AAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Generalized Hamiltonians, Functional
Integration and Statistics of

Continuous Fluids and Plasmas
H. Tasso

IPP 6/254 May 1985

Die nachstebende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europaischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




IPP 6/254 H. Tasso Generalized Hamiltonians, Functional
Integration and Statistics of Continuous

Fluids and Plasmas®

May 1985  (in English)

Abstract:

Generalized Hamiltonian formalism including generalized Poisson
brackets and Lie-Poisson brackets is presented in Sec. II. Gyroviscous
magnetohydrodynamics is treated as a relevant example in Euler and
Clebsch variables. Section III is devoted to a short review of func-
tional integration containing the definition and a discussion of ambi-
guities and methods of evaluation. The main part of the contribution
is given in Sec. IV, where some of the content of the previous sections
is applied to Gibbs statistics of continuous fluids and plasmas. In
particular, exact fluctuation spectra are calculated for relevant equa-

tions in fluids and plasmas.
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I. Introduction

Hamiltonian formalism has had a basic role in quantum theory and
statistical mechanics and many important applications in stability
theory, adiabatic motion, perturbation theory etc. For almost all
these purposes, in the case of both particles and vacuum fields, the
introduction of a canonical phase space seemed to be appropriate. Non-
canonical transformations were known but usually avoided. Continuous
fluids and plasmas are the exception to the rule. They can be described
by Lagrangian variables and through variational formulation by a canon-
ical phase space, but at the expense of a complicated set of trajec-
tories and their possible breakdown by, for example, shock waves.
Euler variables can readily be interpreted and are convenient but do
not allow a canonical phase space to be defined. They permit, however,
a "generalized" Hamiltonian description in terms of generalized
Poisson brackets |:1:[((31’B). If Euler variables are decomposed in
Clebsch-like potentials, a canonical Hamiltonian formulation can be ob-
tained in terms of those potentials but at the expense of introducing ;

"gauge' freedom and ambiguities (2] in phase space.

Intg%rals over such a phase space of functions are functional inte-
grals [3— similar to those encountered in quantum field theory and
solid-state physics. Functional integrals are not proved, in general,
to be uniquely defined objects except for some standard cases. In
addition to this mathematical problem, there is the problem of removing

the freedom of gauge and ambiguities from the integration domain.

Functional integration is essential not only for the formula-
tion 4 of the statistical properties of continuous fluids and
plasmas but also for the actual computation of, for example, the par-
tition function or higher moments of the canonical Gibbs-distribution-

like correlation functions. This yields a general formula : for the



k-spectrum of linearized fluids or plasma systems. This formula is use-
ful for small wave numbers but displays "ultraviolet" divergences for
large k. For special nonlinear equations such as the Korteweg-de Vries
(K-dV) equation an exact k-spectrum 3 is obtained free of diver-

gences.

The paper is arranged as follows: Section II is devoted to gen-—
eralized Hamiltonian formulation, with the emphasis on the case of gyro-
viscous magnetohydrodynamics (MHD). 1In Sec. III the problems related to
functional integration are briefly discussed. Section IV uses
Hamiltonian formulation and techniques of functional integration to ob-

tain exact k-spectra for relevant fluid and plasma equations. Finally,

the remaining problems are discussed in Sec. V.

II. Generalized Hamiltonian Formulation

(a) Discrete Case [

The most obvious examples of noncanonical Hamiltonian formulations
are those obtained from canonical formulations via noncanonical trans-
formations. They lead to the coordinate-free concept of symplectic
forms ij and to geometrization of dynamics. This covers essentially
the case of massive particles. The rigid top [E’i], for example, is not
included in this class. Its generalized Hamiltonian formulation leads
to degeneracy and existence of a Casimir ! invariant, as will be
explained below. It can be shown, however, that for each value of the

Casimir a symplectic leaf can be introduced.

GPB appeared for the first time in a text-book by Sudarshan and

Mukunda [] , where essentially the discrete case is investigated as

follows. Let zu,u = 1,2...N be the components of a vector z and let



f(z) and g(z) be two arbitrary functions of z. The GPB is defined as
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where n"° is an antisymmetric matrix obeying the condition
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for all A,u,v. Condition (2) ensures that Jacobi identity is verified

by the GPB. For proof see, for example, ref. [}{I.

1f 0"V is nonsingular, i.e. ]nuv| # 0, which implies that N is
even, then n“v defines a symplectic form. By means of the Darboux
theorem a local transformation can be made to bring it to canonical
form. The nonsingular case corresponds essentially to a system of

massive particles expressed in general noncanonical coordinates.

1f, however, the kinematics of a system can be expressed in
terms of the elements of some continuous group as in the case of a
rigid body spinning around a fixed point, the situation may change.
The motion of the rigid body can be described [:£] in terms of the

motion of a body frame denoted by S(t) with respect to a laboratory

frame S(0): S(t) = TS(0), where T is an element of the group of rota-

tions 03. If S, are the 3 components of the angular momentum J with

k
respect to the body frame S(t), then the equation of motion can be

written as

.Sh. = [Sn, H(S).l

wieh {j(s) , 3(5):\ = - ¢™ig 00

(3)

(4)
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where Imn is the moment of inertia temsor. In this case

v V] . i : i s ;
nu =-¢M JSj is obviously singular because it is an odd (3x3) anti-
symmetric matrix. It has one null eigenvector S, from which it

follows that

[f(S) ) 2 5:1 = ©0 for all £(8). (6)

A constant of motion with property (6) is called a Casimir invari-
ant. In this case there is only one Casimir. In general, their

number equals the dimension of the null space of nuv.

Another important point is to verify Jacobi identity for GPB
(4) or to check relation (2). If e™J is rewritten as Ein’ rela-

tion (2) becomes

i . " . - .
rs mn + sn my ne ns = s
which is the relation for the structure constants of the Lie al-

gebra of 03.

(b) Continuum Case

The extension of the GPB to continua has been considered by
-15 .
several authors [9 1:1. Instead of vectors z" one considers func-
tions ul, and instead of functions as observables one considers

functionals F,G,..., so that the obvious extension of the GPB is

F,Gl = % §F AY §G 4t ®)
{F.6}
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where A" are antisymmetric operators and atd = A%,

The Jacobi identity contains Fréchet derivatives of the Aij and
becomes a condition that is far less transparent [B] than condition
(2) in the discrete case. The condition becomes simple if the Aij
are linear [361 in the dynamic variables. The case of the rotating
top is the analogous discrete case, as can be seen from GPB (4),

which is also linear in the dynamic variable Sj'

A fluid can be described kinematically by the group of
diffeomorphism [35] similarly to a rigid top T: , which can be des-
cribed by 03. If the momentum density is chosen as one of the dy-
namical variables by analogy with the angular momentum of the top,

a GPB can be defined in the following way:

‘{F,G} = fu;' S_E,S_@] At (9)
Su  Sw Jdi
[:, :Ii is the ith component of the product for a Lie algebra of
vector-valued functions, which will be called the inner Lie algebra,
while GPB (9) is the outer Lie algebra on functionals. GPB (9) is
a special case of GPB (8) and is called [EEI Lie-Poisson bracket.
Cases where the Aij do not depend upon the dynamic variables
have already been suggested [Q_iil. They are appropriate to vacuum
fields. A combination of the two types of brackets can occur for
such simple equations as, for example, the Korteweg-de Vries equa-
tion 1 , as can be seen in Sec. IV or generally for interacting
fluids and fields [13’161.

Though the Lie-Poisson bracket is rather old, its appearence
in fluids and plasmas is recent. In accordance with Morrison and

others [13’141, ideal magnetohydrodynamics (MHD), Vlasov-Maxwell




equations, Vlasov-Poisson and other equations have been formulated in
this way. On the other hand, a mathematical investigation of the Lie
group properties underlying these formulations have been intensified

since then especially by Marsden and others [151

More recently, gyroviscous MHD, which contains unfamiliar higher-
order derivatives different from those encountered in elasticity
theory, also found such a formulation 12 with a correspondingly
unfamiliar inner Lie algebra of the Lie-Poisson bracket. Since 2-
dimensional gyroviscous MHD may have an interesting impact on statis-—
tical mechanics of continua, let us sketch it here. The equations
are

M
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where the gyroviscous tensor nis is given by

n- = Ns)m?h(%a) (14)

Ls

and NSJ'Lh, = c (85n E).l. - S;.(.’ ESh) . (15)



MS are the components of the momentum density. For other notations

and details see ref. [jél. It turns out that the system (10)-(13)

can be written as

M= M W, p= {p.H}, é.={e,m], p={BH a0

if the GPB is defined by

a7

and H = f(?.} ¥ P\B\ + %.:) at. (18)

GPB (17) is very similar to GPB (9) up to the term containing Nijst'
The parentheses are namely the components of the product of the Lie
algebra constructed as a semi-direct product extension of the
diffeomorphism algebra [351. The Nijst term contains quadratic
spatial derivatives, which should not appear in a semi-direct

product extension.

This term can be compensated by an isomorphism

880 h) - (L0088 v eggas)
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where f = (f;, £, fp, fB’ fB) is any element of the inner Lie algebra
of gyroviscous MHD,

such that

@, c@] = ifs.9] -

This isomorphism motivates a shift in MS in order to obtain the inten-

sively sought EEQI Clebsch decomposition in the form

M= pA X, BY L BAx —c€ P . (19)

This leads to a canonical formulation with eq. (18) as Hamiltonian

and

x , Th=-p

k i M, =-8
) My
£« Ne=-p
as canonically conjugate variables. One more function is needed in
this case to achieve canonical formulation. This is a sort of '"gauge'

freedom.
Note finally that GPB (17) is degenerate and admit Casimirs
a. b ¢
C=§‘._—"£fj’3/3 avt (20)

with a. + b, + e, = 1. This sort of degeneracy seems to be gener-—

i
ic[gil for all fluid GPB.



ITII. Functional Integration

A functional integral [3] consists of an integrand which, in
general, is a functional of some function and of a domain of summa-
tion which extends to all possible values of the function. The orig-
inal definition is based on a limiting process starting with a polygo-
nal approximation to the function at N mesh points separated by 24x,
so that the functional integral becomes a limit of a multiple integral.
If for Ax + 0 and N + = with NAx fixed the appropriately normalized
multiple integral converges, the limit is precisely the value of the

functional integral. Let us take as an example

b
Ul 8w, )] dx
fD(u) e { [w. + ]

(21)

+20 "o N )
1 =3, t(“_‘m.:_".t..)a v §(u;,2,)] 82
lim A(bx,N) A“‘.... dun e =1 Ax

N->oe
Ax®» 0 - -0

with NAx = b—-a and

- N
A(Ax.,N) - (nAx) % . (22)

If we choose another way to approximate the function u(x), e.g.
by Fourier expanding and then integrating over all possible values of
the Fourier coefficients, do we recover the same value for the func-
tional integral? This question is obviously not trivial, in general,
especially if the functional contains in a strongly nonlinear way

higher-order derivatives of the function. Fortunately, functional inte-
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grals of the type (21) happen to be uniquely defined, as proved in

ref. [éé]. The statistical calculations of Sec. IV reduce to func-
tional integrals of the type (21). The case proposed there for a Monte
Carlo numerical evaluation is different, but this does not need to be

a serious drawback in view of the fact that the proof given in ref. [221
does not imply that the only well-defined functional integrals are those

given by eq. (21).

A more serious question is how to restrict the class of functions
on which functional integration is being done. This is particularly
difficult if one has several functions u(x) which are not physical and
possess, for example, a gauge freedom. The problem is to carry the
integration in such a way that the physical values are only counted
once. Such ambiguities T: are known from the quantization of Yang-
Mills fields and there is good reason to believe that they also occur

if the functional integration is performed through Clebsch potentials.

The practical problem of evaluating functional integrals has not
yet been solved in a sufficiently general and satisfactory way. There
is the obvious case of a quadratic functional in (21) which can be
"diagonalized" in the variables of integration. The functional inte-
gral then reduces to the limit of a multiple Gaussian integral which is
well known. This means physically that the system is free of inter-
action. Since this is the only known multidimensional case, it became

the starting point [241 of standard perturbation techniques.

The higher-order terms of the perturbation series are moments of
the multidimensional Gaussian combined in several ways. These terms
can be calculated exactly but display, in general, infrared or ultra-
violet divergences which necessitate renormalization techniques
The renormalization only helps to get each term finite but cannot

prevent the explosion in the number of terms which causes such pertur-
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bations series to have, in general, zero convergence radius [: j

because they are essentially of the form

Az nlg (23)
e n .

the factorial being due to the explosion in the number of terms or

diagrams.

Thou%? these series, when explicitly known, can be occasionally
resummed there is no satisfactory general way of using them to
all orders. One is obliged to avoid perturbation expansion and solve
exactly either analytically or numerically or in a combined way. One-

dimensional cases having the form of (21) can be reduced [27’2€]

to
the eigenvalues and eigenfunctions of a nonharmonic oscillator which
can then be evaluated numerically. For more general cases Monte Carlo
methods based on ref. [2@1 seem to be the only remaining tool, but

their resolution is of course limited.

IV. Statistics of Continua and Exact k-spectra

Equilibrium statistical mechanics [EQI has had a great impact on
physics by obtaining thermodynamics out of the Hamiltonian of parti-
cles. This is done through the partition function or the zero moment
of the canonical Gibbs distribution. Higher—order moments such as
correlation functions can deliver fluctuation spectra. In this re-
spect the main interest is in continuous systems instead of particles.
Our starting point is then some ideal fluid model such as MHD, Vlasov,
hydrodynamics etc... . In order to proceed, we need the Hamiltonian
of the system, which in our case is a functional, and so we need to
do phase space integrals, which here are functional integrals. Let us

begin with linearized equations.
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(a) Linearized systems 5]

The linearized equations [§1d35] of motion of ideal fluid systems

can be written in Lagrange variables as

N? +P‘°Z+Q‘Z = o , (24)

where ¢ is a vector in some appropriate functional space, N and Q are
symmetric operators and P is antisymmetric. If N is positive, it can
be transformed away without loss of generality by a congruent trans—

formation. The Lagrangian is then

L-2[(2.2) -(2,79) - (z,Qz)], (29

where ( , ) is the scalar product in the Hilbert space of functions
mentioned above. From the Lagrangian we can derive the momentum and

the Hamiltonian:

n=g...l-- :Z%-"E-PZ

3

§¢

and

H = .:_((n..!iPz),(n_ﬂiPz)) + 1 (2,QZ) - (26)

Let us now assume the system to be in a heat bath and randomized.

Then the partition function is the following functional integral:

_pH
Z -:fb(n)D(Z) Sl

Let Y and M be introduced as follows
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M is a symmetric operator and Z can be written as

- Py Y’MY
Z:fD(Y)eF/( )

Let Y be expanded in terms of orthonormal eigenfunctions Yi of M:

ot
Y = & a, Yi with A, as eigenvalues. i
i

¢z

Do
This then gives (Y’ NY) - i cf )5; and

=4

™~

b

¢

b 7. Nt
Z = [ujﬁda; e’ \37)

L ]
1A

~
"
-

If <---> denotes the canonical average, we have from eq. (27)

2 .y A 4 (28)
ALY 2wt 22 o A
= PZ X Ag,
and 74 Eh.> = )\h“l;) = 4. g (29)

where E is the energy in mode k.
Equation (29) means that there is equipartition of the energy expec-
tation. This is due to the Gaussian, which itself is due to linear-
ization. Equipartition holds for any physics which expresses itself

in a redefinition of the energy. In fact, the expectation value for



14

the amplitudes given by eq. (28) can have strong ultraviolet diver-

gences 31 which cause <a§>:=k2 for linearized gyroviscous MHD.

This shows that linearization does not give good results for large
k. Ultraviolet divergences dominate. The advantages of the linearized
problem are in generality and feasibility of the functional integration,
whose integrand is a Gaussian (see Sec. III). The nonlinear problem is
certainly needed but its solution needs a bounded Hamiltonian and a
functional integral with non-Gaussian integrand. This is possible only
for special cases 27’261. We treat here the case of the Korteweg-

de Vries (K-dV) equation.

(b) Statistics of the K-dV equation [36’61

The "soliton gas' approach [35] to drift wave turbulence was a

motivation to perform a rigorous treatment [361 of the statistics of
the K-dV equation considered as a model for drift wave turbulence. The

standard form of K-dV equation is

U, - 6UU, & Uyyx =, (30)

where u stands for the electrostatic potential of the drift wave, the
steepening term is due [3i1to the electron temperature gradient, and
the dispersive term should model gyroviscous effects. It is worth
noting that the statistical treatment is rigorous for K-dV independ-

ently of the underlying physics and is of general interest.

The Hamiltonian formulation of the K-dV equation was given in

ref. [9] with a GPB

{F,6} = [§E£ 3 66 dx (31
gu = Su
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and a Hamiltonian

H_‘ = fu_‘dx_ & ‘!z.fu: ax , (32)

so that eq. (30) can be written

w, = {u,H,‘% :

The Hamiltonian H1 is not interpretable as an energy because of the

cubic term and is not useful for a canonical distribution.

(71

Fortunately, there is another Hamiltonian

H, = f!_;: ax (33)
and another GPB
{F,Gl’ —_-fgf (_’i?_ 4 n2 _'zu,,)S_C_:: dx. (34)
Su \ 2x? % Su

These brackets are a combination of Lie-Poisson and vacuum-field-
type brackets. The Hamiltonian is now bounded at the expense of a
GPB which does not allow [}{1 the Liouville theorem to be verified.
This situation calls for a change of phase space. It can be done

by the transformation [38
Lx {35)
u,—_(}'+ X

which takes us to

U,

L = {u', H,_S 2 60O < Uyn (36)

with H, = %j(b"#-rbf) d+ (37)
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and F’G = ) 6&. (38)
o8 = [ g8

The bracket operator g% is now independent of dynamic variables
and the Hamiltonian is positive, so that Gibbs distributions are all

well defined. The partition function is

-PH
Z - [D(ur) e P p (39)

4 2
ax Vipy HYiem V%
z - ﬂtlrm Fld‘,- e_Pz .“'Z(‘-H-P( ))
- N-» 22 i"‘N ¢
OHx-» o0 =

The situation is very lucky because Hamiltonian (37) is the 1-d case
of a Ginzburg-Landau - potential for which Z can be calculated

exactly via the transfer integral operator [Zil

¥ (C XN - PEn
fa, e ho) = € hE) . @

This operator can be approximated by the 1-d Schrddinger operator in
the limit of large N and Ax + 0. The problem reduces to calculation

of the eigenvalues and eigenfunctions of the anharmonic oscillator.

_Nﬁ€a
S

One finds

:I ~ J)

where € is the lowest eigenvalue of eq. (41).
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The next step [}:I is to calculate the correlation function
CH) = <Su@wfu@» = (5 +v) S(D"-rl’;;)o> ) (42)

2
where Su = u-<ury = L - cU Y -
C(x) can also be written as a functional integral

- A W)
Cw = fD(v) $(o*+ ) § (V4w), _g'_. " (43)

It turns out that this functional integral can be calculated in a

similar [5’221 way to Z. One finds

Y.
_\xl (Be 3 .
Clo = %{}“e -‘-(,,) (En- E.) )

(44)
with { }n and other notations are given in ref. [5:1. The Fourier
transform of C(x) delivers the spectrum, which is of the form

Pod
4
SR) = 2 Z =" (45)

8

o

nst P14

3

In the case of drift wave turbulence the first Lorentzian dominates
. A : 40 ; : : 6

and comparison with experiment :] gives qualitative agreement :I

except for low k values, where ''magnetic shear' may cause a strong

damping which is not included in the present theory.

(c) How to go beyond special systems?

In some cases the Liouville theorem can be proved directly for

noncanonical variables [@1—4@1’ so that Hamiltonian formulation can
be bypassed. Unfortunately, the known cases do have ultraviolet

divergences and are not adequate for plasmas where gyroviscosity is
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more important than collisional viscosity. In general, it seems un-
avoidable to obtain first a canonical Hamiltonian formulation. This
formulation is only possible for fluids in Clebsch variables and will

not be gauge invariant.

At this point I should like to make some connection with the K-dV

case treated in Sec. IVb.

1) The Miura transformation (35) is reminiscent of a particular

Clebsch ansatz.

2) The dispersive term in K-dV is similar to gyroviscosity.

This suggests to take as next realistic model gyroviscous MHD, for
which a Hamiltonian (18) and a Clebsch decomposition were presented

in Sec. II.

It is very likely that all conservative systems have a Clebsch
representation for which a canonical formalism exists. This may be
the unifying way to treat general systems if one can circumvent diffi-

culties due to ambiguities and evaluation of functional integrals.

V. Remaining Problems

This paper treats the problem of statistics of conservative and
continuous fluids and plasmas in the spirit of Gibbs equilibrium
distributions. It faces the two main problems of Hamiltonian formu-

lation and functional integration.

Functional integration is certainly the most difficult unsolved

problem in general. Exact calculation is only possible for special
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cases, as already mentioned, and expansion around the linearized case
leads, in general, to divergent series even after renormalization.
Another problem is the removal of ambiguities, which has not yet been
solved. It is worthwhile to learn about functional integration and
removal of ambiguities by applying Monte Carlo techniques to the 2-d

gyroviscous MHD system presented in Sec. II.

It may be a consolation to know that these difficulties are also
encountered in the quantization of nonlinear fields such as Yang-Mills
fields. We may even occasionally borrow there some techniques such as
summing up divergent series. But in the meantime people in lattice
gauge theory 44’451 are using Monte Carlo techniques [?9 , which are

well known among fluid and plasma physicists.

This paper has been restricted to equilibrium statistics for
reasons of applicability, feasibility and rigor. Gibbs distributions
are known if the Hamiltonian is known. Many phenomena in fluids and
plasmas are certainly much more involved and do not display complete
chaos in all phase space. There are driving and damping effects and
the statistical distributions have themselves to be found, e.g. solu-
tions to the Hopf equation 30 . This is the problem of turbulence
which takes place outside statistical equilibrium and will necessitate
quite new techniques for its solution. It makes sense, however, to
look first at the less difficult problem of statistical equilibrium
approached here in order to pave the way to the more common problem

of turbulence in fluid dynamics and plasma physics.
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