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Abstract

The Hamilton-Langrangian guiding-center (G.C.) theories of
Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields
with non-vanishing parallel ourl at a critical value of v ,
which complicates applications. The singularity is related to a
sudden breakdown, at a oritical w, , of gyration in the exact
particle mechanics. While the latter is a real effect, the G.C.
singularity can be removed. To this end a regularization method
ig defined that preserves the Hamilton-Lagrangian structure and
the conservation theorems. For demonstration this method 1is ap-
plied to the standard G.C. theory (without polarization drift).
Liouville’s theorem and G.C. kinetic equations are also derived

in regularized form. The method could equally well be applied to

the case with polarization drift and to relativistic G.C. theory.




1. Introduction

In recent years, guiding-center mechanics and guiding-center
kinetic theory have been reformulated in an important way. By
using Langrangian and/or Hamilton theory in non-canonical coordi-
nates, guiding-center theory was endowed with exact conservation
theorems for the guiding-center particles and for the guiding
center Vlasov fluids; in particular, exact Liouville’'s theorems
were constructed and used to obtain Liouville-Vlasov-type kinetic

equations [1 - 6].

While these new theories are superior by virtue of their sym-
metries and their exact conservation laws, they are nevertheless
subject to the following problem. In magnetic fields with non-
vanishing parallel curl, i.e. B-curl B==0, the guiding-center
drift velocity v and the acceleration ﬁ| will diverge on a hy-
per-surface in phase space, e.g. for large values of || . Non-
causal guiding-center orbits then occur, and particle conserva-
tion is violated. This is seen by observing [1 - 6] that ¥ and ﬁ,

are always given by the following general expressions:
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where the definition of the quantity B: in the denominators de-
pends on the particular G.C. theory under consideration [1 - 6],
but in any ocase oritical values vV, of V, exist such that
B* (t, %, v, = Ve) = 0 if B.curl B# 0. As an example, in the

non-relativistic G.C. mechanics without polarization drift BT is

given by
A ~
£ g mc . QoY

By = Ewb = B # = v boerdb (1.8)

whence the critical v, reads
£l
Ur_ = - e:BA “ = - -~ R"\ Z O ' (14)
me b-cod b becudb

Fal
Here b = B/B, and the remaining notation ocan be looked up in

Refs. [1 - 8] and in Sec.2 of this paper.

We may introduce the "twist length" Lt by the definition

A -1

L, = | (bredb)|™ (148>

It is seen that Iv, | is large compared with the gyration speed

Vv, of a particle because

| QU L.

Lt/ Rg (1.4b)
V, | V.
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and the validity of G.C. theory requires that Rg « Le
Numerically, Iv.! can be large, as 1s shown in Sec. 5 below.

If this singularity is not removed by a regularization procedure
it is necessary to exclude all orbits that intersect, or are tan-

gential to, the singular hyper-surface mentioned. For instance,

the use of Maxwell distributions and all other distributions with
arbitrarily large values of v, is forbidden. Introduction of
diffusion-type collision terms, e.g. Fokker-Planck terms, is also
impossible. In order to improve on this situation, a regularized
version of Lagrangian G.C. mechanics is presented in Secs. 2 and
3 of this paper. This is followed by a derivation of Liouville's
theorem and kinetic equations in Sec. 4. It is noteworthy that a
related phenomenon exists in exact particle mechanics, namely a
sudden breakdown of gyro-motion at a critical value of v, that
occurs if B-curl B 4 0. This point is presented in Sec. 5. Sec-—

tion 6 contains the conclusions.



2. Regularized Lagrange equations for guiding-center motion

In order to demonstrate our method of regularization, we start

from unregularized G.C. mechanics with the Lagrangian
*
L = efu - e - Wy (2.1)
a -

with L depending on time t, the G.C. variables X, ¥ =X, v, » and
the parameters m (magnetic moment), m, e, c¢. Here A¥ is a mo-

dified electromagnetic vector potential [1 - 6], viz.

”~
- % me v, b
@(t,x) is the scalar electric potential, and W, is the G.C.

kinetic energy in the form
W, tE,x,u,p) = pBLEE) + 2 U, (2.3)

The other quantities are: A(t,x) the usual vector potential,
B(t,x) the magnetic field, D=B/B the unit vector in the
magnetic field direction; the scalar magnetic moment M is an
adiabatic invariant, i.e.ﬁl = 0, and \L is the “"parallel velo-

A
city" of the G.C., i.e. parallel to B; but the relation v, = ¥:b




is not implied here; it only follows as one of the (unregula-
rized) Lagrangian equations. Equations (2.1) to (2.3) follow from
the corresponding equations of Ref. [8] by putting there v = 0.
Hence, the above equations represent mnon-relativistic G.C.
mechanics without polarization drift. The theory then contains
the three standard drifts, slightly modified, and an additional
drift related to the time-derivative of 3. We shall refer to it

as the "standard G.C. theory".

It is the v, -dependence of A* [eq. (2.2)] that produces the sin-
gularity as indicated by eqs. (1.3) and (1.4). In order to regu-
larize this singularity, v, in eq. (2.2) is replaced by a func-
tion v, g(v,/v,) of v, that approaches v, in the wvalidity range
of G.C. mechanics (lv, | small), while it approaches constant va-
lues outside the validity range, i.e. for large values of Ivyli.

To be more specific, eq. (2.2) is replaced by

* m¢ v

AY = A mC yog ()b

A A g dlhscle (2.4)
with v, = const > 0, g(z) ~ 2, g'(2) ~ 1 for z «< 1, g(z) Dbeing

defined in —-so< 2z < +oce. The function g(z) has to be monoto-
nically increasing and antisymmetrio with respect to 2z = 0, and
it is required that g(z)~ % g__=toonst (g, > 0) for z —»1e2. Ve

shall also assume that

9gtz) ~ | 21 ”% for 7 — f oo, (2.5)



with 1 < ¢ < co, in order for ¥y and %“ to diverge not faster than
a finite power of Iv, | for v, —*ivee. It should be noted that
this new divergence is completely harmless because it ocours 1o} o
infinite Iv, !, contrary to the original singularity at finite Ve

of eq. (1.4). Finally, v, and g, must satisfy the conditions

Viy <¢ V, and

A A
UoQo <« lU\ = \Q\/\b_-mﬂb\ - .0
As an example, one may choose g(z) = arotg z, i.e., ge = /2,
g'(z) = 1/(1+2%), « = 2. It should be noted that v, may be chosen
different for ions and electrons. When this regularized mechanics
ig used in a kinetic equation, the distribution functions should,
of course, be vanishingly small outside the validity range of the
G.C. approximation and outside the validity range of
Vo 8(v,/Vy) ~ v, . A suitable value of v, can always be determined
in the validity range of G.C. theory because of Iv I >> V,

[see eq. (1.4b)].

Before deriving the regularized Lagrangian equations of G.C.

motion let us define the "modified fields" E¥ and E* [1 - 8] as

Il

b
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where the partial time and space derivatives are performed with

v, and K kept constant. It follows that

div 13* & 724 ¢2:9)
*

?}i_ = i cor] E? . (2.10)

ot

Explicit regularized expressions of B” and E* are

FaY
EK‘ — —_:B_ i %__ 'Ug% CUTJQ b_ y €2.11)
b
s = s il B
E S T —é—Ua% : (2.12)

An important quantity is the "parallel" component of B*; in :4its

regularized form it now reads

~ ) T
B = B%b = B+ " vgbenl g

which is positive-definite, in contrast to eq. (1.3).



The regularized Lagrange equations of G.C. motion are now given

as they follow from egs. (2.1), (2.3), (2.4) and (2.7) to

Firstly,

Qv
r
O

|

Q/
£

A
\
Vb = Vafg
The other equations of motion are obtained from

g!_(l‘.:) ~ vlL,
dt \ v

with the definition

9

+ U‘v + ‘l‘.)“ =
,

—_—
—_—
— —

L3 R
A 9

D—-‘D——
e

Because 0L/dy is independent of y, the last term on the r

eq. (2.17) does not contribute. The phase space, or state

€2:13):

(2.14)

(2.18)

(2.18)

(2.17)

.h.s. of

space,

of the guiding centers is spanned by the variables X and vy, and

by the parameter p . Equation (2.16) reads

>,

d

|

- L V(AD) - W,
c

e
c

o B
(ad

(2.18)
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with the variable v = x to be taken independent of x (and of %,
in the sense of partial derivatives). The quantity W 1is defined

as

W = \/\/k i e(b. (2.19)

Equation (2.18) can be transformed to read

o2
"l
n|m
Ic
>

+ LeE' - YW,). (2.20)

1

Equations (2.15) and (2.20) can be combined and solved for y and

Wi &
% Fal
V= lJ_'L;B__ + i_..[eE_* ~ VWK)XE’- (2.21)

»*
9’ ’G e B

and

V, = ——=% = = (2.22)

(2.23)

Il
=
]
m
*
|
4
=
=
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By substituting the modified fields and VV, more explicit expres-

sions are obtained:

A “~ A
U = Wb + & Exb + 2 _bxVB
g - 'B: m QF
. Nl Fy3k | %9 .3 (2.24)

with
* N A
F = & B“ = =+ U9 b. cod h, (2.25)
m ¢ -
and
mg 9s 9’ ds
with the usual definition 9/0ds = \3 \Y . It is seen from

eqs. (2.24) to (2.28) and the above definition of g(z) that the
divergence of v and %u at v, = v, [eq. (1.4)] has been eliminated

by the regularization procedure.
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The energy equation following from the above equations of motion

reads

éjif — }L %Ei -4 e E:k.ll
dt ot

or, more explicitly,

Awk — eE"Q + }La._]_?’_ -mvogg'a_h_.

dt = ot ot
This can be given the form

éjﬂt 1 e E;"U - }L . Ei}i‘ )

it R

where the veotorial magnetic moment A is defined by

)= = —)LE_ 1__m3%%_yl

Equations (2.29) and (2.30) will be wuseful in G.C.

theory, as given in Sec. 4. For time-independent fields

(2.27)

(2.28)

(2.29)

(2.30)

kinetic

conser-

vation of single-guiding-center energy follows in the form

Il

Ly .ol o AW
M ed) = 8 = O

Liouville'’'s theorem will be considered in Sec. 4.

£g.81)
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3. Energy representation

In some cases, it is useful to consider v, as a dependent va-

riable which is determined by the relation
2
W = MV, + ed + puB. (3.1)
2

It should be noted that we have now written V, (capitalized) to
stress the faot that it is considered to be a function, depending
on time t, position x, total energy W and, of course, also on the

parameters m, e and L. We thus have

\41 = Vﬂ (-t’ E-J\V) ¥ (3.2)

From eqgs. (3.1) and (3.2) we can derive the useful relations

Qs

|

B) , (3.3)
X

o/

‘* ( N,
—_—— = - — e 1 +
ot m Vy ot &

VV“ = ﬁ_L_(eV(b t }LV:B)' (5.4

mV,

i

s —_— (3.8)
b\d WﬂV“
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where, of course, the time and space derivatives are now formed
with W kept constant. As in the calculations of Sec. 2, we intro-

duce the modified vector potential A:

Il

E A i _'QLUOE](\_ZE)IE ; (3.6)

which now also depends on W through the dependent variable V.

The corresponding modified fields BY and EY are then

Il

B curd A (3.7)

—

and

e

9

[

E' = -V -

—_—

. (3.8)
g :

[~ %
—

Written explicitly, these expressions read

| td
1

~
£: B cod b
& e

~
AT ) (5.9
£
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and
b
E = E - r_n_-an——:-
= e 3t
m q )V" @
- Mg b . .0
eaht (B

Though B’ and E obviously differ from B and E*'[eqs. (2.11) and

(2.12)], the components of BY and B¥ parallel to B and of EY and
E* perpendicular to B are the same, viz.

+ s x 0
B b B"-b , (3.11)

E*x b

1

1072

=% (3.12)

Expressed in the new variables, the regularized Lagrangian is now

I

\l

1-
Ev.A -W
c

(3.13)

It thus follows that

Lf

S 6 22 ST T

(3.14)
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and the total time derivative is correspondingly given by

. (3.0

) a__ + U'v + \;\/A—*’ {I'L
# o Of B oW Y

d
dt

Again, the term Ny- 0/9V does not contribute to the Lagrangian
g L v

equations of motion.

From the equations above we can now derive the regularized equa-
tions of G.C. motion in the W-representation. Firstly, since L'

does not depend on ﬁ, we have

b Ny 0. (3.16)

—
et —

oW

Taking into account the relation
- ~
o A cq | (3.17)
oW €V

which follows from egs. (3.5) and (3.8), eq. (3.16) yields the

result
4 1
K _.b_ = Vn / % ) (3:18)

wvhich agrees with eq. (2.15). Furthermore, from egs. (3.8) and

(3.13) we obtain

cvlcv
i s

-~ B 7 (3.19)
-



1T

and

v = :C_{ ("!'V)Pf + U cmﬂﬁ+} . (3.20)
¢

Then, Lagrange's equations of motion

é_(@__\f) sea U (3.21)
dt \ 2V
lead to the result
é:_A‘i + _C.ﬂ_lwg . ‘\;)deTa_Aj ; (3.22)
bft e W
(3.22)

Recalling eq. (3.18), we take the scalar product of eq.
with v and obtain the energy equation in the form
(3.28)

W = _ £ U- 9

c

(Y
~ |13,

This, of course, is the same as eq. (2.28), as can be seen by ma-

king the appropriate substitutions.
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on the other hand, the oross—product of eg. (3.22) with D leads

to a very simple expression for the guiding-center velocity, viz.

v = _.\../H—CUT.'E i ;El__xb__ﬁ: ' (3.24)
B, 9 B, At

One of the advantages of the energy representation is that it
makes it possible to express v through such a concise equation.

If it is assumed that the fields are time-independent, and that
there is no parallel component of the current, then (for g' = 1)
eq. (3.24) reduces to the expression for the guiding-center velo-

city with was derived in Ref. [7].

We can also write eq. (3.24) in a different form which proves
useful when deriving kinetic equations. Replacing S from eq.

(3.17), we obtain

+ +
V ﬂf e BA 3&
vV Vo |‘ewk R & = — Xigm (3.25)
= + o ¢ 9 t
113
Scalar multiplication of this equation Dby aff/’at and

comparison with eq. (3.23) yields the relation

%%t.( awrl Ay = - _C_ZE“_E_W . (3.26)
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Taking into account the identity

" eg‘x élg: — EL__ .Eﬁ!. Ut‘A
Vot gp ) o= S lapr it
__);(_b;b_ curd A') (3.27)
ot oW

and egqs. (3.7), (3.17) and (3.26) then leads [through eq.(3.25)]

to the result

1 * 1 t 1 i .

.B_(..gﬁ) + V-( EBII u) g é (ﬂBll w> = O. (3.28)
at v\l vll aw V\l

This is Liouville’s theorem [cf. Sec. 4] in the energdy repre-

gsentation. However, in Sec. 4 we shall rederive Liouville's

theorem in the (t, X, v, ) representation since this seems more

practical in the context of kinetic equatioms.
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4. Liouville's theorem and kinetic equations

In this section we shall again use the phase space coordinates
(z, v, ), rather than (x, W), and first of all, derive Liouville's
theorem. This theorem is virtually indispensable if one wants %o
construct a practical kinetic equation from the equations of

motion, e.g. those given in Sec. 2

Liouville's theorem can be derived direct from the G.C. Lagran-—
gian of Sec. 2 by the following theorem [4, 8l. Let (x, v,) Dbe

replaced by (zy), ¥V =1 to 4 and let L of eq. (2.1) be written as

L

L(zy,2,,t) = > ez, - ) o D
A

The Lagrangian equations assume the form

4 4
S bz By = o o+ 2E)

2t A2, (.2

m 1

with the definition

" _ Mn_ _ N, (4.3)

nm
Bzm an

Then the following phase space volume element d7T is Liouvillian,
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l.e. d':t'= 0O along orbits:

dt = Mz, bdzdz, dzdz, = kdxdy, (4.4)
with
A= LA™t (s.9)
N = de’[((ﬂmn) (4.6)

A proof of this theorem is given elsewhere [8]. Upon comparing
eq. (4.1) with egs. (2.1), (2.3), (2.4) it turns out that

(.Unn o 0 g Me=.1 to 4, b 1)
We; = =-Wy, = -mgb , i=1,2,3, (4.8)
x )
Wy, = ~—Wy = - By
B*
sz e -—'wsz = = Dy r ’ (4.9)
%
&)31 — -4(‘013 = —BZ
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~ »*
wvhere b; are the Cartesian components of b, and B is defined in

eq. (2.11). It follows that

A = \mc“%Bar mvo%b-cvrﬂb)l

Il

1 &8 *
l mg E_B“ . (4.10)

By adjusting the constant factor we obtain the Liouville volume

element as
*1 3
dr = 3_1\ %’Bu\ dx dv, dp (4.11)
m

where we have extended the phase space by the parameter w . To
check that dT = O does in faot hold along phase space orbits, one
shows that the following partial differential equation is satis-

fied [1 - 6, 8, 9]:

a . . |B* M EL 13*1)
SE(%BE) + V (ﬂ 1 V) 3 (% I 1)

Yy

+ ?._(g'BﬁfL) = 0 . (4.12)
-
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This proof is analogous to those given in Refs. [2, 3, 5] and
requires using egs. (2.21) and (2.22) for ¥ and %n as well as
the modified homogeneous Maxwell equations, egs. (2.9), (2.10),

and the relation‘ﬁ = 0.

We shall now derive a collisionless kinetic theory for the above
regularized G.C. mechanios [Secs. 2, 3]. Our phase space is now
5-dimensional, with the coordinates {0} = {x, v,,p}, 1 = 1 to 5.

The guiding-center distribution f is defined by

il

d N {=dw =, (4.13)

with £ = £(t, x, v,,pn ), dN being the number of guiding ocenters
in a phase space volume element d¥ . The ocollisionless kinetio
equation expresses conservation of dN in a volume element d7

that moves with the guiding centers, i.e.

d (dN) = 4 (£de) = 0, 4.3
dt dt

or, equivalently [2, 8, 9],

O (43" + Ve(9Byui)
§¥'(ﬂ:5u{) ( 75

I
o

) (4.15)

d (qBv f 3 (B it
31%} 950U )+ B)L( ke )
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with_ﬁ.= 0. Equation (4.15) holds independently of whether dr 1is
Liouvillian or not. By employing the Liouvillian dz of eq.
(4.11), eq. (4.12) ocan be used in order to obtain the kinetic

equation in Liouville-Vlasov form, viz.

clf—":é.-f--\-’\_._)_-v:f_—\-'{)“?i‘_{-— +}'J.-_a.£-:0, (4.18)

—_—

dt ot oYy ()

with ﬁ—= 0. When moment_equations are to be constructed from the
G.C. kinetic equation, the use of eq. (4.15) is more advan-
tageous. On the other hand, eq. (4.18) can more easily be manipu-

lated and solved.
The moment equations for G.C. number and energy ocan be derived

from the above equations in the same way as in earlier papers

[2, 3]. Defining the G.C. density

n o= Sid'i‘v : (45100

with d7, being the volume element in G.C. velocity space, Viz.

[compare with eq. (4.11)]

d?.'.u = g":— \ %IB: \ C\‘\Ju d}"- ) (4.18)
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and defining, furthermore, the G.C. flux demnsity

r o= j v { dr, (4.19)

one obtains the equation of continuity
on ., wv.0 = O . (4.20)

As to energy, one defines [2, 3] the G.C. energy density as

D = qui dv, (4.21)
the kinetic energy flux density as

Fs = j W, vide, (4.22)
and the vectorial magnetic moment density as

M = J}_Lid‘za, , (4.22a)

with W, and W given by egs. (2.3) and (2.30). A preliminary form

of the energy equation is then

oD (g0 Fyotsas _Sj:“u £ cl'rv ) (4.23)




On using eq. (2.29) and one of Maxwell's equations

instead

E-lel +cadM) |

CVlCV
= e
+
<
(|
]

with the total G.C. energy flux density
F = F, + ¢ M*E

and the effective G.C. current density

—_— elﬂ + d CM& EL

e

Jet T
while the effective G.C. charge density is simply

= en

Pets
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one obtains

(4.24)

(4.25)

(4.28)

(4.27)

If the sum is taken over charge and current densities of the

G.C. plasma components X = 1,e

SD'cn\ttzu.ﬂ = Z ?ef{ ) gtotqﬂ at Z jeﬁ ,
ot - A

(4.28)

and if total charge and current densities are introduced into

Maxwell'’'s equations, then one finds conservation of total energy:



_7

g—t{-DtotQ_p + EZQ_“BZ} + v‘{_Etotcd + fq-;'E—xB' }-‘:O, (4.20)

with

Dtoha_g = Z_DO& 3 EtOtQ_ﬂ B g Eog . (4.30)

ot

The definitions of G.C. charge, current, energy, and energdy flux
densities could have been derived in a more systematic way by
Pfirsch’'s variational method [6]; for brevity, this aspect of the
G.C. fluid conservation theorems is not covered in the present

paper.
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5. Exaot equations of particle motion

5.a Sudden breakdown of gyration (axially symmetric case)

In the exact particle picture, i.e. without the G.C. approxi-
mation, there is a phenomenon that ig related to the singularity
in G.C. mechanios at v, = v. [eq. (1.4)]. Namely, in (static)
magnetic fields with B-ourl B+ 0 a sudden breakdown of gyro-mo-

tion ococurs when v, is continuously varied. This gyro-breakdown

is related to a critical v, = Gc, where
2 {1
‘\)d = - ~ ~ = f\) 2 O (58“1)
2 b.amlb 2

is valid in a B-field of axial symmetry. The gyro-motion is then
absent for Wl/gh , 1 even though the usual validity conditions of
G.C. theory are satisfied, i.e. the gyro-radius R‘3 is much smal-
ler than all inhomogeneity lengths, including the "twist length”
L, = li:-curl ’f:|-1 , vith Rq= v, /1L 1. Because this gyro-breakdown
effect seems to be largely unknown, we think it worthwhile to

present it here for the case of simple model fields.

We consider a charged particle in a magnetic field of axial
symmetry, viz. with the vector potential (in cylindrical coordi-

nates)

Ar = O . Acf = B*EQ'T 3 Ai == ﬁ_;_'éf_',rz b (58”2)
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and the field components

B = 0 p B = “Bor

¢ :_B* = :Bo ’ (5a.3)

B, and  being constants. This field is "twisted", 1.e. has
parallel ocurl == 0, viz. (on the axis)

A

b . cur.QE)_

20 . (5a.4)

Of course, the parallel curl of B requires a parallel ocurrent

density. The Lagrange function of the particle is given by

L= m( Ft+ Tt 4 3%)
2

Ad

+%( AT + Alfrq) + A 2) (5a.5)

with the canonical momenta

Pr = mT ’ (5a.8)
= veumpizf @o4one ) (5a.7)
Py 2

e m (:E. - —————Tz) 3 (5a.8)
Pa
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with {l, = eBo/mc. Owing to the symmetry, p? and p, are constants
of the motion as also, of course, is the kinetic energy. The

equations of motion are given by

. 2
U, o= Ve QO‘UY SR 3.00% o VA (5a.9)
£
. )
r\)? —_— - _r‘U._‘?_ — ﬂD '\)T (5&. 10)
S B
V, = «x{,Tv ., (5a.11)

vith the definitions v, =T, Vo= T, Vg

. = z. In order to

n

determine the gyration frequency «w and the gyro-radius r = Tg, We
consider a particle with its guiding center at r = 0, s0 that
T = ra = const, @ = const, vlr = const, v, = const must hold for
motion periodic in the (r,?)—plane. Then W and T = Trge are

determined by quadratic equations:

il
O

w2+ Now - xov, (5a.12)

and

(Pe)" + Qo(Ne) - «Qeu, = 0,
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with v? given; sign v? = gign W is necessary in order for r to be
positive whenever it is real valued.
It is seen from eqgs. (5a.12) and (5a.13) that the solution for w

and r = r, are only real-valued provided that Vi/%% < 1, with

)

C)

It
|

.___ﬂﬂo % - = (5a.14)
c 4 &

In the opposite case, e.g. vzlx?c > 1, the particle orbits are
qualitatively different (see Dbelow), and there is nothing
resembling gyration any more. It is important to note +that this
sudden transition occurs for values of W and T = Ty that would
seem to be in agreement with the wusual validity conditions of

G.C. mechanics, i.e. the oritical values of W and r = r3 are

we = =-{o/2 (5a.15)
and

T. = ?“'0‘?/(10 = 2750 &K 2L ¢ (5a.18)
where r30 is the gyro-radius obtained for v, = 0. More general

considerations and calculation of exact orbits are better done in

a planar geometry (below).
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5.b Exact orbits of unbounded non-gyro motion in planar geometry

In order to further illustrate the breakdown of gyro-motion

in a magnetic field with a parallel component of the current

( B-curl B #=0), let us consider a particle of charge e and mass

m moving in a magnetic field B with a vector potential A given by

A = Bo { (cos(ay) - 1) gx + sin(qy)éz} PN (1.7

- a

Here x, vy, 2 are Cartesian coordinates and By, and a
constants. Then, for the magnetic field B and the electric

rent density j we obtain

P’

B = B,{ coslay & + sin(ayea] (5b.
and

j = < aB | (5b.

z 4
i.e

B - cor] B
Q — Bz . (5b.

Equation (5b.2) thus describes a magnetic field of constant

nitude (1Bl = B,), with straight lines which twist as one

are

cur-

2)

3)

4)

mag-—

pro-

ceeds in the y-direction. Then, according to the standard guiding
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center theory, there should be no drifts whatsoever. We shall see
that this is not the case: there is a class of particles which
"drift" perpendicular to B in the *y-directions, in spite of the
fact that they satisfy the usual conditions for the applicability

of the guiding-center theory.

We consider the Lagrangian of a particle in a magnetic potential

given by eq. (B8b.1):

L = _rg.( eyted?) o % {.i(cos[qy)_ﬂ 5 ésinl&y)} y (5b.5)

with

0 = eB, (5b.6)
mc

From eq. (5b.5) we derive the canonical momenta

5 ‘ (L b (8b.7)
P = mk o+ ,mT { cos(ay) 3 )
Py = m)'/ 3 (5b.8)
P, = mz + mQ sin{ay) (5b.9)
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and the Hamiltonian
Q 2
H = * [ { h - leos(an) - 1)}
2m

+ { P, - M gin ( o.y)_], } (8b.10)

Since the Hamiltonian does not depend on either x, z or &, the
canonical momenta p, and p, and the total energy W are constants
of the motion. From egs. (5b.7) and (5b.9) it can easily be seen
that p,/m and p,/m are, respecotively, the x and 2z-components of
the velocity at the plane y = O, viz. X, and Z,. The quantity =X,
can also be identified as the parallel component of the velocity

v at the plane y =

g ;.B_ (Y:O)

— -\J B e .
10 L B, (85b.11)

X
[
c
|

Owing to the fact that p, and p, are constants of the motion, the
particle can be considered as effectively being 1in a oOne-

dimensional potential ¥ (y) and the Hamiltonian can be written as

2

H = 2 + ¥up, (5b.12)

2m
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where

Jiy) = _";‘_[{U“O = %(cos(qy) -1)}24. { - - %sin(uy\f] . (5b.13)

The particles moving in this periodic potential can be divided
into two classes: Those whose energy is large enough to overcome
the potential barriers determined by the maximum value of qf(y ),
and those with energy so low that they are trapped, their motion
being confined to a certain y-region. The maximum value of ql(y)

can easily be determined from eq. (5b.13):

.QF 2 252 €
P = E___{‘\:,J(G-UID +1)+CL20 } . v [ (Bb.14)
max 2 o Q 03

The condition for a particle to move freely in the y-direction is

then

(5b.15)
\J = FP max '

The constant W can be determined from egs. (5b.8) and (5b.12-13):

Moo Hped - 2B e

The condition (5b.15) can then be written as

s s
1Ly > 1+ L, + \/(i@m_+1)2+ @', (sb.17)
2 Q* Q Q1 Q*




36

or, equivalently,

2 . s 2
a B o, Zo (5b.18)
- =V > V1 -7mEh + 53
L Yo
This equation can also be written as
o'z .2
'U“o ot e A _?_0__ + Z o ) (5b.18")
4 r2 Vs
qJ; Ve Yo
where the critical v, = v: is twice the coritical velocity G; of
the axially symmetric case:
+ Q
Ve = ‘9‘ e S =~ ° (8b.18")
a b.eurdb

On the other hand, the assumptions of the guiding-center theory

require that the conditiomn
'Rzg at « 1 (5b.19)

be satisfied. Here, R9 is the gyro-radius

v2 2
Yot I
'R; w2 O ‘ (5b.20)

glt
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Combining the inequalities (5b.17) and (5b.19) yields the re-

quirement
g 2 gt i
Q492 QY Q2
SRNARNCRURE §

IR R |
<: 0-(‘70*“20) <Z -1

1 (8b.21)
(1&

All the particles which satisfy the ocondition (5b.21) thus
"drift" in the ty-directions and, hence, do not move according to
the predictions of the guiding-center theory, in spite of the
fact that they satisfy the usual conditions for the applicability

of this theory.

The trajectories of the particles are found by integrating egs.

(5b.7-9), together with

m)'r =tongpdl . (5b.22)

Equation (5b.22) can be integrated explicitly, yielding

o)

5’2 _ 72 N %[éosin(mﬂ + (Y # %)\‘05(“}’\-1)_]]. (5b.23)

The computation of a closed analytical expression for y(t) from

eq. (5b.23) is only possible in simple cases. As an illustration
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we study the case with z, = 0 and v, = —-fl/CL . We can then
immediately integrate eq. (5b.23) and obtain
ylt) = )/DJL p (5b.24)

where we have set y(t = 0) = 0. With the help of eq. (8b.24)

we can integrate egs. (5b.7) and (5b.9). This yields

4 --%-. Si"((l)"o't) (5b.25)
a* Yo

and

z(t) {1 COS(Q?OH J (5b.26)
oY,

where we have chosen the integration constants in such a way that
t ]

x(t = 0) = 0, z(t = 0) = SL/(QYe) . Combining egs. (5b.25)

and (5b.28) leads to

!lz

2 2

X (t] + Z (t) = _—_l.l.__'—:& 4 (5b.27)
A Yo

It is easy to see that the trajectories given by eqgs. (5b.24) and

(5b.27) are helices which have their axis of symmetry perpendi-

cular to B and cannot be understood from the point of view of the

usual guiding-center mechanics, in spite of the fact that the

condition (5b.19), namely P%}Of)[ﬂ} &« 1 , can always be sa-

tisfied by a suitable choice of Y, .
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The sudden breakdown effect of gyro-motion at v, - 9, vas mainly

| e

presented for the sake of comparison with the singularity
ocourring in Hamilton-Lagrangian G.C. theories (without regula-
rization applied). In the two examples the curvature drift was
identically zero since the "guiding center" of the particle moved
on a straight field line (or field lines). Gyro-breakdown there-
fore occurred well within the "usual", or naive, range of
validity of G.C. mechanios. However, the magnetic field lines can
be curved and the radius of curvature may be of the order of the
“twist length" L, assoclated with b.ourl 5 # 0. In these ocases
the curvature drift calculated for Vy-= ?c will be well in excess
of the gyration velocity V, of the particle and, hence, the ori-
tical value v, = QQ then lies outgide the validity range of G.C.
theory.

It should also be noted that I@;I can be rather large, and in
fact be much larger than the velocity of light. For instance, for
laboratory values, viz. B = 3 x 104 G, L, = Ii‘curl'EfA = 1030m
and for deuterons, onme finds IV, =~ 7.2 x 10100m/s, while for
‘electrons IV, 1= 2.7 x 10'' om/s. Lower values of IV,| obtain for
lower B-fields and smaller “"twist lengths". When the non-
relativistic equations of particle motion yield lgcléa o, relati-
vistic equations of motion should be used instead. It can be
shown that the gyro-breakdown effect persists when the relativi-

stic equations of particle motion are used. For brevity, these

calculations are not presented here.
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6. Conclusion

We have given a regularization method for singular Hamilton-
Lagrangian guiding-center theories and applied it to the standard
theory without polarization drift. The same method can be used in
order to regularize the relativistic standard G.C. theory [3] and
non-relativistic G.C. mechanics including the polarization drift
[5, 6]. In the latter case, one must employ Pfirsch’'s method [6]
of obtaining a total Lagrangian density, and charge and ocurrent
densities as well as continuum-type comnservation theorems, in
order to make the G.C. theory compatible with Maxwell’'s equa-
tions. In both cases Liouville’'s theorem (which is needed in or-
der to obtain useful G.C. kinetic equations) can be derived from
either the G.C. Lagrangian [4, 8] or by applying Pfirsch's varia-
tional method (in its original version) [6]. It is perhaps not
superfluous to mention that all Hamilton-Lagrangian G.C. theories
are non-invariant with respect to Galileo transformations (or
Lorentz transformations, respectively). It has been shown else-
where [10] that this is necessarily so (because of exact G.C.
energy conservation in time-independent fields and the use of the

particle drift approximation).
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6. Conclusion

We have given a regularization method for singular Hamilton-
Lagrangian guiding-center theories and applied it to the standard
theory without polarization drift. The same method can be used in
order to regularize the relativistic standard G.C. theory [3] and
non-relativistic G.C. mechanics including the polarization drift
[6, 6]. In the latter case, one must employ Pfirsch's method [6]
of obtaining a total Lagrangian density, and charge and current
densities as well as continuum-type conservation theorems, in
order to make the G.C. theory compatible with Maxzwell's equa-
tions. In both cases Liouville'’'s theorem (which is needed in or-
der to obtain useful G.C. kinetic equations) can be derived from
either the G.C. Lagrangian [4, 8] or by applying Pfirsch's varia-
tional method (in its original version) [6]. It 1is perhaps not
superfluous to mention that regularized G.C. theories are non-
invariant with respect to Galileo transformations (or Lorentz
transformations, respectively). The same is true of several unre-
gularized versions of G.C. mechanics wilthout the polarization
drift [2, 3, 10]. On the other hand, the unregularized, non-rela-
tivistic, Hamilton-Lagrangian G.C. mechanics including the pola-

rization drift [5, 6] is in fact Galileo-invariant.
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