a linear algebraic system for the coefficients, %' and Af,‘i, of an approximate

cos((n — 1)n) — ncosh¢ cos(nn) + =
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solution :1; is obtained. The condition number of this system will depend on the number
of terms retained in the series, and a damping term may be added in order to provide
further stabilization.

After having obtained in this way a stable approximate solution ¢ = ¢* + ¢ to the
ill-posed boundary value problem, the plasma boundary 911, is identified as the largest
closed flux surface inside the given limiter contour. For this procedure to provide a
meaningful result it is necessary that the point (rg,zp) shall have been chosen to lie
inside the plasma region (which is unknown a priori), and preferably not too close to
the boundary. In the vacuum region 1,, J;" and 1,53 may be understood to correspond
to the fields due to the external and to the internal currents respectively. For this
interpretation, however, all magnetization currents must be considered as true currents.

The method of expansion in toroidal harmonics has been implemented by a number
of authors.

Lee and Peng (76| describe a numerical study of this method for use on an ide-
alization of the ISX-B tokamak. The vacuum chamber of ISX-B has a rectangular
cross-section, and a system of magnetic probes provides point measurements of both
B, and B, at 18 points along the circumference. The idealized device of [78] has the
same rectangular cross-section, on which a numerical grid of 34 x 56 points is imposed,
and measurements of the poloidal flux function are made at each of the 344 points in
the outermost two layers of the grid. No reason is given for the replacement of the real
ISX-B diagnostic system by this construction.

The singular point (rg, zp) is positioned at the center of the cross-section, and the
following truncated series expansion is employed:

Ne
A sinh ¢ 1 1
b=bot [E[a P!, (coshc) + 25,Q} _, (cosh )] cos(nn)
JNE
+ Z[b‘*Pl (cosh¢) + b, Q1 (cosh ¢)] sm(m))]

(6.14)
The difference of a factor v/2rg compared to the series in Eqs. (6.7) and (6.8) is of course
unimportant, but their inclusion of the constant term ag is somewhat surprising, as it
is not independent of the infinite series in Eq. (6.7). In fact

intiie cosh g') cos(nn)
L=
vcosh¢ —cosn m z -1

=0

(6.15)

where the prime on the summation signifies that the term for n = 0 should be taken
with a factor 7. It is true that the truncated system (6.14) remains non-singular even
with the term 4 included, but it will tend to be badly conditioned.

Two test cases are studied in [78], one elongated D-shape and one circular plasma,
both symmetric about the midplane. These shapes are well recovered by Eq. (6.14) for
N, in the range 1-3 and for N, = 1, when the simulated ) measurements are perturbed
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by a random error of not more than ~ 5%. The maximum relative error in By, is usually
25-35 times larger (this factor must be the ratio of the gradient scale length to their
grid spacing) and Lee and Peng are led to conclude that the method of expansion in
toroidal harmonics would be useful in general if the maximum relative random error of
the poloidal B field data does not exceed 100%. This author is very sceptical.

Simultaneously with the work of Lee and Peng [76], the use of an expansion in to-
roidal harmonics for plasma boundary identification was also proposed, but not actually
implemented, by Kuznetsov and Naboka [77]. Their proposal was further developed and
studied numerically in [78], and actual results from an implementation for the Tuman-3
tokamak are reported in [79]. This last reference will be the basis for our discussion.

As described in [79], the system of magnetic diagnostics on Tuman-3 consists of
24 probes distributed uniformly along a circular contour encircling the vacuum vessel,
with 12 probes measuring the tangential component and 12 measuring the normal com-
ponent of the magnetic field. In addition there is an independent measurement of the
plasma current, which ic used to obtain an overall correction to the tangential field
measurements after which a discretized Ampére’s law holds exactly. In the same spirit,
the measurements of the normal component of the field are adjusted in order to satisfy
the integral form of V-B = 0.

In the Tuman-3 study the expansions (6.7) and (6.8) are employed, all four series
being truncated after the same index N. Thus there are 4N + 2 unknown coefficients,
which are determined from the condition of minimization of the cost function,

N
Jo= T +e Y ((ah)? + (5)2 + (an)? + (bg)ﬁ). (6.16)
n=0

Common sense dictates that J in the above expression should have the form (6.3), but
whether this is what is intended by Eq. (11) of [79] is not clear. It is reported that
N > 3 provides a good reconstruction of the plasma boundary.

The parameter ¢ is not a constant in [79], but is determined from the condition of
minimization of the functional

o0 = {a[(BE) + () + () + () e

While this is an interesting mathematical procedure, it does have the drawback of re-
quiring an iterative algorithm, for which furthermore the matrix elements of the inverse

of Eq. (6.5) cannot be precomputed.

Filamentary current model. Another widely used expansion method for plasma
boundary identification is based on a model of the plasma current as a finite set of
current filaments,

N
jo=_ L —x)) (6.18)
3=l
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in 2y, where the coefficients I; are to be determined. The fixed points r; must lie
inside the (unknown) plasma region. The field in {2 due to the external currents may be
known from measurements of these currents, or it may be obtained by an application of
Green’s representation theorem employing the measured field and flux on a1}, or it may
also be modelled in terms of current filaments of unknown strength. The filamentary
current method has been in routine use on a number of experiments.

A.J. Wootton [80] describes a study, for the TOSCA tokamak, in which the discrete
filamentary current model is employed to determine the shape of the plasma boundary.
This is in fact the first published study on fast methods for plasma boundary identifi-
cation. The currents in the external windings are known in [80], and plasma-induced
currents external to the measuring contour are assumed to be negligible. Wootton has
a measurement of the total current, and furthermore uses three variable winding Ro-
gowski and three saddle coils to measure the first three harmonics of the tangential and
normal components of the magnetic field on the vacuum vessel, viz. the coefficients a;
and BJ- (1 < j < 3) in the expansions,

3
B, ~ %{}{(1 + E&_,-cosjw)

(6.19)
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where w is the angular variable in a local polar coordinate system, and d is the minor
radius of the measuring contour. This expansion, and the further analysis in [80],
assumes symmetry about the horizontal midplane. It is also clearly oriented towards
large aspect ratio, as for finite aspect ratio the chosen representation of B, is inconsistent
with V- B = 0.

Only three current filaments (apparently in carefully optimized locations) are em-
ployed to represent the plasma current. Within this framework the most natural com-
putational procedure would seem to be to determine the 3 unknown coefficients from
the requirement of obtaining a least squares fit to the magnetic measurements. Woot-
ton instead uses the measurements to evaluate large aspect ratio approximations to 3
moments of the current density, and then determines the coefficients to obtain an exact
fit to these moments. The results in [80] show that even strongly distorted shapes of
the plasma boundary, as computed using an MHD equilibrium code, may be accurately
retrieved by this analysis.

A filamentary current model was also employed by D.W. Swain and G.H. Neilson
for plasma boundary identification on ISX-B [81], [82]. They have point measurements
of the r and z components of the magnetic field in 18 locations distributed around the
vacuum vessel, and also know the currents through each of the four groups of poloidal
field generating coils (all coils within one group are connected in series). This diagnostic
system and the field coils are illustrated in Fig. 3.
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Due to the presence of an iron core in the main transformer coil of ISX-B, the
free space Green function cannot be used to compute the field produced by a given
filamentary current. Instead an analytically tractable model for the main transformer
is employed in Refs. [81] and [82], in which it is represented as an infinitely permeable
center post of the correct rodius and infinite axial extent, with an annular iron cylinder
modelling the return leg. Two free parameters in their model are the radius of the
outer annulus, and the iron permeability. (The thickness of the annulus is specified by
requiring that the cross-sectional area of the core and of the annulus be equal). These
parameters are adjusted so as to give a good fit to the experimental data.

Using this model for the iron core, the response matrices Q° and Q" are calcu-
lated, which linearly relate the expectation values of the magnetic measurements to the
currents in the external coils and in the model plasma filaments:

Np

Ne
§i=) QIIF+Y QFIF, 1<i<Mm (6.20)
J‘:l ]-:1

Here, N¢, Np, and M are the number of groups of poloidal field generating coils, the
number of plasma current filaments, and the number of measurements (Ng =4, Np =6
typically, and M = 36); IC is the current through the j-th group of poloidal field coils,
If is the j5-th ﬁlamenta.ry current, and §; is the expectation value of the i-th magnetic
field measurement corresponding to this set of currents.

Given actual magnetic field measurements y; and coil currents IJ(-", the filamentary
currents If are determined from the requirement of obtaining a least squares fit in
Eq. (6.20), viz. from minimization of a cost function as given in Eq. (6.3). The resulting
expansion is employed to trace out the plasma boundary surface and to determine
the field on the plasma boundary. The lowest order moments of the plasma current
distribution are also evaluated. Comparison tests using a free boundary equilibrium
code show that the plasma boundary and the dipole and quadrupole moments of the
current distribution are accurately recovered.

Lao et al. [33], [62] have implemented the filamentary current model in a code
(MFIT) for the determination of plasma shape on Doublet III. The diagnostics used in
these calculations consist of 24 flux loops, 12 partial Rogowski coils, 11 local magnetic
probes, and one full Rogowski coil, as illustrated in Fig. 1.

The plasma current is modelled using 6 filaments in fixed positions, while the field
due to the external currents is also considered unknown, and is modelled using 24
filaments in the positions of the field shaping coils. Doublet III does not have an iron
core transformer, and the response matrix in Eq. (6.20) is calculated by using the free
space Green function.

The currents IJG and If’ are determined from the requirement of minimization of
the following cost function,

Ja=yr Wi S vi = y' (ZC %(1;.’)2) (6.21)
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where € is a constant.

It is mentioned in [62] that for large sized plasmas, which simultaneously touch the
top, the inner, and the outer limiters of D-III, the filamentary current method becomes
inaccurate, also in comparison with the results obtained using the full equilibrium de-
termination code EFIT. This is quite interesting, as at first sight there is no reason to
suspect a deterioration of the filamentary current method for large sized plasmas. Two
possible explanations which occur to this author are: (1) For large plasma the boundary
is located close to the many magnetic diagnostics of D-III, hence it is in principle very
accurately determined, and 6 current filaments are too few to obtain full accuracy. (2)
For large plasma the boundary is located much closer to the external current filaments
than to the internal filaments, and it becomes improper to use the same value of € in
Eq. (6.21) to dampen both the term related to the external currents and the one related
to the internal currents. The internal currents should be damped less strongly.

Single layer potential methods. The two approaches to be described in this
subsection both employ a control surface Cj, which is a (smooth) closed contour in
the poloidal plane, located in a position where it is guaranteed to lie inside the plasma
region. The function g@ is determined as a solution to the homogeneous equilibrium
equation on the region {1y, bounded by Cp and ). The methods that rely on a control
surface turn out to be closely related to the single layer approach in potential theory.

Feneberg, Lackner and Martin [84] have developed a fast boundary identification
code (FASTB) for JET using such an approach. We recall the system of magnetic
diagnostics on JET (Fig. 2), which consists of 14 flux loops on the outside of the vacuum
vessel, and 18 tangential field probes on the inside.

In FASTB the unknown plasma current is represented by an expansion in N Fourier
modes of a singular current density on the control surface Cy. The external currents
are similarly represented by N’ Fourier modes on the surface (1, which is coincident
with the contour on which the poloidal flux function is measured, and therefore lies just
outside the contour on which measurements of the poloidal field are made. The free
space Green function is employed to compute the field and flux due to the basic current
distributions on 811, while the field and flux due to the currents on Cj are computed
subject to the homogeneous Dirichlet condition on ). This leads to an approximate
flux function of the form

l

N
Z Z & (6.22)
where the basis functions x¢ vanish on 911.

In [84)], first the coefficients (c!,), are computed from the requirement of obtaining
a least squares fit to the flux measurements on 911, and afterwards the coefficients c,
follow from the requirement of a least squares fit to the poloidal field measurements.
Typically, N = 6 and N’ = 14 (so the flux measurements are fitted exactly).

FASTB is used routinely for the analysis of JET discharges. After determining
the plasma boundary and the field on the boundary, integral relations are employed to
calculate characteristic parameters of the configuration.
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Another single layer potential approach was followed by J. Blum in an early study for
plasma boundary identification on JET [567], [60]. In his work the problem £*t) =0 is
solved in the reglon 02y, bounded by Cp and 811, subject to the boundary conditions 1,b =
f on 012 and 1,b — v on Cp, where f is obtained from the poloidal flux measurements, and
v is unknown. The function v has to be determined from the condition of minimization
of (a discrete approximation to) the cost function,

10 -S(E e -o) vef Gou) a6

where the g; are the poloidal field measurements, and the second term is included in
order to stabilize the problem.

Using a finite element discretization for v, and also for the solution ), the minimiza-
tion criterion (6.23) is translated into a linear equation giving v in terms of the flux and
field measurements. The matrix elements of this equation may be pre-computed.

Irregular methods. The various methods for plasma boundary identification that
have been discussed above, whether based on an expansion in toroidal eigenfunctions
[76)-[79], on a filamentary current model [80]- (83], [33], [62], or on an expansion
employing functions on a control surface [84], [57], [60], are rather alike in their ba-
sic structure. In each case the unknown flux function ¢ in the vacuum region {1, is
expanded in a (small) series of mutually independent solutions to the homogeneous
equation, giving rise to a system of linear equations, which may be further stabilized
by the inclusion of a regularizing functional. This is correct mathematical procedure.
Several nonstandard treatments of the plasma boundary identification problem have
also appeared in the literature.

One such method was described by Lee and Peng [76] under the name of “local
fitting”. (The method of expansion in toroidal harmonics is proposed in the same
paper, and referred to as global fitting). In this method of local fitting, a large number
of overlapping circular regions is placed on the domain {1, and in each of these regions
a local Taylor series representation for the flux function (satisfying the homogeneous
equation) is found by making a fit to the measured boundary values that are located
inside the region and to any interior values that have already been included in other
regions (and that are not inside the plasma). The value of the flux function at any
point is then computed as the average of the values given by all local Taylor series
representations that cover that point. See [76] for the details. The method of local
fitting appears to be without virtue.

Another nonstandard procedure was presented in [78] as the “integral method”.
(These authors too discuss the method of expansion in toroidal harmonics, which they
call the differential method). This integral method has apparently been motivated by the
desire to obtain a smooth two-dimensional current distribution to fit the measurements,
rather than something as patently unphysical as a multipole distribution concentrated
at one point, a set of wire currents, or a singular current layer.
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In the integral method of [78] the discrete vector of unknowns contains the currents
in all the points of a two-dimensional mesh. The associated matrix equation obtained
from the requirement of chi-squared minimization with respect to the measurements is
then extremely ill-conditioned, but a regularizing functional is employed. This regular-
izing functional is defined as the sum of squares of the mesh currents.

In this way the equation is successfully stabilized. Nevertheless it is hard to find
anything useful in this integral method. The resulting matrix equation is much larger
than the one associated with any of the standard methods, and the resulting current
distribution may be smooth, but does not satisfy the equilibrium equation, and therefore
still has no meaning inside the plasma.

The third of the nonstandard procedures which we wish tc mention is a method em-
ployed by Ida and Toyama [85] for boundary identification on TNT-A (Tokyo Noncircu-
lar Tokamak). Their model flux function does not satisfy the homogeneous equilibrium
equation, but satisfies the two-dimensional Laplace equation instead. Some local fitting
procedure is employed to integrate the Laplace equation inwards from the boundary
data. The statement that this procedure is 50 times as fast as a filamentary current
method cannot be based on a reasonable implementation of the latter method.
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7. FAST DETERMINATION OF CHARACTERISTIC PARAMETERS

In this Section we consider fast specialized methods for the approximation of charac-
teristic parameters of the MHD equilibrium configuration. After providing an overview
of the available analytical approaches, this Section will be devoted mainly to recent
studies [36], [86], [87], which have demonstrated the method of function parametri-
zation [34], [35] as an extremely effective procedure for obtaining a wide variety of
characteristic parameters from the magnetic measurements.

Some important parameters. The following is a (not exhaustive) list of parame-
ters that one may wish to determine. They are not all independent, even if it is generally
impossible to provide explicit connecting formulae.

I; toroidal plasma current

(raiz) position of the current center, Eqs. (2.10) and (2.11)
(rasZa) position of the magnetic axis

(rgs24) position of a geometric center of {2,

a, b horizontal and vertical minor radius of {1,

4,4, . triangularity, indentation, ..., of {1,

S area of {1,

|4 plasma volume

A plasma surface area

(rzy22) position of some saddle point

Ya — Y flux difference between the magnetic axis and 911,
vy — ¥, flux difference between 90, and a reference location
Qa safety factor on axis

qb safety factor on 911,

g poloidal g

l; internal inductance

LI toroidal diamagnetism parameter

Br+1;/2 Shafranov parameter

etc.

(Recall that £, denotes the poloidal cross-section of the plasma).

The important question is to what extent these parameters may be determined
(semi-)directly from the magnetic measurements, without requiring a complete solution
of the equilibrium equation. In this context a method will be called direci when it
provides a physical parameter as an explicit function of the measured data, and sems-
direct when it relies on a preliminary identification of the plasma boundary.

Review of analytical methods. A direct and rigorous determination of I, r,
and 2. is possible using the theory of Section 2. After identification of the plasma
. boundary, with the aid of one of the methods described in Section 6, all the geometric
quantities (ry, 24, a, b, 9, 6, S, V, A, r;, z,.), as well as 9, — ¢, and g3, are rigorously
determined.
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All the fast procedures for plasma boundary identification also provide the magnetic
field on the boundary. The theory of Section 3 then provides approximate expressions
for f; — pur and By +1;/2, and if a diamagnetic measurement is available or if the plasma
is sufficiently shaped, also for 8y, {;, and ur separately. These expressions are exact only
in the limit of large aspect ratio, but a good approximation to Ay + [;/2 is generally
obtained. The approximations derived by Cordey, Lazzaro et al. [88], [66] and by Lao
et al. [62] in order to separate f; and I; without the use of a diamagnetic measurement
rely on a specific model of the equilibrium current distribution, but appear to work well
in the application to JET and D-III data.

An analytical formula for the radial displacement of the magnetic axis with respect
to the geometric center of the plasma, r, — r4, was given by Shafranov [9, Eq. (6.33)],

2
ra =g = 5-(B1 +1/2), (7.1)

where a is the plasma minor radius and rp is a characteristic major radius. The deriva-
tion of this relation relies on the assumptions of up-down symmetry, circular cross-
section and on a specific model for the current distribution, but in fact equilibrium
calculations for ASDEX have shown it to be accurate over a wide range of current
distributions.

Finally, no satisfactory approximations in terms of the magnetic measurements alone
exist for the parameters ¢, — ¢ and g,, and the studies described in Section 5 tend to
show that the determination of these parameters requires additional information.

Throughout this paper we have emphasized those methods that make as few as-
sumptions as possible about the shape of the plasma cross-section and about the current
distribution in the plasma. In this case, for almost all of the parameters listed at the
beginning of this Section it is necessary to rely on one of the methods for fast plasma
boundary equation, followed by application of the integral relations of Section 3. In
fact, it is only with the advent of the recent generation of devices with shaped cross-
section, and in particular D-III, JET, ISX-B and Tuman-3 that application of these
fairly general methods has become routine. For configurations having approximately
circular cross-section, direct approximations are available for many of the characteristic
parameters, and these are used in practice.

The most widely used of these direct approximations are again due to Shafranov (8],
[9, Section 6], [10, Section 4.7] and provide the radial plasma position and B + [;/2 in
terms of the magnetic measurements. A local polar coordinate system (o, w) is employed,
centered at a fixed position (rp,0). r = rp + gcosw and z = gsinw. Then Shafranov’s
approximations for the flux function ¢ and the poloidal field components B, and B,
outside the plasma, but inside any other conducting surface, are

(o, w) ~ _porods (ln =L 2)

2T 81‘0
- p_:‘:-’rﬂ [(] - %;-) (ﬁ; + -l-'—%—l) + lng— 2:?02A] COS W (7.2)
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1
Bw(gsw) = _E"O_l

2wp
_:;’{;[(1—&2—2)([31—}-1;;1)+1n§—1+2':2A]cosw (7.3)
B,(o,w) =~ —i‘;f; (1~ ‘;_z) (1 + b . 1) +ln - 2';2‘“] sin w (7.4)

where A = ry—rg. Assume that the plasma current [; is measured and that an estimate
of the minor radius a is available. Then two flux measurements and two measurements
of B,, preferable made on a contour of constant p, suffice to determine the coefficients
of cosw in Egs. (7.2) and (7.3), and thereby to determine f;+1[;/2 and A. As a
straightforward variation on this procedure, the flux measurements may be replaced
by measurements of the other component of the poloidal magnetic field, B,, and if

more measurements are available, then a least squares fit can be employed to determine
Br+1;/2 and A.

Function parametrization. We turn now to a discussion of a radically different
method for estimating the physical parameters from magnetic measurements. Function
parametrization was originally developed by H. Wind (CERN) for fast momentum de-
termination from spark chamber data in high energy physics experiments [34], [35],
but it has a much wider range of applicability, and can be considered whenever many
measurements are to be made with the same diagnostic setup. In a recent report [36]
we have presented function parametrization in the context of controlled fusion research,
in particular with a view towards the interpretation of magnetic diagnostics. An appli-
cation to the magnetic data analysis on the ASDEX experiment has been described in
[86] and [87], and is summarized below.

The method relies on an analysis of a large data set of simulated experiments,
aiming to obtain an optimal representation of some simple functional form for intrinsic
physical parameters of a system in terms of the values of the measurements. Statistical
techniques for dimension reduction and multiple regression are used in the analysis.
The resulting function may be chosen to involve only low-order polynomials in only a
few linear combinations of the original measurements; this function can therefore be
evaluated very rapidly, and needs only minimal hardware facilities.

Three steps have to be made for experimental data evaluation based on function
parametrization. (1) A numerical model of the experiment and of the relevant diag-
nostics is used to generate a data base of simulated states of the physical system, in
which each state is represented by the values of the relevant physical parameters and
of the associated measurements. (2) This data base is made the object of a statistical
analysis, with the aim to provide a relatively simple function that expresses the physical
parameters in terms of the measurements. (3) The resulting function is then employed
for the fast interpretation of real measurements.

Mathematical description. The statistical analysis involves established methods
for dimension reduction and linear regression, which are briefly discussed here.
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A classical physical system is considered, of which P denotes a typical state. The
system may have any number of degrees of freedom, but interest will be restricted to
a (partial) characterization by n intrinsic real parameters, represented collectively by a
point p € R". In the experimental situation p is to be estimated from the readings of
m measurements, represented by a point q € R™.

The aim of the function parametrization is to obtain some relatively simple function
F : R™ — R", such that for any state P the associated p(P) and q(P) satisfy p =
F(q) + e for a sufficiently small error term e. The functional form of F may typically be
chosen as a low-order polynomial in only a few linear combinations of the components
of q. The unknown coefficients in F are then determined by analysis of a data base
containing the values of the parameters p, and of the measurements q, corresponding
to N simulated states P, (1 < a < N). This is a problem for which techniques from
multivariate statistical analysis are appropriate.

Since the dimensionality m of the space of the measurements lies between several
tens and several hundred in many cases, the dimensionality of the space of trial functions
with which the parameters are to be fitted can be very large. A polynomial model of
degree I in all variables, for instance, has ~ m'/I! degrees of freedom for each physical
parameter. It is therefore desirable to first reduce the number of independent variables
(the components of q) by means of a transformation to a lower-dimensional space. A
second, and also very important, aim for this transformation of variables must be to
eliminate or reduce multicollinearity (near linear dependencies) between the data points,
and thus to improve the conditioning of the regression problem. Multicollinearity is
expected to be present whenever the number of measurements is much larger than the
number of independently determinable physical parameters.

A common statistical technique to find a lower-dimensional space in which to repre-
sent the measurements is based on principal component analysis. From the N suitably
scaled pseudo measurements, {Qa}i1<a<x, the sample mean, @ = N=! 3" qa, and the
m X m sample dispersion matrix,

.
5= 13 (2 - a)a. - a7, (75)
a=1

are calculated. S is symmetric and positive semi-definite. An eigenanalysis will yield
m eigenvalues, \? > ... > A2 > 0, with corresponding orthonormal eigenvectors
ay,...,8,;,. Any measurement vector q may be resolved along these eigenvectors to
obtain a set of transformed measurements, z; = a; - (@ — @). The sample variance of
the component z; is given by A;. Now the assumption is made that the most significant
information will be contained in those transformed measurements that show the largest
variation over the simulated data, viz. in the components (z;)1<i<m, Where mg < m,
and preferably mg < m. These mo components are called the ‘significant components’,
and the associated first mg eigenvectors a; are the ‘significant variables’. The desired
dimension reduction is thus achieved through the transformation R™ — R™o¢ defined
by x = AT - (q — q), where A is the matrix that has columns a; (1 <1 < my).
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Having obtained the preliminary linear transformation q — x it is next necessary to
face the task of fitting the, in general nonlinear, relation between x and p. It is desired
to find for each component p; (1 < j < n) a regression, p; = f;(x) + ¢;, to fit the data
(Xa,Pa)i<a<N- A polynomial model, of the form

pj = chj : H¢k,—($i/"i) + €, (7.6)
k i=1

is suitable. Here, the multi-index k has mg components ky,..., k., in the nonnegative
integers, the ci; are the unknown regression coefficients, which are determined by a
least-squares fitting procedure over the data base, (¢x)x>0 is some family of polynomials
(Chebyshev, Hermite, Legendre, or monomials), r; is a suitable scaling factor for the
component z;, and ¢; is the error term. An upper bound on some norm of k must be
supplied in order to make the model finite, and in addition it is possible to employ with
the above model some form of subset regression, the objective being to retain in the final
expression only the terms which make a significant contribution to the goodness-of-fit.

Function parametrization thus leads to simple explicit approximations for the phys-
ical parameters in terms of the measurements. Although a significant effort may be
involved in generating and analyzing the data base, the evaluation of the final function
— and this is the operation that has to be performed many times — is almost trivial.

Application to magnetic data analysis. As an initial study we applied func-
tion parametrization to the determination of a limited set of characteristic equilibrium
parameters for the ASDEX experiment. The relevant measurements consist of three dif-
ferential flux measurements, four field measurements, the current through the multipole
shaping coils, and the plasma current. However, the plasma current can be scaled out
of the problem, so that 8 independent measurements remain. The physical parameters
to be determined include the position of the magnetic axis, the geometric center of the
cross-section, the current center, the horizontal and vertical minor radius, f; + I;/2, a
normalized g-value at the separatrix, the flux difference between the separatrix and a
reference position, the position of the lower and upper saddle points, and the point of
intersection of the separatrix with each of the four divertor plates.

The details of this study are given in [86] and [87], and are highly encouraging.
Second order polynomial fits involving 4 to 6 principal components are found to provide
good accuracy also in the presence of realistic measurement errors. For instance the fits
for the plasma position are accurate to ~ 5 mm, while 8y + [;/2 is fitted to an accuracy
of ~ 0.05. This application has established function parametrization as a straightfor-
ward and effective way in which to obtain numerical approximations for a variety of
characteristic equilibrium parameters in terms of the magnetic measurements. These
approximations are not only extremely easy to evaluate, but are also more accurate
than the analytic approximations that are now in common use. The procedure does not
require very specific assumptions about the MHD equilibrium, and is also well suited
to a consistent analysis of a system consisting of several different diagnostics.
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It can be expected that in the future function parametrization will have an important
role both for on-line data analysis and for real-time plasma control. To the latter point,
we estimate in [87] that a small processor, having a few kilowords of 32-bit store and
a speed of ~ 5 Mflops/sec for modest size matrix-vector multiplication, will suffice to
evaluate the approximations to a set of ~ 25 interesting physical parameters within 1
msec, which is the timescale that is relevant for active control.
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CONCLUSIONS

We have reviewed the analytical theory that is available for MHD equilibrium de-
termination from magnetic measurements on axisymmetric systems, emphasizing the
utility of the two classes of integral relations due to Zakharov and Shafranov. These
relations have been extended to take full account of pressure anisotropy and plasma ro-
tation. The main emphasis in this work, however, has been placed on a reconsideration
and development of the relevant numerical methods.

For the interpretation of magnetic signals we indicated a target code performance
of < 1 msec for the estimation of a set of global parameters characterizing at least the
plasma position, shape, pressure and internal inductance, and of ~ 20 msec for a full
equilibrium determination, The 1 msec timescale is below the skin time of the vacuum
vessel in present experiments (e.g. 8 msec for Asdex, 3 msec for JET), and is therefore
relevant to active feedback control of the plasma. As most tokamak experiments in
operation strive to operate near the beta limit, or instability threshold, the need for
accurate plasma control is particularly accute.

The ~ 20 msec timescale which we believe is needed for a full 2-D equilibrium deter-
‘mination is still above what is required for active position control, but may be relevant
to the programming of auxiliary heating, and of course to rapid inter-shot analysis.
However, a full equilibrium analysis can only provide genuine additional information
over that delivered by the fast specialized methods if additional diagnostics are taken
into account, and the actual codes for such a rapid analysis of a spectrum of diagnostic
systems remain to be developed. The immediate aim of such an effort should be to
allow the routine determination after every shot of the complete time-evolution of the
2-D equilibrium configuration throughout the discharge, and this aim appears realistic
using presently available super-mini computers.
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APPENDIX A. TRANSFORMATION OF FREE-FIELD BOUNDARY CONDITIONS

In the case when the field due to the currents in external coils is specified, the
proper boundary conditions for the equilibrium problem demand regularity as r —
0 and as |r| — oo for that part of the flux function that is due to currents in the
plasma. On a finite computational domain, {}, which must completely enclose the
plasma, these conditions may be replaced by an integral equation relating ¢ and 8¢ /dn
on the boundary 8f). A method of this nature has been developed by Von Hagenow
and Lackner [26], but in their formulation it is required to solve an auxiliary problem
having homogeneous boundary conditions. This Appendix shows a somewhat different
approach.

A boundary integral equation. Let ., be the (known) flux function due to
the currents in the external coils, and define ¢y = ) — ;. Let G(r,r’) be the Green
function for the problem in the infinite domain: £*G = p,,r'6(r — r'), where r' is fixed,
and G vanishes as r — 0 and as |[r| — oco. We recall Green’s second identity for £*
on {1, Eq. (1.8), and note that a similar relation, with only a change of sign for the
normal derivative on 811, holds for £L* on the exterior region .. By application of
Green’s second identity to the functions ¥,y and G(r,r') on @, on which L*¢, = 0,
one obtains,

oG d
c(r )Y (") +f r s — ds :f r_l,u.;,lG’ﬂ ds, (A.1)
an dn a0 dn
where
0, if ¥’ is an interior point of 2,
!
c(r') = (‘02(;)’ if ' € 90, (A.2)
1 if ' is an interior point of (1.,

and where (r') is the exterior angle subtended by 911 at the point »' € 811. Similarly,
by application of Green’s second identity to the functions ., and G(r,r') on 1, one
finds,

e aG Xl OWast
—(1 — 4 er d f : ! er —d :f : e —= .
(1= W)+ § it en o ds = § e Wt as, (ag)

and combining these two relations,

G Y
-1,-1, 96 , _ ~1,-1, %Y ’ _
e T = ds fmr P Gan ds + Yen(r'), (A.4)

o(e'yoie') +

oMl

which, when specialized to the case ¥’ € 3(1, is the desired integral equation to connect
¥ and 39 /dn on ). Alternatively, if ¢, instead of ¥ is selected as the unknown field,
then Eq. (A.1) specialized to r' € {1 may be used as the boundary condition.
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Discretization. A natural discretization of the boundary condition in Eq. (A.1)
or (A.4) has the form of a matrix equation connecting the values of ) on the bound-
ary points of the mesh to the values of 1 on those interior points that border on the
boundary. Let 1)y denote the vector of values of % on the boundary mesh points, taken
in some definite order, and let ¢, denote the vector of values of ¥ on the neighbouring
interior points. Then the discretization of the boundary conditions, Eq. (A.4), should
obtain the form,

Yo = Ay| +b. (A.5).

In the case of Eq. (A.1) the inhomogeneous term, b, will be absent. That this form of
a discrete boundary condition is reasonable follows also from the well-posedness of the
exterior problem for the equation A*y' = —pu,,,r5 on (1.

In order to obtain an accurate discretization of the above form, the methods dis-
cussed in Section 4 are again applicable. These methods are in this case best employed
in the defect correction mode, after first obtaining a low order discretization by straight-
forward analytical procedures.

The boundary condition in the form (A.5) leads to an iterative procedure, and is
therefore useful if the equilibrium equation itself is also solved iteratively (as in [74],
[75]; classical iterative methods are not to be recommended for this equation). In
case the equilibrium equation is solved by a rapid direct method, the treatment of the
boundary conditions as given in [26] remains indicated.

We intend to undertake in the near future a more extensive study of the various
ways in which to implement numerically the free-field boundary conditions.
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APPENDIX B. THE HOMOGENEOUS EQUILIBRIUM EQUATION

In Section 2 it has been shown that certain moments of the toroidal current density in
the region {1 can be expressed as integrals of linear combinations of the poloidal magnetic
field components on the boundary d€Q). This theory involves conjugate pairs of solutions
to the homogeneous equations, £L*x = 0 and L(r~!'x-1¢) = 0, where functions y and
€ are called conjugates if Eq. (2.2) holds. Furthermore, in Section 6 it has been shown
how the location of the plasma boundary can be found by fitting a solution of £*x =0
to the external measurements. These two topics demonstrate the need for solutions to
the homogeneous equilibrium equation, and in particular for one or more families of
solutions that are complete on some domain. Whereas the evaluation of moments of the
current density requires only interior solutions, valid throughout the region 1, for the
identification of the plasma boundary also exterior solutions, corresponding to a current
density inside {1 are required.

In the important practical case when the magnetic permeability is constant through-
out 1, the equations reduce to A*y = 0 and A(r~1¢) = 0, and analytical solutions can
be found. This Appendix provides solutions in the form of polynomials and other el-
ementary functions in r and z, and solutions obtained by separation of variables in
cylindrical, spherical, and toroidal coordinates. In each case pairs of conjugate func-
tions x and £ are given. As A*yx = rA(r~lx) — r—2x, it is seen that each solution to
A*x = 0 corresponds to an “m = +1” solution, r~!x, to the three-dimensional Laplace
equation, where m is the toroidal mode number. Of course, r~1¢ is an “m = 0” solution
to the Laplace equation.

Solutions involving elementary functions. The operators A* and A both have
the property that they will transform a homogeneous polynomial of degree n in r and
z into a homogeneous polynomial of degree n — 2. It follows that, if A*y = 0 and if
x admits a power series expansion about the origin, then by collecting terms of like
order, a family of homogeneous polynomial solutions to the homogeneous equilibrium
equation will be generated. Such a family may therefore be expected to exist, and indeed
by elementary analysis it is found that the following pairs (xn, &,) are all solutions to
A*x =0 and to A(r~!¢) = 0, and satisfy the conjugacy relation, Eq. (2.2) or (2.4).

X0=l: 60=0
Xl:0: 61‘—"’-

1
X2=‘2‘r21 fr=rz
1
2 2 3
3=r‘z, LH=rz‘—_r
3 ' 3 6 :23 5
X4=-2-r2z2—-8-r4, §4=rz3—§r32

3 3
x5 =2z — EIAZ, és =rzt —3r22 + §r5

5 5 15
X6 = it — ity '—r6, .= rz° — 5r82% + E—r"’z




etc. The general formula, for n > 0 is,

( [n/2]-1
_ e (n—1)!/2 W+2  n—2k—2
Xn = g Ay ) T ey T LA
[n/2]-1 . (n—1)! . . (B-2)
— Y\ ' 2k+1 _n—2k—1
bn = g Sy sy A '
\ b

The solution for n = 0 does not fit well into this scheme. The moments for n = 2,
n = 4, and n = 6 were given by Zakharov and Shafranov [27], who employ a different
normalization of the functions. The motivation for the present choice of normalization
will become clear when we discuss the moments obtained by separation of variables in
spherical coordinates. Notice that the relevant Eq. (61) of [27] contains two errors, only
one of which is obvious.

A related family of elementary solutions can be found by allowing a factor Inr.
There results the sequence:

Xll = -2z, E’I = rin
I 12 12 4
X2 =x2lnr - EZ = Z" , & =4&nr,
1 1 1 (B.3)
xs=xslnr—22°—or’z, & =glnr+or,
1 3 15 3
Xo=xalnr— 22t = 222+ ot g = gilnr+ 2z,
etc. The general formula, for n > 0 is,
( n/2|—
LSS (g (oD
Xn = e k! (k+ 1)!(n — 2k — 2)!
k
1 1 1
2k+2 ,,n—2k-2 _ . s
X ¥ z (lnr ;1 —2(k+1)) nz
< : (B.4)
[n/2]-1 (n—1)!
l -k
= —4
=
2k+1 ,n—2k—1 il *
Xr z (ln r Z} J)
\ J=

Other elementary solutions can be found by allowing a power of v/r? + z2. Forn > 1
the pair

1
("2 + 22) 77" Xn
1-n (B.5)
E=(r"+ 22)%'_"611
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also provides a solution.
The polynomial solutions can be combined in a form that yields approximations
to the lowest order multipole moments about an expansion point (Rp,0), for arbitrary

Ry > 0:

n

(even) — (—_ nz—n[ s i) 2m n!m! ]
n ( Rﬂ) Xo0 mZ::l (R(] (Zm)! (n R m)!X:.’m (B.G)
(odd) _ « p yn—lg—n - (i)z’" n!m! .
PR 2 (%) @ e i
The functions ¢!’ and ¢\°* are similarly defined with replacement of y by ¢ through-
g
out. In leading order, £ 4+ if{*" ~ (z 4 iz)" and g{®") + igledd) ~ —i(z + 12)",

where z = r — Ry and i = \/—1. On the symmetry plane, z = 0, the exact formulae are

r(Ier;en) = (1 - IB/ZR@)".’E",

(odd) (B.8)
gn " = —(1+z/Ro)(1 + z/2Ry)"z",

while g!f"en) and f,(,"dd’ vanish for z = 0. We do not have a simple formula for these

polynomials that is valid also for z # 0.

The corresponding approximations to the multipole moments about an arbitrary
expansion point (Ry, Zo) are obtained by substituting x(r, z— Zp) for x in Egs. (B.6) and
(B.7), together with a similar substitution for ¢, and then employing the representations,

n

0z = ) = 30020~ )
- (B.9)
- n— (n B 1)!

n(r 2~ Zo) = kzzjl(—zo) R T )

As the multipoles (z + 1y)", where z = r — Ry and y = z — Z;, form a complete family
of solutions to the Laplace equation on any disk centered at (Ro, Zy), one may be led
to assume that the polynomial solutions given in Eq. (B.2) must also form a complete
family on such a disk. This is not the case, however, and the fallacy in the reasoning is
that the approximation of Eqs. (B.6) and (B.7) to the real and imaginary parts of (z+
1y)" is not uniform in n. We will see later that the polynomial solutions correspond to a
certain family of solutions obtained by separation of variables in spherical coordinates.
These polynomial solutions form a complete family on any circular region centered at
the origin, which may be of interest for compact toroids or for spheromaks, but hardly
for tokamak studies. It has been suggested [30] that the polynomial solutions may be
combined with solutions involving negative powers of p (where p = V/r2 + 22), as in
Eq. (B.5), to form a complete family. Such a family, however, will only be complete
on a region of the form p, < p < pp, which is not of interest. Useful complete families
of analytical solutions are only obtained by separation of variables in toroidal or in
cylindrical coordinates.
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Solutions from separation in cylindrical coordinates. Separated variables
solutions to the Laplace equation in cylindrical coordinates involve Bessel functions and
modified Bessel functions of r together with hyperbolic and trigonometric functions of
2. To obtain separated solutions to A*y = 0 or to A(r~!¢) = 0 the indicated ansatz
is x = rf(r)g(z) or € = rf(r)g(z), which leads to the pair of ordinary differential
equations:

2 ¢l ! ’Cr2_ 2 =
{rf +rf +( m°)f =0 (B.10)

g' —kg=0

where m? = 1 for the solution y, and m2 = 0 for €. There are three classes of solutions,

depending upon the choice of sign of the separation constant «.
(a) K = A%, with A > 0. Then,

{ x = r(c1J1(Ar) + c2Y1(Ar))(cs cosh(Az) + c4 sinh(Az2)) (B.11)

& = r(c1Jo(Ar) + c2Yo(Ar))(cs sinh(Az) + ¢4 cosh(Az2))

J and Y are Bessel functions, in the notation of [18], (19]. Here and elsewhere ¢, cs,
c3, and c4 are arbitrary real constants, and the functions y and ¢ given as a pair are
conjugate functions in the sense of Eq. (2.2).

(b) K = —A2%, with A > 0. Then,

{ x = r(ciI1(Ar) — caK1(Ar))(cs cos(Az) — cqsin(Az))

(B.12)
€ = r(cilo(Ar) + c2Ko(Ar))(ca sin(Az) + c4 cos(Az))

I and K are modified Bessel functions. The families (a) and (b), restricted to a discrete

set of values of the separation constant, may be used to provide a system that is complete

on any desired rectangular region (r, < r < 1 and 2, < z < 2;) in the right half plane.
(c) & = 0. This yields again the simplest polynomial solutions,

x = (c1 + czrz)(ce, + ¢42)

(B.13)
£ — (d1T+ darln T)(dS + d42)

These are not directly conjugate to each other, but Eq. (B.1) and Eq. (B.3) may be
consulted to find the conjugate functions.

All these solutions may be expanded in terms of the solutions (xn, £,) and (x/,, €})
given earlier, by the use of the following formulae.

rJo(Ar) exp(Az) = Z Aﬂ—_!f,,

rdi(Ar)exp(\z) = Z (—n)-‘-i—_ITXn

Yo(Ar) exp(hz) = =3 (:'f__;)! (& +(r+m02)e) - 2a-te

61




rYi(Ar) exp(Az) = ;2;2 (,f%)!(xi, +(r+ (/2 — 2A~xg

: L (G-t
rly(Ar) exp(irz) = (—n—:l—)lfn
n=1 -
00 (‘A)n 1
rIi(Ar) exp(1Az) = —1 E T
n=1
o (iA)“'l !
rKo(Ar) exp(1Az) = Z (n— 1) (En +(v+ ln(/\/Z))fn)
n=1
g — ()1
rKi(Mr) explirg) = ~i ) (x + (v +(3/2))x0 )

n=1

The solutions obtained by separation in cylindrical coordinates may be appropriate
for very elongated (belt-shaped) configurations, or for devices with a rectangular cross-
section, and may also be convenient for certain modelling studies involving a rectangular
grid.

Solutions from separation in spherical coordinates. In spherical coordinates,
r = psind, z = pcos ¥, the representation for A* is,

%y 1 é 1" 9y
‘X =55+ 5sind — ( — = A
B S gind ey (529 39) Lok
and the relation between the conjugate functions x and ¢ is,
a BX
(rie) =r1p!
dp a9
£ (B.15)
2 (r1e) = —r1p X
a9 dp

Starting from the ansatz x = psin¥f(p)g(¥#), and a similar ansatz for £, one obtains
for A*x = 0 and A(r~!¢) = 0 the systems,

P+ 2pf — K =0

: )g(!’) =0

cos ¢ m
(sin ¥)?

B.16
g"(9) + e

79+ (k-

with separation constant k € R. m? = 1 corresponds to the equa.tion for X, and m2 =0

corresponds to £. Three cases must be distinguished: k > -4—, K< — 4, and k = —i—.

In the case k > — I’ there exists a real a > % such that k = a(a — 1). The first

equation then admits the two independent solutions f = p~! and f = p~®. The
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second equation admits for almost every value of @ (namely a not an integer in the
range 1 — m < a < m) the following two independent solutions,

g(9) = P ((cos¥) (notation of [18], [19])
= (—1)" P} (cos¥) (notation of [89]) (B.17)
=(-1)" %;E:%(tan %ﬂ)‘mF(l - a, a; 1 + m;(sin %19)2)
I'(m+ a)
2mm!T'(a — 1)

l—-a+m a+m
2 o2

(sin9)" F 1+ m; (sin 9)?)

= (-p"

and

gid) = m_1(cos ¥) (notation of [18], [19])
= (—-1)"Q"_,(cos ¥) (notation of [89)]) (B.18)

a—1

In the sequel we follow the notation of [18] and [19]. These solutions are invariant
under the replacement of a by 1 — «.

As a result one obtains the following two families of conjugate solutions to the
equations A'y = 0 and A(r~'¢) = 0:

1 :
{ x(p,8) = —~ p° sin 9P_(cos 9) B3]
£(p,¥) = p®sin ¥ P,_,(cos ¥)
and
{ x(p,¥) = —p™sin 8Q%_,(cos ¥) (B.20)
£(p, %) = ap” sin9QY_(cos 9)

fora e R, a # % The limiting values of these solutions as a — 0 exist and are given
by

x(p,¥) = cosd — 1
{ E(p,¥) =sind (B.21)
and
X(p.' 0) =1 (B 22)
E(pa !9) = 0 E
For a = 1 the solutions are,
x(p,¥) =0 s
E(P! ’3) — PSiIll? %
and
¢(p,¥) = —psin ¥ In(tan %o) (B.24)
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Notice that for « = n and n = 1,2,3,... the solution pair defined by Eq. (B.20)
coincides with the polynomial solutions (xn, £,) given earlier. This is the motivation
for our normalization in Eq. (B.2).

In the case kK < —} one may set £ = (ia + §)(icx — 5) for some real a > 0.
The differential equation for f then admits the solutions f = sin(alnp)/\/p and f =
cos(aln p)/,/p. Solutions to the equation for g are the conical functions, viz. Legendre

functions of degree 1 — % We thus obtain the solutions,

{ x(p,¥) = —2y/p (c1sin(aln p) + ¢z cos(a In p)) sin 9P} _é(cos ) o
£(p,9) = /p (d1sin(a1n p) + da cos(aIn p)) sin 9PL. _s(cos9)
and
{ x(p,¥) = —2y/p(c1sin(aln p) + c; cos(aIn p)) sin 0Q}a_%(cos %)) -
¢(p,¥) = /p (d1sin(aln p) + dz cos(a In p)) sin ¥ Q?a_%(cosﬁ)

where x and £ are conjugate functions provided that d; = ¢; — 2ac; and dy = ¢p + 2ac¢; .
The case k = —% can be dealt with by taking the appropriate limits of the solutions
found earlier. A complete system of solutions for this case is given by,

x(p,#) = =2\/p(c1 + c2lnp) sin ¥ (c3 P! é_(c.os ¥) + C4Q1_;_(COS ¥))

(B.27)
£(p,9) = /p(c1 +co(lnp+2)) sind (caPE%(cos 9) + qQE%(cos ¥))

Solutions from separation in toroidal coordinates. For the study of tokamak
configurations the most generally useful family of analytical solutions is obtained by
separation of variables in a toroidal coordinate system. These coordinates are defined
by,

r = rosinh ¢/(cosh ¢ — cosn)

. (B.28)
z — zp = rpsinn/(cosh ¢ — cosn)

(0, 20) being the location of the singularity of the coordinate system, at ¢ — co. The
operator A* is,

Aty = cosh¢ — cosn (sinh ¢ i (coshg-— cosn ?ﬁ)

ro a¢ rosinh¢  d¢ (B.29)
+i(coshg—cosq Bx)) '
an ro an
and the connection between the conjugate functions y and ¢ is,
3
s (rie)=r1 X

; " (B.30)

. dx
—_— 1 - — -1 el
31 (r=°¢) r 3
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As A(r~!x) = 0 separates with the substitution r~!yx = (cosh¢ — cos n)’:’f(g)g(n),
one is motivated to try for A*y = 0 the ansatz,

rosinh
X = XS f(¢)q(n).
V/cosh¢ —cosn
and a similar ansatz for € in the equation A(r~!¢) = 0. This leads to the separated
equations,

s 8. 0f m? 1

sinhga_g(smhfa_g) (smhg)?'f ( 4)f_0 (B.31)
d%g . .
W-ﬁ—ng"o

where n? is the separation constant, and m? = 1 for the solution x, m? = 0 for the
solution ¢. We assume that the point (r = ro, 2z = 2;) should lie inside the domain of
the solution, so that n is a periodic coordinate, and n must be an integer.

The solutions for g(n) are known. Solutions to the equation for f(¢), when m =0
or m = 1, are of two forms:

fig) = pm l(cosh ¢) (notation of (18], [19])
= (-¢)"P", (coshg‘) (notation of [89])

]
= T{nhimis) (tanh ¢)™(cosh 5’)_"_%
2mm!T(n—m+ 3)

n+tm+3 n+m+ g (B.32)
xF( : : = sm+ 1; (tanhg))
r(n +m + %) _2 1
= 1 ¢ym =
22mm!T(n—m+ %)( ).
1 1 1 =2
xF(n+m+§,m+§,2m+l,1 e )
which is singular at ¢ — oo (r = a, z = 0), and
J(¢) = Q. 1 (cosh¢) (notation of (18], [19])
=(-1)"Q" (cosh ¢) (notation of [89])
T 1
- (—l)mﬁm (tanh ¢)™(cosh ;')_"_'41"
2"*10(n+ 1)
(B.33)

F(n+m+§,n+m+2
2 2
T'(n+m+3)
F'(n+1)

n + 1; (cosh g)_z)

= (-1)"Vr (1 - e %)™ (expg)™"

1 1
xF(n+m+§,m+ §;n+1;e‘2f)
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which is regular throughout ). In these formulae, F' denotes the 2 F} hypergeometric
function. In the sequel we will stay with the notation of [18] and [19]. Notice that both
P,:"_l and Qf_l are invariant under the replacement of n by —n.

t may appear strange that the definitions of P!" in our references should differ by
a factor (—1)™ when the argument is cos ¢ and by a factor (—¢)™ when the argument is
cosh ¢. This is nevertheless the case, and is related to the presence of branch points at
+1. Other authors have argued the merits of (re-)defining the special functions in such
a way that they are free of unnecessary singularities and branch points.

A complete family of solutions to A*y = 0 in any toroidal region of the form ¢ > ¢
is therefore obtained with the functions,

Xn = rosinh ¢ Q! | (cosh¢)cos(nn), n>0
+ E — n"'i-
CO:‘ SS: hcosn (B.34)
Xn = = @' (cosh¢)sin(nn), n>1

v/cosh¢ —cosp "™~z

The conjugate functions, £, must satisfy A(r~!¢) = 0, and a complete family of solutions
to this equation is provided by the functions,

rosinh ¢

€n = Q° ,(cosh ¢)cos(nn), n>0
— n
\/cosﬁsj hcosr) 7 (B.35)
gr= 05015 Q0 (coshg)sin(ny), n>1
Vcosh¢ —cosnp """z

It turns out, however, that the conjugacy relation, Eq. (B.30), does not allow a simple
one-to-one correspondance between the members of Eq. (B.34) and those of Eq. (B.35).
The conjugate function to a single member of Eq. (B.34) can be an infinite series from
Eq. (B.35) and vice versa. The following definition for the basis functions x and ¢ has
been chosen in order to restore the symmetry.

1 c
x(¢,m) = X5 — X541

(B.36)
Ds,m) = ~(n+ (& — Eh1)

and
x2(e,m) = x4 — x4

Ds,m) = (n+ (& ~ &)

for n > 0, with the understanding that x§ = 0 and £§ = 0.

(B.37)

66




APPENDIX C. DETERMINATION OF THE CURRENT DISTRIBUTION
FROM THE FLUX SURFACE STRUCTURE

An interesting different approach to plasma current profile identification has been
proposed by Christiansen and Taylor [68], who discuss the possibility of determining
the current profile from purely geometric information about the shape of the magnetic
surfaces, as may be available from electron temperature measurements for instance.
They conclude that for a toroidal configuration this determination is always possible,
but the analysis below shows their argument to be incorrect, and clarifies under which
circumstances the procedure of [68] will be well-conditioned. This analysis will be seen
to be of interest for the question of uniqueness of a fit to the magnetic measurements, and
is also relevant to MHD equilibrium determination from an extended set of diagnostics.

A differential equation for the flux function. Assume that some function o,
known to be a flux-surface quantity, has been measured over the poloidal cross-section
of the plasma. Thus the flux surface structure of the plasma is known as the isocontours
of o, but the functional relationship between ¢ and o is as yet undetermined. Notice
that o must for consistency satisfy a certain differential equation: as

d

Ao =2 pay 1 T gyp
dy

d¢2
do dF do dp r
" Mgy *w vol' /(%) ()
where the equilibrium relation, Eq. (1.16), has been used, it follows that
A = —a - fr — 4|Vo|?, (C.2)

where a, 3, and 7 are flux surface quantities; specifically, « = o'FF', f = uoo'p,
and v = —0"/(0')?, where ' denotes 8/8%. The representation of A*c in Eq. (C.2) is
unique, and the functions a, f, and 7y are determinable from knowledge of the function
o, provided that |Vo|? is not, on any flux surface, linearly dependent on 1 and r2.

One may then consider ¢ as a function of o, and derive from v = —o"/(0')? the
differential equation,

L 1n(ZY) = (o). (C3)

After two integrations 1 is obtained as a function of o, and therefore also as a function
of (r,z). Of the two free constants arising from the integrations, one corresponds to the
indeterminacy of the total current (indeterminate for this geometric information on its
own), and the other is the irrelevant constant term in . It follows that, except in the
degenerate case to be discussed below, the current profile in a toroidal configuration
can be determined from knowledge of the geometry of the flux surfaces together with a
measurement of the total plasma current.
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A degenerate configuration. The above procedure is related to the program
presented in [68], although in that work a different and not unambiguous route is
followed to obtain the function 7 in Eq. (C.3). Clearly the procedure fails completely if
over an extended range of values of ¢ there is a linear dependence of |Vo|? on 1 and r?,
that is, if [Vo|? = ¢ (o) + c2(0)r? over a range of values of o, for some flux functions ¢;
and cp. If this relation holds only on isolated flux surfaces or only approximately, then
the procedure may still be feasible, but will be badly conditioned. These restrictions
are also implicit in the derivation employed in [68].

The fact that this degenerate case, |V4¢|? linearly dependent on 1 and r? over a
range of flux surfaces, can actually occur in a toroidal system, was shown some years
ago in a different context by Palumbo [49], [50] and recently rediscovered in the present
context [51], [62!. An explicit construction of such an equilibrium is given in those
references, and it is shown that the associated flux surface configuration is unique up
to a scale factor. This construction is rather complicated; a much simpler argument
[J.B. Taylor, private communication, August 1984] for the corresponding problem in
straight geometry shows that there it is only for concentric circular flux surfaces that
|V4|? can be constant on each surface.

Notice that the family of equilibria in [49]-[52] also provides an example to show
that in toroidal geometry the external magnetic measurements need not define uniquely
the current profile, even if these measurements are made to arbitrary accuracy. A set of
measurements that is consistent with one current profile from this family is automati-
cally consistent with any other current profile that gives the same flux surface structure
and the same total current.

Partial profile determination. The procedure of [68] becomes badly conditioned
when |Vo|? ~ ¢;(0)+c2(0)r?, and it is of interest to investigate whether partial informa-
tion about the current profile can then still be obtained from the geometric information.
Indeed, in such a degenerate, or in a nearly degenerate case, it follows from Eq. (C.2)
that what can be determined correctly is not the three functions «, 8, and v, but only
the combinations a + «yc; and f + ¢z, where ¢; and ¢y are known. Eliminating 7 it is
seen that the combination ¢;f8 — cpcr is always measurable, or equivalently,

n = 0o'(cipop’ — c2F F') (C.4)

is measurable.

A limited study of the use of geometric information for current profile determination
has been reported [90], but the authors were unaware of the limitations on this method
of analysis, and it is not clear what to make of that work. The same comment applies
to the discussion of current profile reconstruction given by Lao et al. [62].

Final remarks. We conclude this Appendix with some speculation as to what
combination of diagnostic systems, magnetic and other, would be most suitable for an
accurate current profile determination. The magnetic diagnostics measure the current
I;, the plasma position (r,2.) as defined in Eqgs. (2.10) and (2.11), the parameter
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Br+1;/2, the location of the plasma boundary, and in good approximation also the
position of the magnetic axis. For sufficiently shaped cross-section or with the aid of a
diamagnetic flux measurement it is also possible to obtain separate estimates for f; and
l;, but beyond this no information on the radial shape of the current profile is obtained.

The radial shape of the current profile does show up to some extent in Faraday
rotation measurements [64]|-[67]. Taken in isolation these are difficult to interpret, but
it would seem that a limited number of such measurements in conjunction with the usual
magnetic diagnostics should suffice for a rough identification of the shape of the current
profile in the interior plasma. The Faraday rotation measurements can be shown to
provide information on the quantity

h =12V (r~%n.Vy), (C.5)

via the Radon transform. (n. is the electron density).

That leaves the problem of obtaining in more detail the separate contributions from
the pop’ and the FF' terms in the current profile. Measurements of the pressure would
suffice for that purpose, but only the electron component of the pressure is accurately
measured. In principle though, some data on the flux surface geometry (most likely
from electron temperature measurements) in conjunction with magnetic measurements
and Faraday rotation measurements, could serve to separate these two contributions to
the current, with the aid of Eq. (C.4). These diagnostics (magnetic, FIR interferometry
and polarimetry, and electron cyclotron emission) are all suitable for near continuous
monitoring of the plasma, making a successful efiort at a consistent interpretation par-
ticularly worthwhile.
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FIGURE CAPTIONS

Fig. 1. Schematic view of the magnetic diagnostics and the field shaping coils on
Doublet III.
Fig. 2. Schematic view of the magnetic diagnostics on JET.

Fig. 3. Schematic view of the magnetic diagnostics and the field shaping coils on
ISX-B.
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