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Abstract

The full resistive MHD equations are linearized around an equilibrium with cylindrical
symmetry and solved numerically as an initial-value problem. The semi-discretization
using cubic and quadratic finite elements for the spatial discretization and a fully implicit
time advance yields very accurate results even for small values of the resistivity. In the
application different phenomena such as waves, resistive instabilities and overstable modes

are addressed.




1. Introduction

A suitable description of the plasma behaviour is given by the macroscopic model
(MHD). The existence of an MHD equilibrium is considered a necessary condition for
successful operation of a tokamak. A large variety of instabilities can abruptly terminate
the discharges or deteriorate their confinement. We regard resistive instabilities as the
most important of the dissipative perturbations, since they cause the plasma to break

away from the magnetic field. The ratio of the plasma pressure and the magnetic field

2p

B’ should be as large as possible for economic reasons. The

energy, the plasma beta f =
numerical search for stable equilibria, especially for optimized configurations, as well as
for details of the instabilities is therefore very important for analyzing experiments and
designing new devices. Complete simulation of the plasma evolution requires solution of

the full time-dependent, non-linear MHD equations. Owing to the quite different length

and time scales involved this is a very complex numerical task.

Here we address the time evolution of linearized perturbations around an equilibrium
state. It has been established that the linearized problem can be numerically solved with
high accuracy. The influence of various quantities can thus be analyzed in detail; moreover,
comparison with analytical theory /1, 2/ is possible, which leads to fruitful interaction.
The most common method of solving the linearized compressible, resistive MHD equations
is the initial-value formulation. Hence this method has been used by many authors. We
refer to the excellent review articles /3, 4, 5/, which contain a detailed list of references.
Explicit as well as implicit difference schemes have been employed for the time advance;

see, for example, Ref. /6,7/.

In ideal MHD spectral codes using a sophisticated flux coordinate system and a
finite-element discretization for the displacement vector, such as ERATO /8/and PEST

/9/, and also used by Kerner in Ref. /10/, yield very accurate results, especially near the
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point of marginal stability. The formulation as an eigenvalue problem should therefore
also be obvious for the set of resistive equations. In this respect the complex eigenvalues
are evaluated by the matrix-shooting method of Freidberg and Hewett /11/ or by the
complex eigenvalue solver of Kerner, Lerbinger and Steuerwald /12/ using inverse vector
iteration. Applications by Ryu and Grimm /13/ utilizing the shooting method and by
Kerner et al. /14, 15, 16/ based on inverse vector iteration are so far all restricted to
equilibria with cylindrical symmetry. A discretization using finite differences for the spatial
variable can be made accurate to at least second order but requires a uniform mesh. To
resolve resistive modes accurately, an extremely fine mesh around singular surfaces is
necessary. The finite-element method allows arbitrary grid spacing, so that the mesh
points can be appropriately accumulated around singular surfaces. This advantage easily
makes up for the computational work needed to compute the matrix elements, which occur
in the weak form. The Galerkin method in conjunction with cubic and quadratic finite
elements was employed in the normal-mode code of Ref. /14/. A good discretization which
approximates well the entire spectrum of normal modes was achieved there by representing
the normal components of the velocity and the perturbed magnetic field by cubic Hermite
elements, and the remaining components by quadratic finite elements. A pollution-free
discretization (in the sense of Ref. /17, 18/) was thus obtained which yields very accurate
results for the entire spectrum even for values of the resistivity as small as n &~ 10719,
this was demonstrated in the applications of Ref. /12, 14, 15, 16/. Such a pollution-
free discretization is extremely valuable at the marginal point. The entire spectrum can
obviously be resolved only by a normal-mode code. An initial-value code always maps out
the most unstable mode of the system. Therefore, it is unlikely that in this case a good
discretization for the point of marginal stability has been obtained. Usually, this method
requires much finer spatial resolution than a finite-element code with higher-order finite
elements. The complex eigenvalues are obtained by means of a general eigenvalue problem

Ax = ABx with non-Hermitian matrix A. The following complication then arises: If the




matrix dimension is so large that iterative methods, such as inverse vector iteration, which
preserve the band structure, become necessary, there is no guarantee against one or several
eigenvalues being missed somewhere in the complex plane. Sylvester’s theorem (see Ref.
/19/) of the Hermitian case valid for ideal MHD, which provides this information, does
not apply to the dissipative system. To obtain such information, the Nyquist technique
or a similar Cauchy integral becomes necessary, which is, however, rather involved. If we
are concerned about missing the most unstable mode of a given configuration, we have
to turn to the initial-value formulation. But, naturally, the good spatial discretization is
kept. This concept of a finite-element discretization for the spatial dependence and the
usual differencing in time is called semi-discretization /20, 21/. This scheme perfectly
complements the mentioned complex eigenvalue code . It should therefore be considered

not as an extension of the normal-mode code but basically as a specific initial-value code.

The finite-element semi-discretization of the compressible, resistive MHD equations is
the issue of this paper. For the time integration a fully implicit scheme is employed, which
allows arbitrarily large time steps, this being extremely useful in the case of very small
growth rates. All kinds of waves, such as fast and slow magnetoacoustic waves and Alfven
waves, can be accurately represented. Since the numerical method is unconditionally
stable, any time step can be used. If the time step is too large for a specific wave such
as the fast magnetosonic wave, this mode is not well represented but is damped out.
The numerical scheme, however, still works accurately in representing slower modes such
as Alfven and sound waves. Current-driven tearing modes and pressure-driven resistive
interchange modes are computed for different values of the resistivity. This demonstrates
that our scheme indeed resolves resistive instabilities accurately and efficiently. Then
overstable modes are analyzed, the growth rate and the oscillation frequency being resolved
well for both large and small frequencies. The paper is organized as follows: The physical

model, which is the common compressible, resistive MHD model, is described in Sec. 2.
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Details of the numerical scheme based on a finite-element semi-discretization are presented
in Sec. 3, and its CPU times and storage requirements are discussed in Sec. 4. Section
5 contains the results: the capability of the code is demonstrated by the resolution of the
various types of waves, by the treatment of resistive instabilities and by the application to

overstable modes. Finally, Sec. 6 contains the discussion and the conclusions.

2. Physical model

The plasma is described in terms of single-fluid theory. The resistive MHD equa-

tions read in normalized, dimensionless form

equation of motion

p(%v{+v.vv)=—VP+(VxB)xB, (1)
Maxwell - Ohm
oB
W:Vx(va)—-Vx(anB), (2)
adiabatic law
OF — _APV.v-v.VP, (3)
ot
Maxwell
V-B=0. (4)

Here p denotes the density, v the velocity, B the magnetic field, P the pressure and n the
resistivity; - is the ratio of the specific heats. Note that the assumption of incompressibility,
V -v = 0, is not made. The adiabatic law is adopted for the equation of state since the
dissipation, which is proportional to 7, is considered to be small. The incompressible
equations of motion accurately describe the plasma behaviour if the pressure variations
are small compared with the mean thermodynamic pressure. Since the resistive modes

rapidly oscillate, the compressible set of equations is appropriate. Then the fast and slow
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magnetoacoustic waves are retained. These equations are now linearized around a static
equilibrium characterized by % = 0 and vg = 0. The equilibrium is then determined by

the equation

VP, = (V x Bg) x Byg. (5)

In straight geometry static, ideal equilibria can be interpreted as resistive equi-
libria if V x n(V x Bg) = 0, with the consequence that nojo = E., = const. In toroidal
geometry a resistive equilibrium is only possible with flow, i.e. vo # 0. This flow, however,
is proportional to 7 and hence very small. Here we take the simplest approach of a constant
resistivity 5o instead of a constant E,; this still gives the basic features of resistive modes,
since we are interested in phenomena which scale as 5% or 3. For a circular cylinder the
equilibrium quantities only have an r-dependence. With the usual cylindrical coordinates

r,8, z the equilibrium is determined by the equation

oP, 1, 9 9
o = " r eyt B) — Bag B (6)

With two profiles given, eq. (6) can be solved to give the remaining one.

The following separation ansatz is suitable for the perturbed quantities :
f(r,0,2;t) = f(r;t) exp(imb + inkz). (7a)

Introducing an eigenvalue
f(r;t) = f(r) ezp(At) (76)

then defines the growth rate as the real part of A, i.e. Ap = Re()). With k = 2%- defining
a periodicity length, a tokamak with large aspect ratio is simulated, n corresponding to
the toroidal mode number; m is the poloidal mode number. In ideal MHD A is either real

or purely imaginary, which leads to unstable or purely oscillating waves. With resistivity
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included, the frequency can become complex and hence overstable modes can occur. The

equations for the perturbed quantities v,p and b read

p%atv=—Vp+(VXBo)Xb+(VXb)XBO; (8)
dp
a:—?PoV'V—V‘VPO, (9)
db
TaT=V><(1.r><12"0)—V><(an’><b). (10)

The divergence condition, eq. (4), for the perturbed field, V - b = 0, is used to eliminate
by provided m # 0. The perturbed resistivity is set to zero, thus eliminating the rippling

mode.

Finally, we discuss the boundary conditions. It is assumed that the plasma is
surrounded by a perfectly conducting wall, which implies the following conditions at the
wall :

vr(a) =0, (11a)
br(a) = 0. (118)

For finite resistivity in the plasma the Maxwell equations require that the tangential com-

ponent of the electric field vanish at the wall. This implies
d
—b r=a — Y-
(:b2)r=a =0 (11c)

On the axis r = 0 all the quantities are regul#r.

3. Numerical method

The system of linearized resistive MHD equations, eqs. (8-10), presents a set of
partial differential equations in the variables r and ¢. In semi-discretization methods these

partial differential equations in space and time are first discretized in space yielding a
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system of ordinary differential equations in time. The semi-discretization in space can
be accomplished by finite-element or finite-difference methods. Here we adopt the finite-
element representation prompted by the complex eigenvalue code. For this purpose we
have to get a weak form for eqs. (8-10) and to construct approximate solutions. Let us

introduce the state vector u with six components:

IT
u'” = (v, vg,vz,p,br,bp).

We then change the dependent variables to
ul = (v = rv,, vy = tvp,v3 = irv,,p’' = rp, by = irb,, by = rb.). (12)

For simplicity p' is named p again. The operator in egs. (8-10) is represented by matrices
R and § with spatial dependence only, where in § only the diagonal elements are non-zero
and R contains differential operators and equilibrium quantities. The set of equations then
reads

du

The components of u are approximated by a finite linear combination of local expansion

functions or shape functions:
uk =" ak(t)hk(r), k=1,2,..6 (14)

with time dependence for the coefficients. Higher-order elements are used, namely cubic
Hermite elements for the radial velocity and field components v; and b; and quadratic
finite elements for vy, va, p and by. This introduces two orthogonal shape functions per
interval, raising the order of the unknowns to 2N, where N — 1 denotes the number of

radial intervals. With this choice the transverse divergence

1,d
Vi v= ;(Eui +mup) =0 (15)
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can be made to vanish exactly in every interval, and the divergence of b as well. It has
been established that this scheme yields a polution-free approximation for the discretized
spectrum to the true eigenvalue spectrum. Condition (15), which is only a constraint for
the numerical method, is the same as for the ideal system as shown in Ref. /14/. The proof
that condition (15) is sufficient for uniform convergence to the exact spectrum in the ideal
system has been given by Rappaz /18/. In the resistive case linear elements for v; and
b, are not acceptable for a good discretization because of the higher-order derivatives in
Ohm’s law, and hence higher-order elements are required. The stated cubic and quadratic
expansion functions were introduced in Ref. /14/. The vector u(r) is a weak solution if
for any function v(r) of the admissible Sobolev space satisfying the boundary conditions

the scalar product satisfies

(Ru,v) = (S92, v).

In the Galerkin method, which is applied here, the basis functions hf(r) are used in the

weak form, yielding

Aa = B'gt—-, (16)
where
Aij = fR,-;hﬂ-(r)dr, (17)
0
By = [ Subir)ar, (18)
0

are matrices of length d = 12N — 2 , when the boundary conditions are taken into account.
The integration is performed over the plasma volume . The matrix B is symmetric
and positive-definite but A is Non-Hermitian. Equation (16) presents a system of linear
ordinary differential equations. The simplest integration scheme for the first-order system

(16) is the explicit Euler scheme

a™t! = a" + Ata", (19)
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where n denotes the time step, i.e t = to + nAt. This yields the integration formula
a™t! = (AtB~'A +1)a". (20)

This method is only conditionally stable (Refs./21,22/). Numerical stability limits the

time step to

At < a

= Atstab: (21)

mazx

where Mgz is the maximum eigenvalue of the system Aa = ABa. Since the largest eigen-
value is given by the fast magnetosonic wave owing to the shortest radial scale Ar and
hence tends to infinity if Ar goes to zero, the Courant-Friedrichs-Lewy (FCL) condition
(21) is not acceptable. This FCL condition can be improved by adopting an implicit scheme
defined by

a™*t! — a" 4+ Atant!, (22)

which is unconditionally stable. We adopt the generalized trapezoidal method
a"t! = a" + At(l — w)a™ + Atwa™t!, (23)

with parameter w, which reduces to the explicit formula (19) for w = 0 and to the implicit
formula (22) for w = 1. For w = 0.5 it is the standard trapezoidal rule. The algorithm for

the time advance then assumes the form
Aant! = {—B +wAtA}a"t! = B a”:= —{B + (1 - w)AtA}a™. (24)

This time integration is conditionally stable for w < 0.5 with At < ——2—— and
(1 - 2w)Amaz
unconditionally stable for w > 0.5. The scheme is first-order accurate, except for w = 0.5,
where it is second-order. Thus it is desirable to set w >0.5. The matrix manipulations
necessary for an implicit scheme usually present a serious problem both for the coding

and for the efficiency of the algorithm. Sometimes the explicit scheme is preferred because

of its simplicity, in spite of the FCL condition. For the linearized problem addressed
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here the matrix computation does not pose a severe problem, since the band structure
of the matrices 4 and B is utilized in the algorithm. The matrices have block-diagonal
structure with a band width of b = 23, resulting in an overall band width of 47. The
operations necessary for solution of the linear system (24) are performed with routines
from the LINPACK library. The elements outside the blocks but inside the band width
are filled with zeros to be consistent with the required band-storage mode. The length
of the matrices d = 12 - N — 2 is usually large, namely d > 1000 . The iterative system
(24) is solved by applying LU decomposition of A . The algorithm is presented in the
flow chart in Fig. 1. The temporal evolution of the initial vector a is monitored by the
kinetic energy K to display the growth rate and by a specific component of a to display

oscillations. Usually, the first component is chosen:

K(t) = f dtfu? = aTBa — |af?, (25a)
K" = |an P2, (250)
KI"=a" 1<i<d. (25¢)

By using the LU factorization the linear system (24) is solved very efficiently. The vector
a is a real vector. The formulation as an eigenproblem (introduced by the ansatz (7b))
requires a complex vector a to represent imaginary and complex eigenvalues A, and hence
the algorithm for inverse vector iteration requires a complex shifted matrix 4’ = A—2oB .
In comparison with the eigenvalue formulation this scheme is more economic with respect
to storage. On the other hand, inverse vector iteration usually requires less iterations than

the initial-value method.

4, Implementation

The implementation of the algorithm makes use of routines from the LINPACK
library /23/. The real matrices 4 and B are evaluated and stored in the usual band-

matrix storage mode, so that the zero elements outside the bands do not occur at all.
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Next, the matrices 4 and B are computed according to eq. (24) with the time step At and
the implicitness parameter w fixed. In order to make full use of the fast execution on the
CRAY-1 vector computer, the LINPACK routines SGBFA for factorization and SGBSL for
successive solution of linear systems are used. The flow chart of the algorithm, presented
in Fig.(1), displays the steps in the execution. The vector ao is usually initialized by
random numbers. Special choices prompted by analytical solutions or previous numerical
results are admissible and can speed up the convergence. However, this is only done for
convenience. The minimum amount of storage required includes the matrices 4 and B and
the decomposition of A = LU together with the vectors a; and b;. In addition, a work-
space for the pivoting in the linear system has to be given. These storage requirements
can easily be improved by keeping only the minimum data necessary for the algorithm in
the fast memory and by storing data on disk. The storage-improved algorithm then works

as follows:

|. Compute matrix A and store 4 on disk, compute matrix B and perform the shift during

computation 8 = —8 — (1 — w)At4 and store B on disk B.

). read in matrix 4 and perform the shift during computation A =wAt4 — B.

3. Factor 4 = LU and store £ and U on disk A.

t. Compute new vectors and keep a; and b; in the fast memory.

5. Read in £, U or B separately, if needed.

This optimized version is a simple extension of the original one. Only one real matrix
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in band-matrix storage mode is required in the fast memory at any step together with
additional work-space for the factorization with the dimension of the upper band width.
The storage available at IPP, 7.3 x 10° bytes, which corresponds to 730,000 real words,
allows 600,000 matrix elements together with the necessary vectors. Cases with up to
313 radial grid points resulting in a dimension d of the linear system of d = 3742 can be
handled without storage on disk; this has been proved as sufficient for all the applications
so far. A new solver utilizing the block-diagonal structure of the matrices and allowing
a much larger block size is being tested and will be reported elsewhere. This new solver

allows treatment of 2D equilibria.

Next we estimate the CPU time necessary for the algorithm. The number of

operations to factor a band matrix with band width b and dimension d is
Np ~d- b2,
and the number of operations to solve the linear system
Np=~d-b
For NT iterations there are then
Nr=Np+ NT -Np=~d-bb+ NT) (26)

operations required. Usually, the number of time steps is larger than 50 and, because b is
fixed b = 47 , the CPU time is approximately linear to both the number of time steps NT

and radial intervals N:

t(CPU) = aN(a' + NT) ~aN - NT, (27)
with a = 3.9-10~% and a’ = 69 A typical case with 50 radial intervals and 500 time steps
then needs ~ 12.7s on the CRAY-1. The additional vector and matrix manipulations,

initially and at each timestep, together with the monitoring of K(t)and KI(t) slightly

enhance the estimate (27).
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5. Results

In this section three types of applications are presented, namely wave propaga-
tion, resistive current and pressure-driven instabilities, and overstable modes. The semi-
discretization in conjunction with the implicit time advance enables such phenomena to

be accurately and efficiently resolved.

5.1 Waves

The ideal MHD spectrum contains three different branches, namely the fast magne-
toacoustic waves and the Alfven and slow modes. The Alfven and sound mode branches
usually form a continuum. With resistivity point eigenvalues such as fast modes or ideal
instabilities experience only a small change, mostly damping proportional to 5, but the con-
tinua disappear and the resistive Alfven modes are strongly damped (see Refs. /13,15,16/).
Those eigenvalues lie on specific curves in the complex A-plane which become independent
of resistivity for vanishing n. If initialized accordingly, the numerical scheme allows such
waves to be analyzed. The equilibrium is the same as for the stability analysis below and

is defined as

B.(r) = 1.0,
Bg(r) — '710(21' — r3) y
: (28)
0
p(r) =" ((l=r?) = (1 = r*ft =(1=r))
po(r) = 1.0,
where the constant jo is connected with the value of the safety factor on the axis q(0)
and the wave number k£ j, = ;mi) Figure(2) displays the time evolution of a fast

mode superimposed on an Alfven mode. The parameter w is given two values w = 0.52
and 0.5. For a small time step At = 0.075 the fast mode is properly resolved with the
correct frequency Im(A) = 3.06 and with approximately the correct damping Re()) =

—6.85 - 10~%). Since the damping of the Alfven mode is almost a factor of 1000 larger
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than that of the fast mode the correct damping Re(A) = —4.7 - 10~ is obtained only
with smaller timesteps or with the Alfven wave switched off. The global decline of the
amplitudes in Fig.(2 a,d) is due to the Alfven wave, which is not followed for a long enough
time. For larger time steps At = 0.25 and At = 2.0 the Alfven waveis better resolved ; the
corresponding frequency I'm(A) = 6.53 - 102 and damping Re()) = 1.36 - 10~2 have the
correct values. For w greater than 0.5 the fast modes are damped out but the numerical
method is still stable and hence the Alfven waves are properly resolved until the time
step is eventually too large. For w = 0.5 the waves persist numerically undamped. These
results confirm that the numerical method is unconditionally stable for w > 0.5 for any
chosen time step. The time step is given by the accuracy necessary to resolve a specific
mode, but not by stability. It is found that the time step should be approximately equal

to or smaller than 0.1 times the frequency, or the growth rate of the mode of interest.

5.2 Resistive instabilities

The results so far have indicated that we are free to adjust the time step for efficient
resolution of any mode of the system. Next, current and pressure-driven resistive instabil-
ities are analyzed. The results for a realistic tokamak-like equilibrium with peaked current

density and constant toroidal fields is fairly well understood. The class of profiles

: ) r2.”
Jz(r) = .70(1 - a_z) )
Bz = 1 ]
p=1
yields for the ratio of the safety factor on surface r*“r/¢¢¢ = g and on axis % =v+1.
The constant jo is adjusted to vary ¢(0). We set v = 1 and hence q_%% = 2. Then the
q
profiles used assume the form
. (2—1r2
By = jor &1, (200)
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78

p= T((1—r2)—2(1--1#‘)—1-(13_(1—#’)), (29b)

where 7 is connected with g(0):

It is known that the m = 1 tearing mode is unstable if the ¢ = 1 surface is inside the
plasma. This instability can be avoided if ¢ > 1.0 over the whole plasma radius. The m = 2
tearing mode is then the most dangerous instability. As expected for this monotonically
decreasing pressure (see Ref. /24/), the unstable modes have purely exponential growth.
The growth rate of the most unstable mode is plotted versus g(a) in Fig.(3a). If the wall
is placed directly at the surface a = r“2# | then the m = 2 tearing mode is unstable
for 2.20 < g(a) < 4.0. These results are obtained by studying the time evolution of a
starting vector given by random initialization. The time step is chosen as At = 400 for
the strong instabilities near ng(a) = 3 and as At = 1000 for weaker instabilites around
ng(a) = 2.1. For ng(a) < 2.3 the instability changes from a current-driven into a pressure-
driven mode. This transition is displayed in Fig. (3b). The growth rates are extracted
from the time dependence of the kinetic energy and from that of a specific component,
introduced as K(t) and KI(t) in eq.(25). Figure (4) shows the result for ng(a) = 2.2. After
a few initial oscillations a purely exponential growth for K(t) is found. Note that only 50
to 100 time steps are necessary to resolve such instabilities. This also holds for the scaling
of a pressure-driven instability with resistivity. The smallest growth rate Ap ~ 10~° for
n = 10~? is computed with a time step At = 2-10° The expected dependence Re()) ~ n'/3
is found, as shown in Fig.(5). The eigenfunction displayed in Fig. (6) has a sharp gradient
at the singular surface, which in this case is located at r = 0.95 and is hence close to the
wall. The perturbed pressure is significant for this instability in contrast to the purely
current-driven tearing mode. In order to analyze these resistive instabilities thoroughly,
the numerical accuracy has to be sufficiently high. This implies a fine spatial resolution

around the singular surface. For a uniform radial grid the number of radial intervals has
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to be large in order to provide several points inside the resistive layer. Figure (7) displays
the convergence study performed with a uniform mesh for the case of ng(a) = 2.2, i.e.
r, = 0.95. It is clearly seen that for a coarse grid such as N = 20 or 40 the results are quite
inaccurate. Furthermore, the growth rates oscillate with increasing number of intervals.
This indicates that the location of grid points relative to the singular surface r = r, is more
important than the number of points itself. Only for N > 60 is a reasonable convergence
behaviour evident. The dependence of Re(A) on 1/N is then quartic up to N = 90, where
saturation is reached. If there is suitable mesh accumulation around the singular surface,
converged results are obtained with as few as N =~ 40 points. Mesh accumulation was
therefore built into the code. Then with a hundred radial mesh points a local resolution
of Ar/a = 102 around r = r, can easily be generated. All results concerning instabilities
presented in the paper are therefore computed by means of a non-uniform spatial grid and

their convergence is checked by successive mesh refinement.

5.3 Overstable Modes

The linearized resistive MHD operator is non-self-adjoint, which leads to complex
eigenvalues. The resistive fast magnetoacoustic and Alfven waves experience both oscil-
latory behaviour and damping, as was demonstrated in the first application. In order
to obtain an overstable mode in cylindrical geometry, the values for A’, the jump of the
logarithmic derivative of the perturbed magnetic field at the resonant surface, and for
He = —j%;% have to be chosen accordingly. Overstable modes can occur only if
Ds < 0, which implies a locally increasing pressure, i.e. % > 0, and if A’ exceeds a criti-

cal value, A’ > A!, as was pointed out in Ref. /24/. The class of tokamak-like equilibria
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defined by

o 14+r
1 T
B, — e

o(r) al+r? (30)

la? -1 1
— == 1
p(r) 2 a2 (1+r2 )'
po =1

is suited to studying overstable modes (see Ref. /13/). The plasma extends up to the wall
located at r = r*ell = 2.0 For a = 1 we have a force-free configuration with zero pressure.
For @ < 1 finite pressure is introduced with % > 0 . Since the pressure is rising and
non-zero at the wall, this equilibrium is somewhat unrealistic. But the pressure is quite
small compared with the magnetic field pressure and therefore the model can be adopted
for this study. The parameter By labels the strength of the main field at the magnetic
axis; it is used to adjust the value of the safety factor on axis. With B, = 9.0 and k = 0.2
we get g(0) = 18 and g(a) = 89.47. The singular surface with ¢ = 2 is then r, = 0.34. The
value of Dg can be influenced directly by the parameter a. The value A’ introduced in the
analytic derivation is changed only indirectly by varying By or . The results are displayed
in Fig. (8). In the force-free equilibrium (a = 1) the only instability is the unstable tearing
mode. If a gets smaller values, a < 1, this mode becomes slightly stabilized, but a second
unstable mode emerges from the origin. This second unstable mode is not detected by the
initial-value code. With increasing pressure gradient, i.e. with decreasing values for a, the
growth rate of the most unstable mode decreases and that of the second most unstable
mode increases until both modes merge and an overstable mode evolves. This happens for
a < 0.868. If a is further decreased the growth rate of this overstable mode gets smaller.
The oscillatory frequency, however, strongly increases. For o < 0.31 the mode becomes
stable with still finite oscillatory behaviour. The time evolution of the kinetic energy for
a random initial vector shows no oscillatory behaviour for 0.868 < o < 1, as is seen from

Fig. (92). However, a small change to a = 0.867 (Fig. (9b)) indicates an oscillation, which
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becomes more pronounced for smaller values of a Fig.(9c) . These plots allow the growth
rate to be extracted with sufficient accuracy. The frequency of the oscillations, however,
can be better extracted from the time evolution of a specific vector component KI(t). In
order to improve the resolution, we multiply KI(t) by the factor e"*#* and thus prevent
the amplitude from growing. As displayed in Fig. (10) , we can then easily distinguish
between purely growing modes with & = 1 to a = 0.868 (Fig.(10a,b)) and oscillatory
modes a < 0.868 (Fig.(10c,d)).

The exact value for the factor Ar is not important here. Any approximate value will do.
The modified quantity KI(t) badly represents the initial part of the temporal evolution;
but the distinction between purely growing behaviour, shown in Fig. (10a) and (10b), and
oscillatory behaviour, shown in Fig. (10c) and (10d), is then extremely clear. Both the
growth rate and the oscillation frequency can be determined with high accuracy. Relatively
few time steps are sufficient, i.e. At =20 and NT = 2000 for @ = 0.6. If the constant «,
which labels the pressure gradient, is decreased beyond values of 0.6, a < 0.6, the accurate
determination of the growth rate becomes more difficult. The frequency is still extracted;
however, the time step has to be substantially decreased. At o = 0.5 the ratio of the

|Re(A)] 10-3

growth rate and frequency becomes small m)—' T}

accurate evaluation of the growth rate of such an overstable mode the time step was set

10—, For reasonably

to 6 = 1. and many time steps were necessary, NT = 20,000 . The simulation of these
instabilities becomes quite costly, since the CPU time rises by a factor of ten compared

with the previous cases.

The difference between purely growing instabilities and overstable modes is now dis-
cussed. Figures (11) and (12) display the eigenfunctions for a purely growing mode
a = 0.868 and an overstable mode a = 0.6. The first mode has the usual pattern of
a tearing mode but here it has finite pressure. Note that the plasma extends from r = 0

to r = rvell = 2,0 . The singular surface is located at r = r, = 0.34. It is evident that
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the outer ideal part of the solution is not pronounced for r > 0.5 except for the radial
perturbed field. The resolution in Figs. (11) and (12) is therefore increased by a cutoff for

the radius at > 0.7.

While the radial components of the velocity and magnetic field remain similar for both
cases, the overstable mode has an additional structure in the other components. It is
evident that the gradients directly at the singular surface r = r, become steeper and addi-
tional oscillations occur in the resistive layer. Especially, the perturbed pressure becomes

more pronounced, which eventually leads to complete stabilization.

It was pointed out above that for such tokamak-like configurations the occuracy of
overstable modes very strongly depends in a subtle manner on the equilibrium parameters.
For slightly different parameters the effect is not there anymore. The detailed study of the
modes presented therefore emphasizes the accuracy and reliabilty of the numerical scheme.
In contrast to such a difficult case the overstable modes can very easily be traced for a

reversed field pinch configuration, as presented by Ryu and Grimm, Ref. /13/.

6. Discussion

Tokamak discharges containing hot and dense plasmas can be sustained for several sec-
onds. The relevant parameters such as temperature and density, reach values, close to
reactor conditions and thus the point of breakeven, where the energy due to fusion bal-
ances the externally applied heating, appears within reach in large experiments like JET
or in the next-generation machines like NET. For understanding present experiments and

for designing new devices numerical simulation is indispensable.

Equilibrium configurations as solutions of the Grad-Schliiter-Shafranov equation and

their stability behaviour against linearized ideal MHD instabilities are evaluated routinely

22



by means of normal mode codes. The computed limits match fairly well the experimental
data. However, the discharges are characterized by more complex patterns. Hard disrup-
tions, which abruptly terminate discharges, can cause severe damage to the structure of
the experiments and should therefore be avoided, if possible. Soft disruptions influence the
performance of discharges and determine eventually the confinement properties in terms of
transport. The plasma behaviour is extensively studied by detecting sawtooth oscillations.
All these effects can only be understood in the context of nonlinear, resistive MHD theory,
which implies the use of numerical simulation. While the computation of equilibria and the
linear stability analysis can be accurately and efficiently solved, the long-time nonlinear
simulation still presents a very hard problem. The corresponding initial-value codes have
to resolve quite different temporal and spatial scales and easily exceed the computational
resources. Completely implicit schemes together with appropriately moving coordinates
appear necessary. These, however, are tremendously difficult to implement. It is obvious
that simpler methods have been employed, which eventually aim at simulation of toroidal
plasmas. The semi-implicit method of Harned and Kerner /25/ and Harned and Schnack

/26/ should be mentioned, as well as the newly developed codes of Refs. /27, 28/ .

The method presented in this paper belongs to the group of more sophisticated methods.
In the semi-discretization method presented the virtues of a finite-element normal-mode
code and a fully implicit scheme are combined. The resistive layer is appropriately resolved
with as few as fifty radial intervals, and large time-steps can be used, which allow one to
extract the instabilities with fifty time steps. This culminates in very accurate results
which are very efficiently computed. More than a hundred time steps are needed just
to determine the growth rate or the oscillatory frequency within error bars of less than
one per cent. Fast and slow magnetosonic and Alfven waves can be simulated for finite
as well as zero resistivity. The usual current and pressure-driven resistive instabilities

can easily be resolved, and overstable modes characterized by a very subtle dependence
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on equilibrium parameters are successfully treated. With the code presented, which is
suited to monitoring linearized perturbations for cylindrical equilibria, obviously only the
first step in the desired simulation of the temporal evolution of toroidal plasmas has been
mastered. However, the semi-discretization used closes the gap between normal-mode and

initial-value methods. The merits of the two schemes complement each other perfectly.

The next step in such a program consists in treating toroidal equilibria. This makes it
necessary to introduce appropriate flux coordinates. This is the most obvious extension of

the method presented.

Initial-value codes are made nonlinear with relative ease, since the distinction between
equilibrium and perturbation is then discarded. The actual values of all quantities is
updated at each time step. However, magnetic islands develop, which makes the concept
of adopted coordinates questionable. The introduction of higher-order two-dimensional

finite elements thus appears to be desirable.
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Figure Captions

Figure 1:

Flow chart of the initial-value code based on semi-discretization with only one matrix in

core.

Figure 2:

Time evolution of a specific component of a fast magnetoacoustic wave superimposed on
a Alfven wave (KI eq. 25c). The rapid oscillations are due to the fast compressional wave
with frequency Im()A) = 3.06 and with damping Re()) = —4.7-107° and the slow decrease
of KI(t) is due to the Alfven wave with Im(A) = 6.53-10~2 and with Re()) = —1.36-10~3.

a) w = 0.50 and At = 0.075
b) w = 0.50 and At = 0.25
¢) w = 0.50 and At = 2.0
d) w = 0.52 and At = 0.075
e) w = 0.52 and At = 0.25

f) w = 0.52 and At = 2.0

Figure 3a:

Growth rate of the most unstable mode for a tokmak-like current profile (eq. 29) with the
wall directly at the plasma surface versus the safety factor on the surface for n = 105

and n=1, m=-2, k=0.1 and w = 0.52.

Figure 3b:

Grwoth rate for the same case in an enlarged scale.
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Figure 4:

Time evolution of the kinetic energy K(t) of a pressure driven instability for the equilibrium

of Fig. 3 with q(a) = 2.2, w = 0.52 and At = 400.

Figure 5:

Growth rate of the pressure driven instability for the tokamak-like equilibrium, eq. 29,

with nq(a) = 2.1 versus resistivity for n=1, m=-2 and k=0.1.

Figure 6:

Eigenfunction for the pressure driven instability for the equilibrium of Fig. 3 with g(a) =

2.2 and n = 107°

Figure 7:

Convergence study for the pressure driven instability for the tokamak-like equilibrium, eq.
20, with nq(a) = 2.2 (r; = 0.95),n0=1, m=-2, k=0.1, and n = 10~°, the mesh is uniform,
w = 0.52, At = 400

a) in a quadratic scale for N > 20

b) in a quartic scale for N > 50

Figure 8:

Overstable modes for the tokamak-like equilibrium, eq. 30, with varying pressure gradient.
The values of a which labels dp/dr are given. The parameters are B, = 9.0, n = 2 X 105,

n=1, m=-2 and k=0.2 . Re()) denotes the growth rate and Im(A) the oscillation frequency.

Figure 9:
Time evolution of the kinetic energy K(t) of the instability for the tokamak-like equilibrium,
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eq. 30,
a) a=0.868 ; Im(A)=0
b) a =0.868 ; Im()A)#0

c)a=06 ; Im(X)# 0.

Figure 10:

Time evolution of a specific component of the eigenfunction KI(t), modified by the factor

e~ ARt for the case of Fig. 9
a)a =10 Im(d) =0
b)a = 0.868 Im()) = 0
¢)a = 0867 Im()) =1.96 10—4

d)a = 060 Im()) =4.58-10"3

Figure 11:

Eigenfunctions of a purely growing instability for o = 0.868 in eq. 30. The singular surface
at r = r, = 0.34 is indicated.

Figure 12:

Eigenfunctions of an overstable mode for @ = 0.6 in eq.30. The singular surface at r =

r, = 0.34 is indicated.
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