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Abstract

A formerly derived regularization method is applied to time-dependent Lagrangian
guiding-center mechanics, with the polarization drift included. This approach removes the
singularity that occurs for B-fields with non-vanishing parallel curl. From the Lagrangian
equations of motion, Liouville’s theorem and a collisionless kinetic equation for the “regu-
larized guiding centers” are derived. A common Lagrangian density for both the guiding
centers and the Maxwell fields is obtained by using a “constrained” Hamiltonian and a
formerly derived, new variational principle. From this variational formalism local conser-
vation laws for electric charge and energy are derived, together with the correct charge,
current, energy and energy flux densities. These densities combine point-like contributions

with electric polarization and magnetization terms.




1. Introduction

Recently, guiding-center (G.C.) mechanics and guiding-center kinetic theory, in com-
bination with Maxwell’s theory for the electromagnetic fields, were reformulated and fun-
damentally improved in three important ways. In the first place, single guiding-center me-
chanics was provided with exact conservation laws and a Liouville’s theorem for arbitrary
(but slowly varying) field configurations. This was accomplished by employing Lagrangian
and/or non-canonical Hamiltonian formalisms, i.e. a variational representation '~®). By
using Liouville’s theorem, Liouville-Vlasov-type kinetic equations were derived from the
Lagrangian equations of motion of the guiding centers 2:3:%). Together with Maxwell’s
equations these kinetic equations satisfy local conservation of charge (in the continuum

2.3,5)_

sense) However, local conservation of energy seemed only to hold exactly in the

absence of the polarization drift ®), i.e. for the non-relativistic and relativistic standard

G.C. theories 2:3).

This somewhat unsatisfactory aspect of the new theory was, in the second place,
remedied by the work of Pfirsch ¢). He introduced a new variational principle that uses a
common Lagrangian density for the Maxwell fields and a wide class of mechanical systems
(in the Vlasov representation) that includes charged guiding-center systems and also allows
the polarization drift to be taken into account. In this way, correct densities of charge,
current, energy, and energy flux were derived that satisfy exact local conservation laws
of charge, momentum, and energy. These new densities combine point-like (particle-like)

contributions with electric polarization and magnetization terms.

The resulting theories are perfectly satisfactory for field configurations with vanishing
parallel curl of the magnetic field. However, for B-curl B # 0 the theories are singular on
a hyper-surface of G.C. phase space, e.g. for large values of || 7). Because the G.C. drift

velocity v and the “parallel acceleration” ¥ diverge there, non-causal G.C. orbits occur
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and G.C. conservation in phase space is violated. As a consequence, all G.C. distribution
functions that involve such unphysical orbits are forbidden. Maxwell distributions and all
other distributions involving (arbitrarily) large values of || may not be used. Introduction
of diffusion-type, e.g. Fokker-Planck, collision terms is therefore also forbidden. Correa-
Restrepo and Wimmel 7) (in the third place) gave a general regularization method by which
this singular behavior is removed while conserving the variational form of the theory. This
regularization method was formerly applied to the non-relativistic, standard G.C. theory

(i.e. without polarization drift) in ref. 7.

The present paper employs both the regularization method of Correa-Restrepo and
Wimmel 7) and the variational principle of Pfirsch ¢) in order to arrive at a non-singular
and fully variational, non-relativistic G.C. theory including the polarization drift and
self-consistent electromagnetic fields. Correct densities of charge, current, energy, and
energy flux will be derived for this case and local conservation laws of charge and energy
will be proved. It is thought that this new type of theory is needed in order to avoid
spurious sources or sinks of charge and/or energy. This ought to be particularly important

in any analysis of plasma stability based on a guiding-center model of the plasma.

Section 2 presents the regularized G.C. Lagrangian with polarization drift, Sec. 3
the equations of motion of the guiding centers and Liouville’s theorem in the “energy
representation” {x, W}. In Sec. 4 some of the results are given in the v representation
{x, yy}. The collisionless kinetic equation for the guiding centers is derived in Sec. 5.
Section 6 gives the “constrained” Hamiltonian that is needed in the variational principle
for the combined Maxwell and kinetic G.C. theories (Sec. 7). In Sec. 8 the correct densities
of charge, current, energy, and energy flux are derived, together with the local conservation
laws of charge and energy. Section 9 presents the conclusions. Finally, in Appendix A a

transformation used in Sec. 8 is verified.



2. Regularized guiding-center Lagrangian with the polarization drift included

We start from the unregularized G.C. mechanics, with the polarization drift in-

cluded, as given in ref. 5. The unregularized G.C. Lagrangian is

L= -A"v - W , (2.1)
c
with the definitions
A" = A + % (y) b + vg) , (2.2)
W = ed + puB + r;—(vﬁ + vg) . (2.3)
Here L depends on the time ¢, the G.C. variables x, v. = x, v, and the parameters

K, m, e, c. Furthermore, A (¢, x) and ® (¢, x) are the electromagnetic potentials, E (¢, x)
and B (¢, x) are the Maxwell fields, b = B/B is the unit vector in the direction of B,

v is the usual E x B drift, viz.

I ~
p is the magnetic moment and an adiabatic invariant, with 4 = 0, and vy turns out to

be the “parallel velocity” (i.e. parallel to B) of the unregularized G.C. because one of the

unregularized Lagrangian equations leads to vy = v- b.

As explained in ref. 7, the singularity of the above theory occurs for Bl*l =0, with%)
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B = B + ? {v” b-curl b + 13-curlvE} , (2.5)

when the polarization drift is included. The condition Bﬁ = 0 can be expressed as

v = v (¢ x), with the critical velocity

ve ~ — /(b curl b) % 0 (2.6)
and
_eB
o= . (2.7)

It is the v -dependence of A* [eg- (2.2)] that produces the singularity mentioned. In order
to regularize this singularity, v in eq. (2.2) is replaced by a function v, g(v)/v,) of y
that approaches v in the validity range of G.C. mechanics (|v) | small), while it approaches
constant values outside the validity range, i.e. for large values of |vj|. Thus, eq. (2.2) is

replaced by

1l

At A + % {u,, g(bl) b + vE} ; (2.8)

Yo

with v, = const >0, g(z) ~ z, ¢'(2) ~ 1for |z| << 1, g(z) being defined in — o0 <
2z < + co. The function g(z) has to be monotonically increasing and antisymmetric with
respect to z = 0, and it is required that g(2z) ~ £ goo = =+ const (g > 0) for z — oo .

We shall also assume that

g (z) ~ |z|7° for z - oo , (2.9)
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with 1 < o < oo, in order for v and v to diverge not faster than a finite power of
lyj| for v — =*oo. It should be noted that this new divergence is completely harmless
because it occurs for infinite |v)|, contrary to the original singularity at finite v, of eq.

(2.6). Finally, v, and g, must satisfy the conditions v, << v, and

Vo Joo << |ve| = |Q]/[b-curl b| . (2.10)
As an example, one may choose g(2) = arctg z, i.e., go = 5,9 (2) = 1/(1 + 2%), 0 =

2. When this regularized G.C. mechanics is used in a kinetic equation, the distribution
functions should, of course, be vanishingly small outside the validity range of the G.C.
approximation and outside the validity range of v, g (v|/v,) ~ v. A suitable value of
v, can always be determined in the validity range of G.C. theory because of |v.| >> V|,
where V| is the gyration speed of the particle. Of course, v, may be chosen different for

ions and electrons.
The regularized G.C. Lagrangian, with the polarization drift included, is now given
by
L=SAt v-w, (2.11)

with the “modified vector potential”

At = A + -'E{vo g(ﬁ) B 5 1 (2.12)
e Vo J
and the energy
W = ed + puB + %(uﬁ + v2). (2.13)



It will turn out in Sec. 3 that v is now no longer identical with the “parallel velocity”,
defined as v-b. We have, nevertheless, continued to use the symbol v for this new variable
in order to facilitate comparison with earlier work. In the limit of small |v)|| one still has,
of course, vy = Vv b. When the regularization is removed, i.e. for v, ¢ — v, ¢' = 1,

the above Lagrange function [egs. (2.11) to (2.13)] agrees with that given in refs. 5 and 6.



-

3. Equations of G.C. motion in the energy representation

The equations of G.C. motion assume a particularly simple form if the set of variables
{t, x, v} is replaced by the set {t, x, W}, which we call the energy representation. The

energy W is defined by eq. (2.13). The variable v will then be replaced by the function

V” = V“ (t, x, W), (3.1)

which also depends on the parameters x,e, m,c. Its derivatives will be needed, e.g.

v 1 ovg o® 0B
= - " e = 5
ot mv; {mvE st far T A } (82)
W, = - —~ {™ V2 + Ve + uVB (3.3)
i = m‘/“ 2 E K ) .
BVH 1
W -_ m—v—l'l" . (3-4)
The modified vector potential is now defined as
+ mc Vi
At (t, x, W) = A + — %9\ b + vg . (3.5)

In what follows the “modified fields” Bt and E+ are needed. They are defined as

Bt = curl At (3.6)

and



so that

div Bt =0

and

oB+*
at

+ ccurl Et = 0.

Written explicitly, the modified fields read

Bt = B + me [uogcurlf) + 4 VVfo) + curlvE]
€

and

b= BB g P g PR
BT =B e[”°gat+gatb a1

An important quantity is the “parallel component” of B+, viz.

BI*I' = Bt b

= B + ne v,,gf;-curlﬁ - f)-curlv;_:;
e

In order to obtain the equations of G.C. motion from the Lagrangian

representation
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

in the W-



LY (t, x, W, v = x) = gA*-v—W,

one observes that the total time derivative is given by

E e W s e B e+
. — at aw TV av ow  Hop

where the last three terms make no contribution. From

oLt
=0
ow
one obtains
|
v-b = ?

The other equations of motion are given by
d (oLt 3
dt ( ov ) = Vi

This is equivalent to

cg i 4 At
Wb = vx curl A™ —
V“ ot

3]

Scalar multiplication by v and use of eq. (3.16) yields the energy equation:

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)




It is seen that the energy W is conserved when A™ is time-independent. One may define

the kinetic energy by

Wy =W — e® = uB + g(VH? + vfg) . (3.20)

Its (total) time derivative can be written as

We = —= + eE*.v (3.21)

or, more explicitly, as

el e 3.22
b= ; (3.22)

at at at

: )} OB Ov2
Wk:vi{eE—-mvog—b-mavg}+ % VE
where it must be remembered that all time and space derivatives must be taken with W

kept constant.

Forming the vector product of eq. (3.18) and b and observing eq. (3.16) yields the

G.C. velocity:

Vli 1 ~ AdAt
AT - S S .
¢ B e BF ST

(3.23)

¥y =

It is one of the advantages of the energy representation that v can be expressed in such a

concise form. The explicit expression for v is then
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V

= b & Bl = BR Y Vivog ¢ 9b  vogp b
MR : xb 4+ Car PXVB A+ e X g T ar P G
1 - " 1 ~ Ovg Yii
+ m—+bxva + thX a1 + g,n_'_ CUI'IVE

— (b - curl vE)B} . (3.24)
with the definitions

e Bﬁ'
QF = (3.25)
mc
and
3 .

(3.26)

Liouville’s theorem #) in the energy representation can be derived by the methods
indicated in refs. 7 and 8. It reads

o (9 By g Bf o (9 Bf .
L e B 7 28 — = 0. (3.
Bt( i )+ ( v v) 4 aw( 7 w) 0 (3.27)

Because of i = O this results ®) in the phase space volume element

gf B+
dry = — 43z dW dp
Vi

(3.28)

being conserved when it moves according to the above equations of motion [ e.g. eqgs
(3.19) and (3.23) .
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4. Results in the {x, v} representation

Even though some aspects of the energy representation exhibit a particular simplicity,

the set of variables {x, v} is more adapted to the treatment of the G.C. kinetic equations

(Secs. 5 to 7). Hence we shall use the {x, v} representation in this section and throughout

the rest of the paper. Henceforth, all time and space derivatives are to be taken with y

(rather than W) kept constant. It will suffice simply to list the main results in the {x, v}

representation.

The Lagrangian is given by

Dt x; wj ;¥i= %) = v A* — ed — W,

with the definitions

Wi = pB + o (4 + v3),

and the modified fields are

B* = curl A",

14

(4.1)

(4.2)

(4.4)

(4.5)



E' = -Vd — - :
L] S i (4.6)
or, explicitly,
B* =B + rr;_c{uo gcurlb + curlvE}, (4.7)
m db avg
*=E - Z{vg— + ZE .
E e{vgat+6t}’ (4.8)
with
* * 1 mc H B "
B =B ob=B+T[Uogb-curlb+b-curlv;;]. (4.9)
Comparison with Sec. 3 yields
« _ g+
B = B, (4.10)
E‘x b =E*xb. (4.11)
The Lagrangian equations of G.C. motion are equivalent to
v-b = v”/g' (4.12)

and
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b AP = S V(A" v) - VO — VWi. (4.13)
c C

If A*, ®, and W; are independent of x, then the canonical momentum p is conserved. By

expanding the total time derivative, viz.

b dons, (4.14)

_a+ V + 1 6+' + v
at 7 ey T HFan T Ul Bv

d
dt ~ ot

where the last three terms make no contribution, expressions for v and v can be obtained:

ﬂB* c .

= — —— (eE* — VW, b 4.15
v 7 Bﬁ + eBﬁ (e k) X ( )
and
1
. — * * v ”
U —mg’Bﬁ B* - (eE W) (4.16)
1 .
= — v-(eE* — VW;). (4.16a)

More explicit expressions are

. I fe u OB 1 9vg . dvg
%= o (;EH " mds 28s P At
+ l’ (uog o b x curlvE) "V (4.17)
g ds

and eq. (3.24) for v, with
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e B
0 = fif = ——1 (4.18)

mc

and, again, 8/8s = b V.

Liouville’s theorem in the {x, v} representation can be derived by the methods

indicated in refs. 7, 8 or by transforming eq. (3.27). It reads

a * * ) x
Because of g = 0 this results in
dr = 2 |g Bj| d*z dv dp (4.20)

being conserved when moving according to the G.C. equations of motion. When the
regularization is removed, i.e. for v, ¢ — vy, ¢’ — 1, the equations of motion and the

other results of Secs. 3 and 4 agree with those given in refs. 5 and 6.

17




5. Collisionless kinetic equation for the guiding centers

Using the regularized equations of motion of Sec. 4, one can readily derive a col-
lisionless G.C. kinetic equation. The phase space is 5-dimensional, with coordinates
{z:} = {x, y; ,u}, i = 1 to 5 The volume element d7 in phase space, as given
by eq. (4.20), is Liouvillian (conserved) ®), i.e. d7 = 0 for a d7 that moves according to

the G.C. equations of motion, where the dot in d7 designates the total time derivative.

The guiding-center distribution function f is defined by

dN = f (¢, x, vy, p) d7, (5.1)

dN being the number of guiding centers in d7. The collisionless kinetic equation expresses

conservation of dN in a volume element d7 that moves with the guiding centers, i.e.

- d .
dN = — (fdr) = 0. (5.2)

This equation can be reformulated 8) to read

0 . , . 4 .
where & = 0 has been used. In this form the kinetic equation holds independently of

whether d7 is conserved or not. In the case of a conserved dr [eq. (4.20)] eq. (5.3) simplifies

to read

df _ 8f

af
o ML) PR TR I 5.4
H e TV P,y < (5.4)
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where, again, # = 0 has been used. In egs. (5.3) and (5.4) v must be taken from cq.
(3.24) and 9 from eq. (4.17). When eq. (5.4) is applied to a G.C. species of a plasma,
it describes a G.C. Vlasov fluid (in phase space). It will be shown in Sec. 8 that the
combination of G.C. Vlasov fluids and Maxwell fields satisfies local conservation laws of
charge and energy. Local conservation of momentum will also hold, as indicated in ref. 6,

but will not be considered in this paper.
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6. The “constrained ” Hamiltonian of the guiding centers

In Secs. 7 and 8 the method of ref. 6 will be employed in order to derive local

conservation theorems of the combined system of Maxwell fields and G.C. Vlasov fluids.

For this purpose a Hamilionian of the guiding centers is required. Because the G.C.

Lagrangian of eq. (4.1) is of the non-standard type 8-!9), Dirac’s method 2:8:10:11) of

constructing a “constrained” Hamiltonian must be used. As will be explained below, we

use a modified and improved version of Dirac’s method #).

Let us write L* of eq. (4.1) in the general form

Lt, zu, ) = D M (t 2) 20 — @t 2),
n
with n and v running from 1 to 4. Because one has

w = det (wpm) # 0,

with the definition

0 3Mm

Wi = = —
0z drx.

the Lagrangian equations yield unique functions for the z,:

2, = Vo it 2) ,

(6.1)

(6.2)

(6.3)

(6.4)

where the phase space is spanned by the set of coordinates {z,}. The modified method of

Dirac #) yields the Hamiltonian
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H (t: zy, ) = et 2)+ Z Vi (t: zu) [Pm — Im (t, zu)!: (6.5)

m

defined in the “super phase space” {2,, p,}. At this point, the p, are independent variables

not yet subject to the usual constraint

Pn = Tn (6'6)
The canonical equations read
; oH
g = 9 = Vo (& %) (6.7)
and
oH dp Vi a
- = o = - m VinYm 6.8
& B2n Bz, Em: dzn | 5z, Vm1m) (6.8)
It follows that
‘ ; OV
o= = =) 2 (Pm = m)- (6.9)
n
Hence, when the initial condition p,, — vm = 0, all m, is applied, it follows that

Pm — Ym = 0 holds for all later times. One may therefore return to the original phase
space {z,} by using the constraint p,, = 7m , which agrees with the usual definition
of the canonical momenta. This is a modified and, in fact, improved version of Dirac’s
formalism in that the original equations of motion | egs. (2.4) | do not result from the
time-independence of the constraints, but hold in fact even when the constraints are not
applied at all 8). If one wants Liouville’s theorem to hold in super phase space, i.e. d7s =0

for
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dr, = H i APen (6.10)

then the constraints [ eq. (6.6) | may not be used.

If the above general scheme is compared with eqgs. (4.1) to (4.6), it follows that

ge=gs o p=11ed , (6.11)
2=y , (6.11a)
e .. :
% o= A, i=1 to 3 , (6.12)
¢
e =0, (6.12a)
o = W = Wi +ed. (6.13)

Hence the G.C. Hamiltonian reads

e . . .
H(t, %, v, p) = Walt, %, u) + ed(t, x) + v (p— “A") + 9ps,  (6.14)

with A* and Wy given in Sec. 4. In eq. (6.14) the quantities v and v are the functions

v(t, x, v)) and y(¢, x, v;) given by eqgs. (3.24) and (4.17).
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The t and x dependence of H is defined via the potentials and the fields. Hence one

may express H as

H = H(Wi+e? p--A,E, B, v, ps) (6.15)

Then the derivatives dH/3B and dH/JE, which are needed in Secs. 7 and 8, can be

determined. The evaluation uses the constraints of eq. (6.6), i.e. the results hold, and are

only needed, for p=%2A* and py=0 ,viz.

LR ¥ P
B‘E—*P’ BOQJ.g,E

3

2m

;._c}a("i—VE)XE+§{(H—VE)-VE}B (6.16)

and
oH mc

In ref. 6 the quantity # = H — e® and its derivatives with respect to the fields were

introduced, but the results are, of course, the same. The quantity v is defined as

g—,f) : (6.18).
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7. Variational principle for combined Maxwell and kinetic G. C. theories

We switch to an Eulerian picture of the Hamiltonian G.C. dynamics of Sec. 6 by

employing the Hamilton-Jacobi formalism. A complete solution

S = S(t,z,a) (7.1)
of the Hamilton-Jacobi equation
as as
= + Hitz, 5) =0 (7.2)

is assumed to exist for each G.C. species. Then the transformation {z,p} — {z,a} in the

super phase space is effected by evaluating

as

5 (7.3)

where a is a set of constants of the motion, & = 0 '2). Then the Lagrangian L(t¢) for the

combined Maxwell and kinetic G.C. system is given by ©)

L) = fd%%(Ez—B?)

- X [ fa (G mes 5 ) ana o 04

where the index v counts the G.C. species and E and B are defined by the potentials A
and &:
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B=curl A | (7.4a)

18A
E=-Vé - —— . 7.45
c dt Wit

Using Hamilton’s principle

ta

5 f L(t) dt = 0 (7.5)

ty

(where the variation is taken by varying ¢,, S,, ®,and A ) together with the boundary

conditions at the times ¢;, s

56 = 65, = 6& = 6A = 0 , (7.6)

and assuming that certain partial integrations over # do not give any boundary contribu-
tions, one arrives at the following results. Variation of the {¢,} yields the Hamilton-Jacobi

equations

as,
ot

as,
0z

+ H,(t, s, ] =8 ; (7.7)

variation of the S, yields the collisionless kinetic equations, in the form

d¢, a B )
e + é}--(qu,,) =0 3 (7.8)

variation of ® and A yields the inhomogeneous Maxwell’s equations ®) and, hence, the

definitions of the charge and current densities p and j (see Sec. 8). Note that the ho-
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mogeneous Maxwell’s equations are implied to hold. In eq. (7.8), the V are the sets of

generalized velocities V,, given by !2)

0H,

5=Vt 5 a) = o5y

(7.9)

where V has been written without the species index v, as in the case of the coordinates s

and a. Furthermore, by using the Van Vleck determinant 13:8:14)

928
sl =, = det s , :
w,(t, %, a) e (Ba,- aZk) (7.10)
with the property
ow, a
L+ - (Vw)=0 (7.11)

a Vlasov-type distribution function f,(¢,%,a) can be constructed:

fo = $/wn (7.12)

with the property
df,

df, _  48f, _
= = S +V-2Z=o0, (7.13)

i.e. f, is a constant of the motion. Equation (7.13) is the Liouville-Vlasov-type kinetic
equation in the {#, a} representation, and eq. (7.11) states 8) that the volume element in

super phase space

n
dr, = w, H dz; da; (7.14)
i=1
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and the one in the original phase space {z;}, viz.

n
dr = w, Hdz,- . (7.15)
1=1
are conserved, i.e. d7, = d7 = 0. Hence, eq. (7.11) represents Liouville’s theorem.
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8. Densities and local conservation laws

It was shown in ref. 6 that the new variational principle sketched in Sec. 7 generally
leads to the following densities and local conservation laws. The charge density is generally

given by

1
p = - dvE

- Z €y fdna dn-.v22 Wy fu
v

(8.1)

+ ) div/d“a, d™2 25 wy fo 66];"

Here, again, v counts the G.C. species. The vector z, (of dimension n; = n — 3) contains
the coordinates z,, other than the spatial coordinates z, y, z. The current density generally

reads ©)

X 1 oE
i = (ccurlB — ﬁ)

= Zeyfd"a d™2z, w, fu Vo

) oH,
- Zuja fd“a d™?z; w, f, 5B

— z ¢ curl /d”a d™2z; w, f, % . (8.2)

v

These densities combine point-like contributions with electric polarization and magnetiza-

tion terms. Clearly, charge is locally conserved, i.e. ¢)
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ap .
5% T divj=0 , (8.3)

where the cancellation of the point-like contributions follows from the G.C. kinetic equation

[ eq. (7.13) or, alternatively, eq. (7.8) |.

Furthermore, the energy density is generally given by ©)

e 1 2 2 [n. nqg ) _ aHU
¢ = (B +B)+ZU: d"a d™z w, fu( B, —B - —g . (8.4)

with A, = H, —e,®. Likewise, the energy flux density generally reads °)

" n s . 0H,
h = EEXB+ZVI./‘dad 22wufu(Huvu+CExﬁ-) . (85)

Local conservation of energy holds ®) and is expressed by

de

= divh = 0. (8.6)

Local conservation laws for momentum and angular momentum also hold, but are derived

elsewhere 1°).

The above equations for p, j, € and h will be evaluated for the regularized G.C.
mechanics with polarization drift of Secs. 2 to 6. In order to do this, one must return from
the super phase space {2, a} to the physical G.C. phase space {2} and use egs. (6.16) and
(6.17) for 0H, /0B and 8H, /JE. It is shown in Appendix A that any integral of the form
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I, = fd"a d"2z2, w, f, F(t, 2) , (8.7)

with

¢u = wy fu = 5(& 5 a()) qsuy(t) z) ) (8'8)

can be given the form

b = / d™2zy ¢,.(t, 2) F(t, 8) (8.9)

where the a-integration has been performed. Here a, is the “constrained ”value of a, in
the sense of Dirac’s theory (Sec. 6) and ¢, is the distribution function in z-space. It

satisfies the kinetic equation in the form

0¢ug
ot

<)
+ oo ($uV) = O. (8.10)

By introducing the Liouvillian phase space volume element dr, of eq.(4.20) in the abbre-

viated form

dr, = (¢ 2) ][] dza (8.11)

a Liouville-Vlasov-type G.C. distribution f,4 is constructed:

fvg = ¢ug/)‘u ’ (8.12)
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with the kinetic equation taking the form

dfuy, _  0fug Ofvg

The resulting expressions for p, j, €, h are supplemented by allowing for a p-

dependence of ¢,4 , v, fus and also integrating over p, to yield

p = Z en f duy dp Ay fug

~

+ Ediv[ duy dp Ay fug %(v,, —vp)xb (8.14)
v

j = Zeuf dU“ dp A, fugV,,

A

d myc
_ Z a/ dyy dp Ay fug T(VV—VE) Xx b
v

—z CCUI‘I/ dU” dﬂ' )\u fvg [#B - %(UOU qu Vvl — %VE)
v

v

v 2mv ~
- n-;zc(vuj_ '—VE) x E + B {(V,,J_ —VE)-VE} b:l ; ‘ (815)

_ 1 me 2
6_8_11'(E+B)

my
+ Zf dyj dp A, fvg [ﬂB + T(Uﬁ+1’28) + mV(VV'VE _U%) ] (8.16)
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Cc
h = 4_1?EXB

=t ZI dyj dp Ay f,,g[{,uB + n;—u(uﬁ + v%) }vu
v

+ {[LB + 2m, VE'(V,,_L — VE) }VE

m,, c?
_ _B'z E x {(V‘,_L — VE) X E}
mycC U”
- E x<vow g Voo — 7 vE . (8.17)

with ), given explicitly by [ egs. (4.20), (8.11) |

Ay = fn—i g By | - (8.18)
The integration ranges are —oo < y|| < +00 and 0 < g < co. When the regularization is
removed, i.e. for vog — v, ¢ — 1, the above densities agree with those given in egs.
(8.1) to (8.4) of Ref. 6. It has thus been established that the G.C. kinetic equations of Sec.
5 together with Maxwell’s equations, with p, j, €, h given by the above equations, form a
selfconsistent Lagrangian system with local conservation of charge and energy. As in the
unregularized theory ©), the current density j of eq. (8.15) has the property of vanishing
in any time-independent B-field (with E = 0 assumed), for distributions fvg depending
only on energy, i.e. fug = fug (BB + 73 vﬁ) This means that drift and magnetization

2

currents exactly cancel each other as in the exact Vlasov theory of charged particles.
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9. Conclusion

Regularized 7) non-relativistic guiding-center equations of motion that include the
polarization drift !#®) were derived from a regularized G.C. Lagrangian .The regulariza-
tion procedure removes a singularity present if B - curl B # 0. The equations of motion
conserve single-guiding-center energy in time-independent fields and obey a Liouville’s the-
orem #) for an appropriate phase space volume element, which is constructed. From this
G.C. mechanics, collisionless kinetic guiding-center equations were derived. In the second
part of the paper, the “constrained” Hamiltonian in the sense of Dirac °~!! ) was given for
the guiding centers. It was used in the new variational principle of one of the authors ®)
in order to construct correct densities of charge, current, energy, and energy flux and thus
obtain local conservation laws of charge and energy for the combined system of Maxwell
fields and guiding-center Vlasov fluids. The variational principle mentioned €) yields the
Hamilton-Jacobi equation for the single guiding centers, the collisionless kinetic equations
for the different species of G.C. Vlasov fluids, and the inhomogeneous Maxwell’s equations
(with the definitions of the correct charge and current densities) together with the local
conservation laws for the combined system. The local conservation laws of momentum
and angular momentum have already been derived elsewhere !®). This new theory should
be particularly appropriate for stability calculations in view of its exact local conservation
laws, the absence of any high-energy singularities, and its inclusion of the polarization
drift. Spurious sources or sinks of charge and energy are absent, and the regularization

allows an unrestricted use of distribution functions in arbitrary field configurations.
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Appendix A. Transformation of density integrals

The transformation used in Sec. 8 in order to reduce the density integrals to become
integrals over {8} = {v|} space is now deduced. We shall drop the index v that counts

the G.C. species. We introduce the distribution function ¢ in super phase space by

dN = ¢ d"ad"z (A.1)

where dN is the number of guiding centers in dr, = d"a d™z. For a d7p moving with
the guiding centers dN is conserved (AN = 0) and hence ®) eq. (7.8) holds for ¢. To
return to the original phase space {z,,}, one introduces the constraint a = ag and the

G.C. distribution function ¢,(t,=) by

¢(t,z,8) = 6(a—ao) dy(t,2) (A4.2)

[ cf. eq. (8.8)] . This yields

dN, = [dN - (f ¢ d”a)d"z = ¢,(t, ) d"z . (A.3)

Here d N, is also conserved because the a,, are constants of the motion. One therefore has

®)

8¢ o B
~5Eg— + 32 (qug) =0, (A4)
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which is eq. (8.10). The equivalence of eqs. (8.7) and (8.9) now follows because I, of eq.

(8.7) can be written as

Id*s = f de F(t, ) = /ng F(t, 2) (A.5)

2

where the index v has again been dropped.
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