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Abstract

Various forms of Liouville’s theorem are considered which are appropriate for non-
canonical representations of mechanical systems and for applications. Special attention is
given to time-dependent, non-standard Lagrangians (without constraints) for which the
usual transition to an ordinary Hamiltonian is impossible. In addition, applications to
integrals of the motion and kinetic equations are listed and a basic equivalence relation is

proved. The results are important for modern Lagrangian guiding-center theories.




1. Introduction

In classical mechanics, statistical mechanics, and kinetic theory Liouville’s

theorem (1] is of great importance. Where valid, it makes the motion in the phase space of

a mechanical system incompressible. Here, the terms ”phase space” or "evolution space”

designate any state space such that the equations of motion for any complete set of coordi-

nates are of first order. Points in phase space will be described by arbitrary, i.e. generally

non-canonical, coordinates z,.

A phase space volume element

dr = A (t,2,) [] den

that moves according to the equations of motion is conserved, i.e.

dt

holds, if A satisfies the condition

aA a ;
5? + Zn: E;:(Azn) = 0,

with the generalized velocities 2,, determined from the equations of motion:

£, =Vi ([42):
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(1.1)

(1.2)

(1.3)

(1.4)




The equivalence of eqs. (1.1), (1.2) with eq. (1.3) is proved in Appendix A. When egs.

(1.2) and (1.3) are satisfied, d7 will be called a Liouvillian, or conserved, volume element,

and A a Liouville weight function.

Conventionally, Liouville’s theorem says that

dr = H dg; dp; (1.5)

is conserved, the g;, p; being canonical coordinates of a Hamiltonian system. For systems

given by standard Lagrangians, i.e. L (¢, gk, gx) with [2]

det (3;.),- )
aq;

eq. (1.5) may be employed in order to derive a conserved phase space volume element dr in

0%L
: (aq'.- ad,-) e (16)

-arbitrary coordinates. However,in the case of non-standard Lagrangians (2], with eq. (1.6)

’ violated, the velocities ¢; cannot be expressed by ¢, g;, p;, and it is therefore impossible to
employ eq. (1.5) by passing from the Lagrangian to the Hamiltonian (expressed by ¢ and
canonical coordinates). An alternative method, for constructing a conserved dr direct from
the non-standard Lagrangian, is then desired. Non-standard Lagrangians are of practical
importance, e.g. in modern Lagrangian guiding-center theories (3 — 9] and in other fields
(10, 11]. In the case of standard Lagrangians the use of a Hamilton-Jacobi representation
(12, 13] has been of practical impbrtance [7]. This paper lists and derives various forms
of Liouville’s theorem which are appropriate for non-canonical system representations and

for applications 7 — 9].

It should be noted that, ordinarily, a conserved phase space volume element dr is only

of practical use if A (¢,2,) is a known function of state that does not require integration
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along orbits for its construction. For instance, if a complete set of constants of the motion

¢n 18 considered, viz.

tn = ¢cn (t, 2,) = const. (1.7)

the number of ¢, equalling the number of coordinates z,, it is true that

dr = H de, (1.8)

is conserved; but the Liouville weight function

dc
A(t, z,) = det (Bz:,) (1.9)
is only a known function of its arguments if the constants of the motion ¢, are as well, i.e.
after the equations of motion have been solved and the solution has been inverted to obtain
eq. (1.7). However, special circumstances can exist |7, 9] where a Liouville weight function
that is only form~lly given proves to be useful. This point deserves special attention in

applications.

In Secs. 2 and 3 conserved phase space volume elements are derived for time-
dependent first-order and second-order Lagrangians without constraints, respectively. The
results of Littlejohn (3], Dirac-Pfirsch [9], Lutzky-Wimmel [14], and Van Vleck-Pfirsch
[12, 13] are covered. Section 4 presents applications and Sec. 5 gives the conclusions. In

Appendix A the equivalence of eqs. (1.1), (1.2) with eq. (1.3) is proved.




2. First-order Lagrangian systems without constraints

First-order equations of motion without constraints are obtained from (time-

dependent) non-standard Lagrangians of the form

Lt =z, 2) = Z Tt z) 2n — ¢ (¢ 2),

(2.1)

with n and v ranging from 1 to 2 N (see below). The Lagrangian equations are of the form

. = 0n a¢
; Wnm (t: zv) Zm = _(_52‘— + E) ’

with the definition

0n 0Ym
0zm 0z,

Hence the matrix (wpy,) is antisymmetric. In order for a unique solution

=Vl %)

for the generalized velocities 2, to follow from eq. (2.2), it is necessary that

w

det (wpm) # O

(2.2)

(2.3)

(2.4)

(2.5)



"be valid, which is only possible when the number of coordinates is even. According to

Littlejohn [3] the following phase space volume elements dr are conserved (d7 = 0):

dr = C(t, 2,) A (t, ) [] dza, (2.6)

where C is any integral of the motion (see Sec. 1), and the Liouville weight function A is

given by

A= |w|F = | det (Wam)|? - (2.7)

To prove this theorem (3], it is sufficient, because of the equivalence proved in Appendix

A, to show that ) satisfies eq. (1.3).

The proof goes as follows. Consider the total time derivative of w = det (wpm):

c;—(:- = W Z Z d)nm Jmn ) (2'8)

where the dot again designates the total time derivative and (J,) is the inverse of (wnm),

i.e.

E Wnm Jml — 5»! . (2‘9)
m

Equation (2.8) follows from the Laplacian development [15] of the determinant w, together

with the relation




nm

Vel & T SRR (2.10)

w™™ being the co-factor of wy,, . On expanding in eq. (2.8):

awum . awnm
‘nm = [ 2:11
. at Z_: % oz (A5
and substituting
awnm
= 3z z Wmk 2k — 6zm E Wnk 2k (2.12)

a relation that follows from eq. (2.2) by differentiations, one obtains

0z, 0Zm 9z 0z, " 0z,

Gnm = ) {é.- (aw"“ § S aw""‘) Bt g i _62;} (2.13)

and hence

dw Bzm OWkm OWyni Bw.-k)
@ - Z z-: ; Zn: {zm Jk’( 9z | 0z | Ozm )

]

The second term on the r.h.s. of eq. (2.14) vanishes owing to eq. (2.3) so that one ends

up with



S =20 5 O2m (2.15)

or

da 2,
b-Lk =
which is the same as eq. (1.3) owing to
d 3 ad
a_29 g % 2.17
dt at+;z’“azm &30)

This completes the proof showing that dr of eq. (2.6) is Liouvillian and A of eq. (2.7) is a
Liouville weight function. Littlejohn [3] also mentions that the wpy, and J,,, are Lagrange
and Poisson brackets, respectively, when a set of canonical coordinates {g;, pi} of phase

space exists. This provides another route to proving Liouville’s theorem.

We consider the relation between Dirac’s constrained Hamiltonian [10, 11] and Liouville’s
theorem. Given the non-standard Lagrangian of eq. (2.1), one may construct the Hamil-

tonian [10,11,9, 20]

Ht z,, po) = ¢ (8, 2,) + E Ver [t 25) (pm — T (&, z,,)), (2.18)

which is defined in the "super phase space” spanned by the canonical coordinates {z,, p,}.
This super phase space has twice the dimension of the original phase space {z,}. The
functions V,, (¢, z,) are the solutions for the generalized velocities z,, (see eq.(l.4)) as

found by inverting the Lagrangian equations, eq. (2.2). The canonical equations read
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3. = — =V, (L, 2z 2.19
o = Ve (6 2) (2.19)
and
. dH a¢ oV 0
n = — — = - T - m o Vm mj- a
P oz, oz, zm: oz, I T Zm: 55, (Vm m) (220)
It follows that
. ) av,
o — T = — ) g (Pm = Im). (2.21)
m Zn

Hence, when the initial condition pp, —7m = 0, all m, is applied, it follows that pp, — ym =0
for all (later) times. One may therefore return to the original phase space {z,} by using
the constraint py = Ym, which agrees with the usual definition of the canonical momenta.
This is a modified and, in fact, improved version of Dirac’s formalism in that the orig-
inal equations of motion (eqs. (2.19)) do not result from the time-independence of the

constraints, but hold in fact even when the constraints are not applied at all (9, 20].

It is obvious that Liouville’s theorem holds in super phase space, i.e.

dr, = H dzpy, dpm (2.22)

is conserved (d7, = 0), as follows from the relation (see Appendix A)
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N (%:“ + g%) =0 . (2.23)
m
However, what one needs is Liouville’s theorem in the original phase space {z,}, and
‘the question arises whether the conserved d7 of eq. (2.6) can be reconstructed from the
~modified Dirac formalism [9, 20] in a straight-forward manner. The answer to this is that
this cannot be done. One can only write down a formal expression for a conserved dr by

transforming to non-canonical coordinates {z,, c,} in super phase space, where the ¢, are

constants of the motion (¢, = 0) [9]. Then from

dey = H dgm dpm = A (8, 2u56)) H d2.. désm (2.24)

which is conserved in super phase space, one derives

dr = A (¢ 2, ¢) H 25 (2.25)

which is conserved in the phase space {2, }, where

Cn

A = det (Zp’“) , (2.26)

and ) satisfies eq. (1.3).
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3. Second-order Lagrangian systems without constraints

Second-order equations of motion without constraints are obtained from (time-

dependent) standard Lagrangians L (t, ¢i, ¢i), i.e. ones that satisfy eq. (1.6) [2]. Then

the Lagrangian equations

d /(8L dL
#(5) = & (1)
or, explicitly,
. 2L oL 0%L 5 2L
9Qn 55— = - v - niae = 9 3.2
zn: " 0Gm Odn qm dgm Ot ; 9 0Gm Oqn (3.2)

yield a unique solution for the generalized accelerations:

‘.jn = an (ts Qi QI) (33)

The following abbreviations are used:

9%L Opn Opm
Din = 55—+ = 77 = —= 34
4n 9Gm dm dqn (3-4)
and
D = det (Dpm)- (3.5)

The matrix (Dppm) is symmetric. It will be shown that
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dr= € D [ dai dds (3.6)

is a Liouvillian phase space volume element, i.e. d7 = 0, where C is again any integral
of the motion. Equivalently (see Appendix A), it suffices to prove that D is a Liouville

weight function, i.e. satisfies the equation

L {-a% (D3) + 2 (D'q'.-)} — o0, (3.7)

1

with g, given by eq. (3.3). Instead of starting with eq. (1.5), a proof that uses the

equations of motion [eq.(3.2)], is given.

To prove eq. (3.7), one expands the total time derivative of D :

cil_? = D Z': ; D,—k Ey; (3.8)

with Ej; given by

)" Di Ey; = & (3.9)
k

[compare eqgs. (2.8), (2.9)]. By also expanding the total time derivative of D;x and using

eq. (3.2) one obtains

. %L %L
Dy = ~ -y 3q, Do (3.10)
n L}

gk 9g; 0q; 0qx
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%L 8%L Ban
— — — ~ — 3.10a
8¢i Ogx  Oqk 0g; z aqk ( )
or, by combining the two expressions,
. 1 da da
o5 B e it ) | £t D : 3.11
Substituting eq. (3.11) in eq. (3.8) and using eq. (3.9) yields Lutzky’s [14] result:
dD da,
—_— = - —_— 3.12
T D (3.12)

Owing to 3¢;/9qx = O this can be written as

@ or(Em e wm) =

which is equivalent to eq. (3.7) because

d o} s B2 a
a - a" + E‘:(Qs E + a; E?"') . (3'14)

This completes the proof of Liouville’s theorem [egs. (3.6) and (3.7)] by showing that D

is a Liouville weight function.

When Lagrangian densities are to be constructed from Lagrangians, the use of

Hamilton-Jacobi theory enables one to pass over to the desired Eulerian picture [7].

It is then desirable to construct a Liouvillian phase space volume element dr from
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Hamilton’s principal function S rather than from the Lagrangian. This was done by Van

Vleck [12] and later, independently, by Pfirsch [13]. A brief presentation of this construc-

tion will be given. Let

S = S L, Quioi] + 85 (3.15)

be a complete integral of the Hamilton-Jacobi partial differential equation

as as
?t_ + H(ty Ql'a 3_Q,) =0 , (3'16)

with H being the Hamiltonian (1, 16]. Let us pass from a set of canonical coordinates

{qi, pi} to the set {Q;, a;} by means of the transformation equations [1, 16]

% = Qi ; pi = 30, (3.17)
Using eq. (1.5), a conserved dr is given by
dr = [] dgidpi = A (t, Qx, o) J] d@idoy (3.18)
where the Liouville weight function X is the Van Vleck determinant {12, 13]:
(s, pi) ( 0?8 )
Al Qx, — AL et e 3.19
( ) Qk ak) a(Qh, ak) € aQ' aak ( )

Conservation of dr (d7 = 0) is equivalent to (see Appendix A)
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2+ Y {000 + o) = 0 (3.20)

with &; = 0, the a, being constants of the motion [1, 16]. Hence eq. (3.20) is equivalent

to

aA a .
0t Z 3g, 0@ =0 (3.21)

where the partial derivatives 3/3Q; are to be performed with the ak kept constant. The

generalized velocities Q; are given by [1, 16]

. oH
= gy = . 3.22
Equation (3.21) states that
drg = Alt, Qk, ak) II dQ; (3.23)

is a conserved volume element in coordinate space. The same result is, of course, trivially
obtained from the conservation of the dr of eq. (3.18) and & = 0. Equation (3.21) can
also be derived direct, as was done by Pfirsch [13]. This completes the construction of

Liouville’s theorem from the Hamilton-Jacobi theory.
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4. Applications of Liouville’s Theorem

A simple, but useful relation between Liouville weight functions and integrals of the
motion exists. Suppose two different Liouville weight functions A; , A, are given so that

both volume elements

drp = X [[dzn . i=1,2 (4.1)
n
are conserved. Then
C = dTg/dTl = Ag/z\l (42)

is an integral of the motion because the A; are assumed to be explicit functions of state
as explained in Sec. 1. Two different A; may exist if a system can be described by two
non-trivially different Lagrangians [14]. The converse relation, namely that the product
of a Liouville weight function and an integral of the motion is again a Liouville weight

function, was already made use of in Secs. 2 and 3.

Liouville’s theorem allows kinetic equations to be greatly simplified. Let the number

of representative points, or particles, in phase space be defined as

dN = fdr , (4.3)

where f is the distribution function relative to the volume element d7, which need not
be Liouvillian at this point. A collisionless kinetic equation is then just an equation of

continuity in phase space, reading
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d 0
T(/\f) o 4 a—z’: (Af zn) = 0. (4.4)

This equation is equivalent to the conservation of representative points (e.g. particles)

contained in a co-moving phase space volume element d7, i.e. to

d

_d _
S@n = GUan =0, (4.5)

as can be seen from Appendix A. When dr is now chosen to be Liouvillian, i.e.

dr = A (¢, 2) H dz, , (4.6)

with d# = 0 and ) satisfying eq.(1.3), the kinetic equation simplifies to read

That is, f is now a constant of the motion. Hence any

f = fo (Cu) ) (4.8)

where the

C, = C, (i, 2,) (4.9)

18




are integrals of the motion (C, = 0) , is an explicit solution of eq. (4.7). For C, such

that

=0, (4.10)

fo is also time-independent, i.e. 3f,/dt 0
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6. Conclusion

Usually Liouville’s theorem is derived from canonical Hamiltonian systems [1]. In
this paper alternative forms of Liouville’s theorem have been derived for time-dependent,
non-standard and standard Lagrangians. These results are valuable in modern Lagrangian
guiding-center theories [3 — 9], particularly when coupling of guiding-center fluids in phase

space with electromagnetic fields is to be described by a common Lagrangian density (7, 9].
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Appendix A: An equivalence theorem

For a d7 defined by

dr = A (t, z) [] dza = Adr (A.1)

the equivalence of the conservation of dr, i.e. of

d# = o, (A.2)

and of the partial differential equation

D) 3 ..
5 Zﬂ: 3, (Aém) = 0 (4.3)

will be proved. It is seen, first of all, that

a7 = % dr, + A di, (A.4)

or

dr 1 dX dr,
& o a T (4.5)

Hence it suffices to calculate d7,/d7,.
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A first brief derivation makes use of the theory of differential forms (17, 18]. The

volume element d7, is written as an external product:

dr, = /\ dz, = dz; A dzg A ....dzy . (A.6)

The total time derivative is then given by

di, = 3 (-1)"*! (dza)' A A dzm (A7)

m'(n)

with m/(n) running from 1 to N, leaving out n. On expanding

(dza) = Y O 9o (A.8)

substituting this in eq. (A.7), and using the antisymmetry of the external product, one

obtains

di, = Y (—1)"+! ‘;ﬁdzn AN dzm

Il
=[]
3>

&

3

0z,
— dfo z E‘Z . (A.g)

Because of eqs. (A.5) and (A.9) the condition of incompressibility, df = 0, thus turns

out to be equivalent to
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1 d 9,
—_ — =0 i
xat " Z“: 9z ! (A1)

which, after multiplying by A and owing to

+ ) in & : (A.10a)

&~

is in turn equivalent to eq. (A.3). This completes this first proof of equivalence. It should
be noted that the expansion given in eq. (A.8) implies that d¢ = 0, i.e. it is the linear
part of a Taylor expansion of (2, (2) — 2, (1)], with the 2, taken at different points {2, },

but at equal times t.

A second, more pedestrian proof of the equivalence of eqs. (A.2) and (A.3) goes as

follows: Consider the solutions of the equations of motion, i.e. the orbits

e = 2nll G & (A.11)

the C, being a complete set of constants of the motion (e.g. the initial values of the z,).

If the co-moving volume element

dro (t) = ] d [z (t)] (A.12)

of an infinitesimal neighborhood of an orbit is considered at two slightly different times,

d7, can be determined as

4, = 1 o (t+ AY — dro (8

At—0 At (4.13)
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On using the expansion

2, (t + At) = 2z, (t) + 2a [, 20 (t)] At + 0 [(At?))

one can also expand the Jacobian

o Az, (t + At)]
7= d“{ 3lzm (O] }

dzy

0zm

= det {6,,,,. + At + 0 {(At)2]}

Zn

dz, 5
=1+ At - En 3_+0[(At)]
Because of

dr, (t + At) = J dr, (2)

one obtains from eq. (A.13)

or

24

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)




This agrees with eq. (A.9). The remaining arguments of the equivalence proof are the
same as above, after eq. (A.9). This second method of proof was given before, e.g. in Ref.

(19], where it was applied to the special case of a Hamiltonian system.
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