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Abstract

The resistive Alfven spectrum for tokamak-like configurations with one or two singular
surfaces is analyzed by combined WKBJ treatment and numerical solution using a spectral
code. It is found that the ideal continua disappear; these are approximated only at the
end points, at the singular surfaces and at selected interior points (given by extrema of
wa(r) = |k - Byl/ /Po). The normal modes are damped and the eigenvalues lie on specific

curves which become independent of resistivity for small 5 .




1. Introduction

The study of linearized motion has significantly contributed to the understanding
of ideal and resistive MHD plasma phenomena such as stability, wave propagation and
heating. The most complete picture is obtained by means of a normal-mode analysis.
Since this analysis is quite difficult both analytically and numerically, simpler methods
have been developed. The classical boundary layer approach /1/, i.e. the A’ concept,
is suitable for treating current and pressure-driven instabilites but is not applicable for
wave propagation. An energy pririciple in the fashion of the ideal MHD 6§ W formalism has
been derived to analyze the stability with respect to resistive perturbations /2-6/. Since
the resistive time scale is of the order of milliseconds and hence significantly larger than
the ideal time scale, detailed knowledge about the perturbations is as important as the

determintion of stability in discussing their influence on the long-time plasma evolution.

The numerical solution for the full spectrum of eigenfrequencies and the cor-
responding normal modes is a complicated task, even in ideal MHD. With dissipation,
complex frequencies evolve which are expressed by complex eigenvalues. The successful
discretization of the ideal MHD operator by means of a Hermitian eigenvalue problem and
its numerous interesting results suggest that dissipative MHD be tackled in the same fash-
ion. Knowledge of the ideal problem was used to develop a spectral code of solving for the
entire spectrum of compressible, resistive MHD /7/. Combining the Galerkin method with
a finite-element discretization yields the general complex eigenvalue problem Ax = ABx.
Inverse vector iteration, which preserves the band structure of the matrices, finds selected
eigenvalues and allows entire parts of the complex spectrum to be successively mapped out
even in cases of large matrix dimension /8/. This scheme is therefore suited to analyzing

the complexe resistive spectrum with great accuracy.

The influence of resistivity on the spectrum is twofold. Point eigenvalues of the
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ideal system are distorted linearly with 5, e.g. the fast magnetoacoustic waves experience
a small damping superimposed on a large oscillation frequency. The larger this frequency
is, i.e. the more radial nodes there are, the larger is the damping. Consequently, these
eigenvalues lie on rays only a small angle off the imaginary axis. Both the shear-Alfven
and sound modes, on the other hand, show completely different behaviour. If resistivity is
added, the logarithmic singularity in the eigenfunctions is no longer present and, hence, the
ideal continua disappear. The influence of resistivity on these branches is therefore drastic
as shown by Boris /9/ and recently rediscussed by several authors /10-15/. Stimulated
by the pioneering numerical analysis of Ryu and Grimm /10/, we investigate the resistive
Alfven modes in detail for experimentally relevant configurations. Our numerical scheme
affords an accuracy resulting in much finer details of the spectrum. Complete results can
thus be given. It is found that the ideal continua disappear and are approximated only at
the end points and at a few selected interior points. These interior points are given in terms
of the ideal Alfven dispersion relation w4 = |k - §0|/\/;‘)0, where k is the wave vector of
the perturbation and B, the equilibrium magnetic field; po is the density. Configurations
with magnetic shear and with one or two resonant surfaces in the plasma are treated. The
eigenvalues lie on well-defined curves in the complex plane which become independent of
n in the limit n — 0. The scaling of the damping with 5 is displayed for different profiles.
The logarithmic singularity in the radial velocity component is altered into an oscillatory

behaviour. Eikonal functions form the solutions of the resistive system.

The behaviour of the resistive Alfven modes for vanishing n can be analyzed an-
alytically by phase-integral or WKBJ methods. So far only simple configurations without
magnetic shear in slab geometry /11,12/ and cylindrical geometry /13/ have been solved
completely. The most complete WKBJ treatment which takes the ideal solutions into ac-
count has been given by Pao and Kerner /14/; the spectrum is shown to be determined

by the geometry of the anti-Stokes lines. A brief discussion for the case where k - B,
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vanishes is also given there. A generalization to cases with singular surfaces together with
the discussion of two turning points was given by K. Riedel /15/; in this paper viscosity is
included. Such an analytical approach suited to the asymptotic limit of vanishing resistiv-
ity complements the numerical method valid for large, medium and small resistivity, but
not for asymptotically small . The numerical approach in particular allows examination
of complicated realistic equilibria which are too complex for complete mathematical treat-
ment. This calls for numerical solution which is rather involved /16/. By combining the
accurate normal-mode code with the sophisticated phase-integral method we are able to
discuss a tokamak-like equilibrium thoroughly. In this configuration a large longitudinal
current is present which leads to finite magnetic shear, and one, or two resonant surfaces
lie in the plasma. It is emphasized that the numerical scheme in conjunction with careful
convergence studies using an increasingly finer mesh affords accurate results for sufficiently
small n. The asymptotic behaviour is therefore mapped out numerically. Then the eikonal
ansatz is introduced and the formal asymptotic solutions are constructed. In the limit of
small B the slow-wavesolutions do not couple to the Alfven wave solutions. The geometry
of the anti-Stokes lines involving one and two turning points then determines the resistive
Alfven spectrum, which lies on specific, quite complicated curvesin the complex eigenvalue
plane. Furthermore, these curves are asymptotically independent of . The structure of
the eigenfunctions is derived from this phase-integral analysis. In this fashion the spec-
trum is mapped out thoroughly for configurations where three or four branch points are
involved in the eigenvalue curves. Details of the solutions for the eigenvalues as well as for

the eigenfunctions are displayed.

The paper is organized as follows: The physical model which is the common
compressible resistive MHD model is presented in Sec. 2. We also discuss the numerical
scheme and show how it reduces the computation to a complex eigenvalue problem. Results

for the resistive Alfven branch for tokamak-like equilibria with singular surface k-By, = 0are
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presented in Sec. 3. These configurations have longitudinal current and finite magnetic
shear and represent a tokamak with large aspect ratio in cylindrical geometry. Then
the case with two resonant surfaces in the plasma is discussed. Since the Alfven branch
considered here is characterized by incompressibility like the tearing mode, a short side
step is taken to discuss with a force-free equilibrium the transition of this unstable mode
into the stable domain. The connection between this stable tearing mode and the Alfven
modes is discussed. Section 4 presents the phase-integral method and the corresponding
results, including the discussion of the anti-Stokes line pattern. Finally, Section 5 contains

the discussion and the conclusions.

2. Model

2.1 Physical model

The plasma is described in terms of single-fluid theory. The resistive MHD equa-

tions read in normalized, dimensionless form

equation of motion

p(‘;_':+g.vg)=—VP+(VxE]x§, (1)
Maxwell - Ohm
OB . =
5=V x(7x B) =V x (nV x B), (2)
adiabatic law
&Y 4PV 7= ¥ VP, (3)
ot
Maxwell
V.-B=o. (4)

Here p denotes the density, v the velocity, B the magnetic field, P the pressure and n
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the resistivity; 4 is the ratio of the specific heats. Note that the assumption of incom-
pressibility, V - ¥ = 0, is not made. The adiabatic law is adopted for the equation of
state since the dissipation proportional to 5 is considered to be small. The incompressible
equations of motion accurately describes the plasma behaviour if the pressure variations
are small compared with the mean thermodynamic pressure. Since the resistive modes
rapidly oscillate, the compressible set of equations is appropriate. Then the fast and slow
magnetoacoustic waves are retained. These equations are now linearized around a static
equilibrium characterized by -gt— = 0 and vy = 0. The equilibrium is then determined by

the equation

V= (V X Eo) X B.Q. (5)

In straight geometry static, ideal equilibria can be interpreted as resistive equi-
libria if V x 9(V x By) = 0, with the consequence that n9jo = E, = const. In toroidal
geometry a resistive equilibrium is only possible with flow, i.e. ¥ # 0. This flow, however,
is proportional to n and hence very small. Here we take the simplest approach of a constant
resistivity no instead of a constant E; this still gives the basic features of resistive modes,
since we are interested in phenomena which scale as n7 or 3. For a circular cylinder the
equilibrium quantities only have an r-dependence. With the usual cylindrical coordinates
r,0, z the equilibrium is determined by the equation

P
5= Bs. (6)

aP,

1 a
or ~ 70 r00) = B

With two profiles given, eq. (6) can be solved to give the remaining one.

The following separation ansatz is suitable for the perturbed quantities :
f(r,8,z;t) = f(r) exp(imf + inkz + At), (7)

where ) is the eigenvalue. The growth rate Ag is then defined as the real part of A, i.e.

Ar = Re()). With k = 2% defining a periodicity length, a tokamak with large aspect
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ratio is simulated, n corresponding to the toroidal mode number; m is the poloidal mode
number. In ideal MHD ) is either real or purely imaginary, which leads to unstable or
purely oscillating waves. With resistivity included, the frequency can become complex.

The equations for the perturbed quantities v, p and b read

Apoi = —Vp+ (V x By) x b+ (V x b) x By, (8)
Ap o —"[PQV . t—;— !_)‘ VPQ, (9)
Ab =V x (7x Bo) — V x (nV x b). (10)

The divergence condition, eq.(4), for the perturbed field, V - b = 0, is used to eliminate
bs provided m # 0. The perturbed resistivity is set to zero, thus eliminating the rippling

mode.

Finally, we discuss the boundary conditions. It is assumed that the plasma is
surrounded by a perfectly conducting wall, which implies the following conditions at the
wall :

vr(a) =0, (11a)
b(a) = 0. (11b)

For finite resistivity in the plasma the Maxwell equations require that the tangential com-

ponent of the electric field vanish at the wall. This implies

(bz)’r=a =0. (llc)

On the axis r = 0 all the quantities are regular.



2.2 Numerical method

The set of resistive MHD equations is solved in its weak form. By introducing a

state vector ¥ which contains the perturbed velocity, pressure and magnetic field,
ﬁ’r = (v,-,vg,v,_,p, bnbz)! (12)

the differential equations (8 - 10) can be written in the form L4 = 0, where £ denotes
the linear matrix operator. The components of #(r) are approximated by a finite linear
combination of local expansion functious, namely cubic Hermite elements for v, and b,

and quadratic ones for vg, v, p, and b, :
2N
uk(r) miF(r) = ) akrE(r), k=1,..,6 (13)
=1

where the af are coefficients to be determined and the h;? (r) are the chosen expansion func-
tions. This discretization yields a ’pollution-free’ approximation to the entire spectrum.

The Galerkin method applied here yields
o Lk;ﬁ’(r),h?(r) =0 3= e 2N (14)

The error Ej(r) introduced in the differential equations through the approximation uk(r)
for u*(r), is orthogonal to every expansion function. The Galerkin method eventually leads

to the general eigenvalue problem

fe= Abx, (15)

where the eigenvalue A and the eigenvector of the expansion coefficients are, in general,
complex. 4 is a general, non-Hermitian matrix and B is symmmetric and positive definite.
Since A and B are real matrices, the eigenvalues occur in complex conjugate pairs. A and B
have block-tridiagonal structure with a bandwidth b = 48. The dimension of the matrices is
given by d = 12N - 2, where N is the number of radial intervals and is usually quite large.

For details about the numerical method we refer to Ref. /7/. Since the QR algorithm
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produces full matrices it can only be applied up to relatively small matrix dimensions.
Inverse vector iteration preserves the band structure and thus allows treatment of very
large matrices. Combining inverse vector iteration with a continuation procedm:e provides
a very efficient method of extracting successively complete parts of the spectrum. It is
emphazised that all results presented are converged; they do not change any further with
mesh refinement. Typical convergence properties for the tearing mode have been presented

in Ref. /7/ and for resistive Alfven modes near the complex branching point in Ref. /8/.

3. Results

3.1 Configurations with one singular surface

The discussion of the resistive Alfven spectrum after the Boris study in 1968 /9/
was only recently revived by Ryu and Grimm /10/. Their results clearly indicate the
disappearence of the ideal continua in resistive MHD, but leave details unclear. Prompted
by their findings, several authors have rigorously treated a simple case by WKBJ methods,
namely the case of monotonic profile without current and, hence, without magnetic shear
in slab geometry /11,12,14/ or in cylindrical geometry for a pressureless plasma /13/. This
analytic approach has revealed that the resistive Alfven modes form a point spectrum lying
on a locus which is independent of resistivity in the limit n — 0 and which intersects the
ideal continuum only at its end points. Such a simple configuration has been taken as a test
case for discussing inverse vector iteration in Ref. /8/. It is, however, desirable to analyze
more realistic equilibria, especially configurations with magnetic shear. A tokamak-like
configuration carries a longitudinal current which contributes to the equilibrium as well
as to ohmic heating. It has to satisfy the equilibrium equation, eq. 6, and contains
finite pressure. For a homogeneous plasma without current and with constant toroidal

magnetic field the dispersion relation for the Alfven modes, A = .5 (:r;(nglr.2 +32:) £
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\/ (n2(n2k2% — 53 )2 — 4"—:‘:32:), where n and m denote the toroidal and poloidal wave
number and j,,, the v** zero of the Bessel function of order m, can easily be derived.
For large resistivity all the modes are purely damped with negative infinity and zero as
accumulation points. For the modes with few radial oscillations complex eigenvalues occur
with both the oscillatory and damping parts approximating the ideal frequency for n — 0.
For an inhomogeneous configuration the ideal continuum is not degenerate, but fills a finite
frequency range. Then the spectrum of the damped modes no longer forms a simple curve,
but splits to form a triangle with the end points of the continuum. Purely damped modes
still persist. The most rigorous treatments using the phase-integral method have been
given by Refs. /14,15/. This mathematical solution is used later on to complement the

numerical results and to complete the interpretation. Now the resistive Alfven spectrum is

studied for a realistic equilibrium with peaked current density and constant toroidal field :
J=(r) = jo(1 = ((r/a)?)?, (16a)

Po(r) = ( (1 (r/a)*) - ( (r/a)8)+—(1 (r/ﬂ))——(l—(r/a)‘)+ (1 (r/a)?),

(16b)
B.(r) =1, (16¢)
po(r) = 1. (16d)

For these profiles the safety factor, which is defined as usual as

rkB,(r)
= st l 17
ar) = "ot (17)
assumes the form
6k

q(r) = (18)

so((r/a)* —3(r/a)? +3)
The ratio of g(r) on surface and on axis is g(a)/q(0) = 3. The perturbations have the wave
numbers n = 1,k = 0.2 and m = —2. The constant 7, in eq. (16) is used to vary g(0) and

is chosen such that the resonant surface is in the middle of the plasma; i.e. k- By(r,) =0,
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with g(r,) = 2 and r, = 0.5a. The current density and safety factor profiles are displayed

in Fig. 1. For this equilibrium the ideal Alfven frequency w4

wa(r) = [H(r)| = |7 By + nkB;|/\/f,, (19)

which is plotted in Fig. 2, is not a monotonic function of r. It decreases with increasing r
to zero at r = r, and then increases for r > r,. The entire Alfven spectrum for n = 10—5
and n = 5 x 107° is displayed in Fig. 3. The sound mode spectrum has an even more
complicated structure and is concentrated close to the origin. The sound modes are not well
resolved on this scale and therefore are omitted from this and the following graphs. The
purely damped modes on the negative real axis with accumulation points at Ap = 0 and
Ar = —o0, are omitted as well. The Alfven modes have the property of incompressibility,
i.e. V-4 a0, and are thus easily distinguished from the sound modes. Clearly, the Alfven
spectrum exhibits a more complicated structure than the very simple cases treated so far.
The ideal continuum is approximated at all points where w4 (r) has a local extremum. The
uppermost branch of Fig. 3 is due to modes with eigenfunctions localized near r = a in the
limit 7 — 0. The second branch is formed by the corresponding modes localized near r =
0. The lowest branch reaching the origin is due to modes localized at the resonant surface.
The eigenfunctions for the modes corresponding to all of these branches have different
numbers of radial oscillations. For a given branch, the number of oscillations increases
from the endpoints lying on the imaginary axis until the number becomes infinite at the
accumulation points which correspond to A = 0 and —oo on the real axis. The modes with
one and two oscillations localized at r = a are examined for varying . The dependence
of the eigenvalue on 5 with  ranging between 10~2? and 10~° is shown in Fig. 4. It is
evident that for large n the eigenvalues for different modes lie on different curves in the
complex plane which coincide only at the end points. Note that for n-values larger than
10~2 the modes are purely damped and no complex eigenvalue occurs. For small n-values,

n < 1073, the eigenvalues lie on identical curves, which is evident from Fig. 3. Next we
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examine the angle at which the different branches emerge from the imaginary axis. This
angle is defined by the equilibrium and is not always a = 30° or 45°, as found previously
/9,10,11,12,13,14/. The damping, which is defined by § = —Re(A), is considered for the
different parts of the spectrum. Figure 5 shows the dependence of the first two modes of the
uppermost branch, i.e. with radial node number v = 1 and 2 and localization near r = a.
The damping & is proportional to 5!/3 and the logarithmic correction discussed in Ref.
/12/ is reproduced. From the eigenfunctions it is evident that the resisitivity is important
only in a layer around r = a with width w a n!/3. Figure 6a for the first mode with v = 1
shows that the part outside this layer is the ideal solution since b, = rb, vanishes at r = r,.
With increasing radial nodes, v > 1, the centre of the eigenfunctions gets away from r = a,
the layer becomes wider and the ideal contribution to the eigenfunction becomes smaller,
as seen for ¥ = 4 in Fig. 6b. For highly oscillatory modes the eigenfunction is disconnected
from the end point and the ideal contribution is exponentially small, as shown for v = 8

in Fig. 6c.

On the second branch with localization at the origin the damping is proportional
to n% as is evident from Fig. 7 and the logarithmic correction is no longer significant.
This line forms an angle of a = 45° with the imaginary axis. The part of the spectrum
due to modes localized at the resonant surface is actually formed by two lines, as is seen
from Fig. 6. Only in the limit of very small 5, say n < 10~8, are these lines degenerated

with an angle of again 30°.

It is now time to summarize the results obtained as regards the approximation of
the ideal continua. The following proposition is obvious : The ideal continua are approxi-
mated at the end points, at singular points and at local extrema of w4(r). The eigenvalue
curves approach these points as § a '/(1+2) where 1 denotes the polynominal power of w4

at r = r, given by w4(r) = c-rl +.... The uppermost branch has a linear dependence on
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r and hence a damping § a 5 ¥, the second branch has a quadratic dependence due to the
regularity at the origin, and hence § a % and the third branch again show a linear depen-
dence as seen from Fig. 8. Configurations with B;(r) = Bor® and Byr* while By =0 give
cubic and quartic dependence of w4 on r at points r = 0 and yield damping proportional
to§ =yt and 6 = ¢, as shown in Fig. 9, in agreement with our claim. Furthermore, the
equilibrium with two resonant surfaces yields evidence to support our proposition. Let us
return to the discussion of the modes connected with the resonant surface. The degenerate
asymptotic scaling is achieved only for very small g, n < 1078, and the resistive solution
varies over a relatively wide radial range. This is indeed confirmed by Figs. 10 and 11,
where the eigenfunctions of the first and third modes closest to the origin are displayed.
Figure 11 cuts out the layer region. There are no modes with only one radial oscillation as
before. It is striking that the eigenfunctions are mades up of two parts, the first part due
to a solution r < r, with a wall at r = r, and the second due to the corresponding exterior
solution with a wall also at r = r,. The modes on the third branch (the upper one of
this double line) have a radial magnetic perturbation b, = rb, which is even with respect
to the point r = r,, whereas the corresponding eigenfunctions on the fourth branch are
odd. These even and odd solutions for the resistive layer are already known from the A’
concept; see for example, /17/. The radial velocity component has just the opposite parity
to by, as is seen in Fig. 12. With increasing damping starting from the ideal continua, the
number of radial nodes in the eigenfunctions increases and the corresponding modes oscil-
late over an increasingly broader radial region. Near branching points the modes have a
complicated structure with a specific amplitude modulation superimposed on these radial
oscillations. Figure 13a and 13b display the eigenfunction near the branch point A = A,,
Fig. 13d near the other branch point A = A and Fig. 13c in between. Beyond the left
branch point A = Aq the eigenfunctions oscillate over the entire radius, still having a slight
amplitude oscillation. The purely damped oscillations emerging from the third branching

A = Aq towards A = 0 and A = —co have a Bessel function type form with nearly constant
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amplitude. These modes are numerically easy to compute even if the eigenvalues lie close

together.

3.2 Configurations with two singular surfaces

We now discuss configurations with two singular surfaces, such as occur in the cur-
rent build-up phase of tokamaks and in ’hollow’ temperature and current profiles frequently
observed in, for example, PLT /20/. The tearing mode stability of such configurations has
been discussed in Ref. /3/. Here the resistive Alfven spectrum is analyzed. A relevant

equilibrium used in Ref. /3/ is taken . It is defined by:

3(r) = Jo(1+ 10(r/a)?)(1 — (r/a)?)?, (20a)
B.= 1, (200)
po = 1. (20c¢)

A pronounced dip occurs at the centre. These profiles are shown in Fig. 14. For ¢(0) = 2.5
the singular surfaces are located at r/a = s; = 0.30 and r/a = s; = 0.73. The ideal
Alfven frequency w4(r) has now two zero transitions with a maximum in between at
r/a =r, = 0.52, as shown in Fig. 15. The resistive Alfven spectrum for this equilibrium is
displayed in Fig. 16. Building up on the results discussed previously, we can easily interpret
this picture. Two different values for the resistivity are used, namely = 10~° and
n = 5x 10~%. The fact that eigenvalue curves coincide reveals that the asymptotic 5 limit
has been reached numerically. The uppermost branch emerging from A = w4(a) is formed
by normal modes with radial localization in the eigenfunction near r = a and extends to
the branch point A = Ag; the second curve emerging from A = w4 (0) corresponds to modes
localized near r = 0 and reaches the second branch point A = A,.. New in comparison with

the previous results given in Fig. 3 is the third branch emerging from A = wy4(r.). This
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branch is due to the extremum of w4 (r) at r = r¢, namely a maximum; the corresponding
eigenfunctions have localized oscillations around r/a = r, = 0.50. This branch extends up
to A = X.. This curve is actually formed by two lines which are degenerate for small n
and have an angle of 45° with the imaginary axis. These results confirm the propostion
made in the previous section. The curves emerging from A = A, and reaching the origin
A = 0 are due to the two singular surfaces at s; and s, and fill two double lines. It is
easy to trace these lines close to the origin for small 5 values up to 1072, as discussed in
the former case. Beyond Ao towards the fourth branch point A = A; and on the negative
real axis the results are basically the same as for the case with one singular surface. Since
the WKBJ analysis covers this equilibrium, too, the interpretation of the results is indeed

complete.

3.3 Tearing mode

In this section, we examine the relation between tearing modes and the discrete
Alven spectrum. We consider the eigenfunctions for the branch of the discrete spectrum
which emerges from A = 0. Numerically, we find that there is an eigenfunction with four
oscillations and an eigenfunction with five oscillations, etc. The eigenfunctions which are
even lie on one curve and those solutions with the opposite odd parity lie on a slightly dis-
placed curve. The striking result is that there are no eigenfunctions with one, two or three
oscillations. Since the tearing modes and discrete Alfven modes are both approximately in-
compressible, one may conjecture that the missing Alfven modes are really tearing modes.
This branch of the discrete Alfven spectra occurs when two turning points are connected
by an anti-Stokes line, as discussed in Section 4. The eigenfunctions are oscillatory in the
middle sectors of the anti-Stokes line diagram. As |A| tends to zero, the region in which
the eigenfunctions oscillate becomes small. If [A| < 13, the two turning points are so close

that it is impossible to find valid asymptotic expansions in the domain between the two

16




turning points. We note that both the tearing modes and this branch of the discrete Alven
spectra have a similar structure. In both types of modes, the region of nonideal MHD
behaviour is used to connect two ideal MHD solutions. Thus we may apply the classical
boundary layer analysis around the resonance surface. We restrict our consideration to
a pressureless plasma so that we may concentrate on tearing modes and Alfven modes.
In a pressureless plasma, there are no slow interchange modes. The formulas in Coppi,
Greene and Johnson /18/ may be applied except on the negative real A axis. The stable
tearing mode, namely the one with odd perturbed field b;, only exists for a marginally
stable configuration. This agrees with the fact that we cannot find this mode numerically
on the negative real axis among the purely damped Alfven modes. For tearing modes in a

pressureless plasma, the dispersion relation simplifies to
A=cnsA's, (21)

where c is known constant. Thus when A’ is positive the unstable tearing mode lies on
the positive real A axis. When A’ is negative, the mode lies on a ray in the A plane, which
forms an angle :i:%w with the real axis. Numerically, we confirm this behaviour by varying

7'(r = r,) and thereby varying A’ for a pressureless equilibrium defined in Ref. /19/ :

B ()= \/Bg 14 mf;ﬁ (220)

r

Bs(r) = 1072 (22b)
Po(r) =0, (22¢)
po(r) = 1. (22d)

We find that the tearing mode remains on the :}:gﬂ' rays and that the tearing mode never
joins the discrete Alfven spectrum. The transition of the unstable tearing into the stable
domain is shown in Fig. 17. Here ¢ is varied and the plasma extends from r = 0 to

r = a = 2.0. The small deviation from the predicted curve near A = 0 is due to insufficient
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numerical resolution; the corresponding points are therefore indicated by circles. However,

the mode for go = 0.70 scales exactly to the origin as shown in Fig. 18. The eigenfunctions
for an unstable and a stable mode are shown in Fig. 19. It is evident that v, picks up one

oscillation while b, retains its shape.

4. WKBJ Analysis

The ideal Alfven and sound modes branches are described by a second-order
equation, namely the Hain- Liist equations. Resistivity raises the order of the equations
to sixth order and thus leads to a singular perturbation problem. The numerical results
show that the new solutions vary rapidly in the radial variable r with increasing number
of radial oscillations as the resistivity decreases. The WKBJ expansion can therefore
be applied to calculate the four additional formal solutions. In this section, a hard-core
plasma in cylindrical geometry with conducting walls at r = r; and r = a is considered.
Thus the curvature terms in the MHD equations are retained but the origin, r = 0, is
excluded. The equations are examined for a fixed A at Alfven frequencies, as n tends to
zero. Now the formal WKBJ solutions are calculated to leading order. The rapid radial
oscillation behaviour of the solutions suggests the introduction of an eikonal phase factor
exp((®(r,A)/n'/2). Then the radial components of the velocity and of the perturbed
magnetic field, v, and b,, have to be small, i.e. O(n'/2). This scaling is chosen so that

the divergence of ¥ and b remains finite, and is confirmed further on by consistency; i.e.

the fact that we can find four solutions with this property shows that the assumption is

justified. Thus each of the formal WKBJ solutions has the form
(ﬂT:P: ET) = (111/2!),-, Vg, Uz, Py nllgbr! bs, bz)e‘l’{r.-\)/q‘/’ (23)

The actual solutions of the differential equations may couple the formal solutions

on the real interval (r;,a). In order to obtain valid asymptotic expansions and thereby
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increase the applicability of the phase-integral method, we follow the standard practice of

treating the differential equations in the complex r-plane.
The resistive MHD equations, eqs. 8-10, are now written as
ApoT = —V(p+ By -8)+ (Bo - V)b + (b V)By,
which suggests that we introduce the total perturbed pressure.
p.=p+By-b

as a variable:

Aps — ABo - b= =P,V - ¥ — v, Po

and

Ao = (By - V)0 — (7 V) By — Bo(V - 9) + nAb.

(24)

(25)

(26)

(27)

If the vector k = (0, 2, nk) is introduced, the r-component of the momentum balance

yields

a * PR -4 2
Aoty = = a”r + ik - Bo b, — —Babo.

This equation forces p. to be small, i.e. p. = O(n'/?), for each of the WKBJ solutions.

Then the § and z components give
Apove = ik - ﬁobg

and

Apovy = iE-ﬁo e

The pressure equation simplifies to

ABy -b=7P, V-4.
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(28)

(29)

(30)




Thus, with b, = (0,b,b;), the magnetic field equation becomes

QB‘O‘S.

A2, = —H3(r)b, — ) = By + 23", (31)
0
for Py(r) # 0, where
k- By
H(r) = (32)
VP

is the equilibrium quantity related to the ideal Alfven frequency, introduced in eq. 19.

This equation has two types of solution. The Alfven formal solutions satisfy

By -b=0(n'/?), (33a)
A2 + H?
72 = %_(Q (33b)
The slow-wave solutions satisfy
Bo|[b, (34a)
o2 = 10201+ 2 ) 1 m2(y)) (345)
A "ng ’

To leading order, the Alfven solutions are incompressible and the perturbed pressure is
small. In addition to these four formal WKBJ solutions, there are two formal solutions
which satisfy ®'(r,A) = 0. These two formal solutions approach solutions of the ideal MHD

equations as n!/2 tends to zero.

We wish to calculate the normal modes using these asymptotic expansions. How-
ever, these formal solutions may not be valid. The actual solutions may couple the formal
solutions. The reason for this is that ®(r, ) is complex and thus there are exponentially
growing solutions. We restrict our consideration to sufficiently small # equilibria and A at
Alfven frequencies. In this case the slow-wave solutions vary more rapidly in space than
do the other solutions. The general theory of valid WKBJ expansions shows that the slow
wave solutions do not couple to the other solutions /15/. For unstable ), all the expansions

are valid and no new unstable modes occur.
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For stable A, we must analytically continue the equations and the expansions
into the complex plane in order to obtain valid asymptotics. As in the theory of WKBJ
expansions for second-order equations, the asymptotic expansions have resonant denom-
inators at the turning points where ®'(r,A) = 0. The region around the turning point
is divided into three sectors by anti-Stokes lines, curves on which Re® is constant. The
ideal MHD solutions are valid in any proper subsector ( excluding a small region with
width n!/2 around the anti-Stokes lines ) of two sectors, the WKBJ solutions are valid
in all three sectors, except near the turning point and near one anti-Stokes line, provided
exp(®/n'/?) is exponentially small in the sector opposite to the anti-Stokes line. If the
domain of interest contains all three sectors, the ideal MHD solutions couple to the WKBJ
solutions. We calculate the normal modes directly, using the valid asymptotic expan-
sion, and find that normal modes occur when one of the following criteria is satisfied: (1)
Re®(r;, A) = Re®(a, A); (2) an anti-Stokes line intersects r; or a and a second anti-Stokes
line from the same transition point crosses (r;,d); (3) two transition points are connected
by an anti- Stokes line. These three criteria specify curves in the A-plane where point
eigenvalues accumulate with a density of !/2 and these curves are independent of 5. Nor-
mal modes also occur when [A| < n!/3 (slow interchange and tearing modes) and on the
stable imaginary axis. Direct calculation, using the valid asymptotic expansions, shows
that the only other normal modes on an Alfven time scale are the point eigenvalues of ideal
MHD. We note that the curves on which the discrete Alfven spectra lie are determined
only to within !/2 by the first two criteria and within 5!/ by the third. It is necessary to
carry the calculation to a higher order if one wishes to determine the fine structure, such

as the splitting of a curve into several different curves separated by n'/2,

The eigenfunctions for those modes which satisfy the first criterion are highly oscillatory
in the entire domain (r;,a) and therefore damp rapidly in time. The eigenfunctions for

those modes which satisfy the second criterion are highly oscillatory near one endpoint
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and behave as ideal MHD-solutions near the other endpoint. Since the second criterion is
satisfied when a turning point lies on an endpoint, the normal modes which satisfy criterion
two lie on curves in the A-plane which emerge from the endpoints of the ideal continua.
The eigenfunctions for those modes which satisfy the third criterion behave as ideal MHD
solution near both endpoints and are oscillatory in the middle of (r;,a). Since the third
criterion is satisfied when two turning points merge, the curves of normal modes which
satisfy the third criterion emerge from ’double turning point’ points. These ’double turning
point’ points occur at a resonant surface; wy = H(r,) = 0 and at a relative maximum of
wa(r). The eigenfunctions which oscillate rapidly in a large region of (r;,a) damp faster
than those solutions which oscillate only in a small region. Since the WKBJ solutions
grow exponentially as a function of radius, the amplitude of the WKBJ oscillations will
be much larger than the amplitude of the nonoscillatory part of the eigenfunction when
Ar is large. Each eigenfunction of the discrete Alfven spectrum has its spatial maximum
when Re®/(r, ) = 0. This expression simplifies to |A|> = H2(r), but A is complex for
these modes. It is possible to compute the exact location of these discrete Alfven spectra
by numerically evaluating each criterion which we have given. However, this requires in
general the use of sophisticated interactive programs in which the user must repeatedly
guess values of A as input; see, for example, /16/. Since we have already computed these
curves numerically, we only need to complement these data by determining the qualitative
shape of the curves containing the spectra. This is done by examining the geometry of
the anti-Stokes lines. We follow the geometry of the anti-Stikes lines along these curves of
spectra to determine how the curves begin, intersect and terminate as well as to determine

the general shape of the curves.

If k- ﬁo(r) # 0 and H(r) is monotonic, there is only one transition point. For
A = wx(a) the transition point is located at the end point. There is a curve in the A-plane

(namely the uppermost branch in Fig. 3) on which one of the anti-Stokes lines of the
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transition point passes through the end point a in the complex r-plane. By constantly
decreasing A; and increasing |A|, the second anti-Stokes line moves to the right and even-
tually hits end point r; at A = )¢ (Fig. 20a). Once the second anti-Stokes line passes r;,
all asymptotic expansions are valid and normal modes cease to exist on this curve in the
A-plane. By decreasing Ap and continuing to increase Ay a second curve containing spectra
is generated. This curve then consists of those A which have one anti-Stokes line hitting
the end point r; and one anti-Stokes line crossing (r;, a). The boundaries of this curve are
A = Ao and A = wu(ry). A third curve of spectral points emerge from Ao and extends to
the negative real axis. This third curve consists of points with Re®(r;,A)— Re®(a,A) =0
and on this curve |Ag| increases so that the transition point moves further away from the
real axis. Furthermore normal modes occur on the negative real axis with density n—1/2
and with accumulation points A = 0 and A = —oo. Note that for finite viscosity the accu-
mulation point is moved away from the origin to min (2 Veo(riandiz)

re(ri,a) p—npo(r

viscosity. For a monotonic H(r) profile with no singular surface we thus obtain the typical

) , where p is the

A shape for the eigenvalues curve as discussed in Refs. /10,11,12,13,14,15/.

If k- By(r,) = 0 and H(r) is monotonic, then two relevant turning points exist.
These transition points cross (r;,a) only for imaginary A. For small stable A the two
transition points labelled 77 and T; are on opposite sides of (r;,a). A spectral curve,
defined by the connection of the two transition points by an anti-Stokes line, emerges from
A = 0 (Fig. 21a). At A = A, one of the two anti-Stokes lines hits the other end point
r; (Fig. 21b); then only one transition point enters the problem, and normal modes will
no longer occur on this spectral curve. There are two different ways to disconnect the
anti-Stokes line from the transition points: 1) By increasing A; and decreasing |Ag| the
transition point closer to r; can be connected to r; by an anti-Stokes line (Fig. 21c), and
this generates a curve of spectrum which ends at A = wx4(r;). 2) By increasing A; and

|[Ar| we can generate a second curve of spectrum; this curve consists of those A which
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have an anti-Stokes line connecting the second transition point T3 with r; (Fig. 21d). At
A = Ao, when the second anti-Stokes line of the second transition point T; hits the other
end point @, the normal modes cease to occur on this curve. Fig. 22 resembles Fig. 20 in
the case where k - E(r) # 0. There are two more curves of spectrum; the first is generated
by the anti-Stokes line of the second transition point T3, crossing the second end point.
The second curve is defined by Re®(a,A) — Re®(r;,A) = 0. The second curve hits the
imaginary axis and spectra exist on the stable real axis as well. These curves of spectrum

match the numerical results in Fig. 3.

5. Discussion

The study of the linearized motion around an equilibium state reveals the prop-
erties of ideal and resistive MHD. Naturally, analytic survey is applied first, yielding both
basic concepts as well as complete results for sufficiently simple configurations. The re-
sistive stability in terms of boundary layer analysis is such a sophisticated concept; the
stability criteria have brought progress, too. However, these concepts do not solve the

problem of wave propagation in resistive MHD.

The normal mode analysis yields the most complete insight into the plasma be-
haviour. The development of the ideal spectral codes in 1D and 2D, such as PEST and
ERATO, has proved that a good enough discretization can be achieved to discuss analytical
results in detail, to extend those and to stimulate new areas. The study and interpretation
of the ideal continua, the Alfven and slow-mode continua, serves as an example of fruitful
combination of analytical and numerical work. The understanding of the ideal Alfven con-
tinuum is important, because it plays a crucial role in Alfven wave heating interpreted as a
phase-mixing phenomenon. In contrast to the detailed analysis of the ideal MHD continua,

the investigation of the resistive Alfven spectra is still in its preliminary phase. One rea-
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son is obviously the degree of complexity. The set of resistive equations form a sixth-order
system which is too complicated for complete analytical solution. The initial-value codes
usually used for numerical solution do not give the stable part of the spectrum. Only
recently the resistive MHD spectrum has been solved numerically. The basic result has
been that the ideal continuua disappear for finite resistivity and are approximated only at
the end points and that the eigenvalues lie on specific curves. These findings have provided
the stimulus to address the problem analytically in terms of WKBJ theory; a complete
solution confirming the previous numerical results has been constructed for the simple case
of of a monotonic B,(r) profile yielding a monotonic w4(r) = |k - B/ v/P,|- More relevant
and, hence, more complicated equilibrium profiles need to be analyzed thoroughly in order
to complete the picture with respect to the resistive spectrum. This is the objective of
the present work in which tokamak-like configurations in cylindrical symmetry with one
and two singular surfaces are examined. Complete results are given by a combined effort

involving numerical and mathematical treatment.

The spectrum of resistive MHD is evaluated numerically by a nonvariational ap-
proach by applying the Galerkin procedure in conjunction with finite elements. This
approach culminates in the complexe eigenvalue problem Ax = ABx. Careful comparison
with the discretized ideal spectrum as well as with exact resistive solutions have confirmed
that a good discretization has been established. In conjunction with convergence studies
using increasingly finer mesh size, this numerical scheme guarantees high accuracy. All
details presented consist of converged results. It is evident that the value of the resis-
tivity is small enough for discussing the asymptotic behaviour. Further decreasing the
value of  which would require more spatial resolution yields only a higher point density
on the eigenvalue curves, but does not give qualitativly new results. In that sense, the
numerical answer is complete. Instead of arguing about the proper numerical value for n

a complementary approach is included.

25




The oscillatory behaviour of the resistive normal modes suggests the introduction
of an eikonal factor exp(®(r, A)/n'/2) and, hence, the phase-integral method. The turning
points and the anti- Stokes lines pattern yield the spectrum by means a quantization
condition such as ? ®!/2 dz = inn. However, only for very simple profiles this quadrature
is trivial. For genzelral configurations, the anti-Stokes lines have to be found numerically.
The evaluation of the spectrum is therefore quite involved. However, for the cases under
consideration the eigenvalue curves have already been found numerically. Consequently,
this part is considered an unnecessary complication for the WKBJ solution. The analytical
treatment is rigorous and the discussion of the anti-Stokes line pattern complete. The end
points of the resistive Alfven curves and the characteristics of the curves including their
branching points are derived accurately, the actual values being filled in numerically. For

the different branches of the resistive Alfven modes the behaviour of the eigenfunctions is

extracted and displayed in terms of computed solutions.

Our results can be summarized as follows: The resistive Alfven modes form a point
spectrum; the modes experience finite damping. The eigenvalues lie on specific curves in
the complex plane with a width proportional to n'/2, hence, in the limit of asymtotically
small resistivity these curves practically coincide and become independent of n. The point
density on these curves is proportional to n~!/2. The ideal continua are approximated
only at their endpoints and specific interior points, namely at singular surfaces and at
extrema of w4 (r). The eigenfunctions consist of resistive and ideal parts with localization
around the points where the ideal continuum is approximated.With increasing damping,
i.e. further away from the continuum, the number of radial oscillations occur over a wider
radial interval. For the same amount of damping, the number of oscillations increases in
the resistive part of the solutions for decreasing n. The oscillatory part has a maximum
at specific radial points. The ideal solution soon becomes exponentially small. Eventually,

the eigenfunctions oscillate over the entire radius. For eigenvalues between branching
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points, the eigenfunctions show complicated radial dependence owing to the influence from
different sides. The modes which form the branches emerging from the origin owing to
the singular surfaces miss the fundamental radial nodes v = 1,2 and 3. Starting with four
radial oscillations, these modes comprise two components, each with a wall at r = r,.
Finally, purely damped modes evolve with accumulation points at A = 0 and —co. The

radial oscillations now have constant amplitude.

Since the discrete Alfven modes and the tearing modes are both approximately
incompressible, the transition of a tearing mode in the stable region is examined for a
pressureless plasma. It is found that the stable tearing modes stay on the rays predicted by
boundary layer theory and never join the Alfven spectrum. So far, no unstable oscillatory
modes have been found for the incompressible branch. But we cannot prove this in general.
We believe that the question whether there can be two unstable tearing modes should be
addressed first. If so, it should be possible to drive these modes overstable. Such overstable

modes should then be subject to oscillatory behaviour.

For small pressure in the equilibrium, the perturbed pressure is small and the
Alfven and slow-mode branches decouple. This is evident from Fig. 3, where the location
of the resistive sound modes is indicated. As the set of the compressible equations is more
complicated, the complete analytical treatment is far more difficult. It may be conjectured
that the basic behaviour is similar to the discrete Alfven spectrum. This has indeed been
confirmed by numerical calculations so far. But the singular surfaces and the boundary
where the pressure vanishes introduce new complications. Although less important owing
to their small frequency, the sound modes should be treated rigourosly, too, in order to
complete the understanding of resistive MHD. The compressible modes are important for

the question of stability, especially at the f-limits.

To summarize, it can be stated that there are no continuum modes in resistive
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MHD. The logarithmic singularities in the ideal eigenfunctions are changed drastically
towards oscillatory solutions, not just locally, as one might have expected. In order to
estimate the effect on the Alfven wave heating scheme by the continuous spectrum, it
has to be kept in mind that the heating problem is not an eigenvalue problem, but an
inhomogenous boundary value problem with a given frequency. A thorough discussion of
the heating problem treated in the context of resistive MHD requires treatment of the

initial value problem and presents a new issue.
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Figure Captions

Figure 1 :
Safety Factor g and current density J profile for a tokamak-like equilibium with one

singular surface ¢ = 2 at r, = 0.5a.

Figure 2 :
Ideal Alfven frequency wa(r) = |7 By + nkB,| / \/po for wave numbers m =
—2,n=1and k = 0.2.

Figure 3 :
Resistive Alfven mode spectrum for the tokamak-like equilibrium with one singular
surface for values of the resistivity n = 1075 ( - ) and = 5-10=® ( x ). The sound
modes have much smaller eigenfrequencies as is indicated by the box close to the

origin. The purely damped modes on the negative real axis have been omitted.

Figure 4 :
Frequency of the first two modes from the uppermost branch in Fig. 3 for different

n ranging from n = 10~° to n = 10~2.

Figure 5 :
Scaling of the damping § = —Re(A) with respect to 5 for the first two modes from

the uppermost branch in Fig. 3; v labels the number of radial nodes.
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Figure 6 :
Eigenfunctions of the first mode of the uppermost branch in Fig. 3 for = 5-107¢;
v, = rv, and b; = irb, denote the radial components of velocity and perturbed

magnetic field; v labels the number of radial nodes.

a) v=1

b) v=4

c) v=8
Figure 7 :

Scaling of the damping § = —Re()) with respect to 5 for the first two modes from

the second branch in Fig. 3; v labels the number of radial nodes.

Figure 8 :
Scaling of the damping § = —Re(A) with respect to n for the first two modes from
the third and forth branch in Fig. 3 emerging from the origin; v labels the number

of radial nodes.

Figure 9 :
Scaling of the damping 6§ = —Re()) with respect to  for equilibria with B,(r) =
Bo - r® and B,(r) = By - r* with § & /% and nt/e.

Figure 10 :

Eigenfunctions of modes on the double line emerging from the origin in Fig. 3 for
n = 10~8,yv; = rv, and b, = irb, denote the radial components of velocity and

perturbed magnetic field
a) third branch and first mode, v = 4

b) third branch and third mode, v =6
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Figure 11 :
Eigenfunctions of modes on the double line emerging from the origin in Fig. 3 for
n = 1078 in an enlarged scale ; b; = irb, denotes the radial component of the
perturbed magnetic field

a) third branch and first mode, v = 4

o

)

) fourth branch and first mode, v = 4
c) third branch and second mode, v =5

)

d) fourth branch and second mode, v =5

Figure 12 :
Eigenfunctions of the second mode of the fourth branch for n = 10-8; v; = irv,

denotes the radial component of the velocity.

Figure 13 :
Eigenfunctions of modes of Fig. 3; v, = rv,
a) right to the branch point A,
b) left to the branch point A,
c) between the branch points A, and A,.

d) left to the branch point Ag

Figure 14 :
Safety Factor ¢ and current density J profile for a tokamak-like equilibium with two

singular surfaces ¢ = 2 at s; = 0.30a and s, = 0.73a.

Figure 15 :
Ideal Alfven frequency wy(r) = | Bg + nkB;| / \/po for the equilibrium of Fig. 14

for wave numbers m = —2,n =1 and k = 0.2.
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Figure 16 :
Resistive Alfven mode spectrum for the tokamak-like equilibrium with two singular
surface for values of the resistivity = 107° (- ) and = 5107 ( x ). The sound
modes being close to the origin and the purely damped modes on the negative real

axis have been omitted.

Figure 17 :
Eigenvalues of the tearing mode for the pressureless equilibrium defined in eq.(22a-
22d) with n = 10~ for different values of go which implies different values for Al
The stable modes lie on a ray emerging from the origin under an angle of %‘N with

the positive real axis.

Figure 18 :
Scaling of the complex eigenvalue of the stable tearing mode with go = 0.70 in the
pressureless equilibrium defined in eq.(22a-22d)
a) the eigenvaluesare lying on a ray which forms an angle of §1r with the imaginary
axis.

b) the real part of A scales like Re(A) a nE

Figure 19 :
Eigenfunctions of the tearing mode for the pressureless equilibrium defined in eq.(22a-
22d) with n = 10~%; v; = rv, and b; = irb, denote the radial component of the
velocity and the perturbed magnetic field
a) unstable tearing mode for go = 0.90

b) stable tearing mode for go = 0.70
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Figure 20 :
One anti-Stokes line crosses the endpoint r = a and the other crosses at an interior
point r € (r;,a) (dotted line). If the second anti-Stokes line crosses at the other end
point r = r; (solid line) the limiting spectral point A is reached. This anti-Stokes

diagramm describes the spectral curve emerging from A = wg(a) to A = Ao in Fig. 3.

Figure 21a :
Two turning points, T; and T, connected by an anti-Stokes line. This anti-Stokes

diagramm describes the spectral curve emerging from A = 0 in Fig. 3.

Figure 21b :

Anti-Stokes diagramm at A = A,.

Figure 21c :

Anti-Stokes diagramm for the spectral line from A = A, to A = H(r;).

Figure 21d :

Anti-Stokes diagramm for the spectral line from A = A, to A = A,.

Figure 22 :
Anti-Stokes diagramm at A = A,.
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