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Abstract

Dirac’s method of obtaining a Hamiltonian H(g;... gn,p1... pn,t) corresponding to a
Lagrangian L(q;.... gn,q1.... gn,t) for which the usual expression Zp.-q'.- — L does not
allow one to find the solutions of the Euler-Lagrange equations via I'-Ia.miltons canonical
equations is formulated in a more explicit way by making extensive use of the eigenvectors
to the matrix 82 L/3¢;8qx. The question of secondary and so on and first and second-class
constraints is well separated from the basic problem of finding a Hamiltonian and is also
discussed in terms of certain eigenvectors. It is also shown that different but equivalent

forms of the Hamiltonians exist.




Introduction

In 1950 Dirac [1] (see also (2], [3], [4]) presented a method which allows a Hamiltonian

to be obtained for variational problems

ta

6/ dtL(ql---'quq.l""q.N)t) =0 3

ty

6Q|(tl):6Ql(t2):O 1= 1:"-':N: (]J

with non-standard Lagrangians L. For such problems the usual expression

N
Hy=) pigi — L (2)
=1
with
pi =0L/dg; (3)

called primary Hamiltonian in the following, cannot serve to determine the solutions to the
variational problem (1) via Hamilton’s canonical equations. Situations of this kind occur

when eq. (3) implies relations of the form

®n(g1---gN,P1-.PN, 1) =0 (4)

which are called primary constraints between the ¢; 's,p; s and t. The procedure to
construct a Hamiltonian can then reveal further constraints, called secondary and so on

.constraints, which all have to be taken into account.
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An example is

N
L= g Fi(q-qn,t) + G(g1.-qn,t) (5)

i=1

which yields the constraints

D =paiFalds -qn, ) =0 0=yl (6)

A Lagrangian of the form (5) occurs in the context of, for instance, the so-called guiding-
centre motion of charged particles in strong magnetic fields (5], and it is useful to describe
‘such motions by a Hamiltonian in order to formulate a kinetic guiding centre theory obeying

-all the necessary conservation laws, e.g. that for the total energy [6].

In the following a new and more explicit formulation of Dirac’s method is presented
which resembles to a certain degree the one found in Ref. [4]. It is based on a proper
analysis of the structure of the Euler-Lagrange equations for the variational problem (1)
and of the implications of the canonical momentum relation (3), and makes extensive use
of the eigenvectors of 82 L/8¢;9qy - This formulation keeps the problem of finding a Hamil-
tonian and the question of secondary and so on and first and second-class constraints well
separated. The latter question will be dealt with by using again certain eigenvector repre-
gentations. It will also be shown that different but equivalent forms of the Hamiltonians
exist that are not related to canonical transformations of the ¢; s and p; 's. Finally, an

example is given to illustrate the new formulation.




1. Structure of the Euler-Lagrange equations

The Euler-Lagrange equations for (1) are

d dL oL
#og  oq " i

Expanding the total derivative with respect to t, one obtains (with the summation con-

vention applied)

2L . 02L d%L

gy ——— + — + 3
* Bx04s o 0qx04; 0tog;

oL
- 3 =0 (8)

It is useful as done also in Ref. [4] to introduce the eigenvectors a'”) and eigenvalues A,

of the symmetric matrix 82L/3¢;0qx:

9L (v) (v) () _(v)
v~ A vl g g\ — . 9
3303, a, v G, G G - (9)

This allows eq. (8) to be written as
(v) . 02L ) 3%L A0 oL

(v)
! 35 il gt =0 . 10
don s T oG % o % (10)



A, =0 , R (5 8 I— (11)

o

Equation (10) then means m relations for the combinations g; af-’.') and N-m relations not
containing the second derivatives of the g; 's with respect to t. m < N represents the non-
standard cases for which the primary Hamiltonian (2) does not lead to the equivalence of

the Euler-Lagrange equations (7) in the form of the canonical equations.




II. Structure of the canonical momentum relations
From eq. (3) we find

2 2 2
PLoi g ol gy O
gk 94;

0qk 94; ot 9q;

6pi — Oqx

By means of eq. (9) this can be decomposed into

82 L 82 :
; — 6GiAs — Bgx s — Ot ——| a{®) =0
[6” ¢ R T 0%k G 04s ot aqi] o
and
8?L 3L ()
R LY Y el =0
[6"‘ 89 5o 50 at aq'»,-] %
Introducing

o oL
¢, = 05' el (Pi - E) )
1

we can formulate eq. (14) equivalently as

oL
84

5@,,6 =0 at Di =

At p; = gé’__—the function @, therefore only depends on the p; 's, ¢; 's and t.
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III. The primary Hamiltonian

The primary Hamiltonian (2) can always be written as a function of the p; 's, g; 's

and t, which follows from

: 3 . 0L oL oL
6Hp = opigi + pi8qi — 6¢i 5= — 8qi 5— — 6t —
Bq,- aq,' at (17)
. o G = B
= O0P: qs qi 5 — aq; 5t

The latter is obtained by means of eq. (3). Relation (17) does not, however, allow one
in the general case to obtain the partial derivatives of H, because of the relations (14)
between the ép; 's, 6¢; 's and 6t. In order to find these derivatives, we first express dp; ¢;

as

) o g,

13
(18)
Pk ﬂ},u) (%) gi + Z dpk GLV")O‘-SV”} gs

Vvo=m+1

N
6pi §i = Z 6k
2

With eq. (14) this becomes

(5) (¥ 62L 2L\ (w.) (ve) -
o= 3o d e 2 (g + 8 g o 4 i 9
v=1

vo=m+1

Using this expression in 6§ H,, as given by eq. (17), we are now allowed to take 6p; , 6q;,
5t as independent of each other, the components of ép; relevant to relation (14) being

eliminated. It therefore follows that




(21)

(22)



IV. The Hamiltonian

Let

N
H=H, + Y, W %, , (23)

vo=m+1

where ®,_is defined in eq. (15) with §®,, as given by eq. (14). The v,, are quantities
still to be determined. At p; = 8L/8q; the variation of the function H is therefore given
by

N
SH=6H, + Y. W, e (5p.-—6qk

vVo=m+1

(24)

L ta?r,)
09k I4; 0tag;

Thus at p; = dL/d¢; H, too, is a function of the p; 's , ¢; 's and t. For H to be a
Hamiltonian it is required that
= a Sl WS o R 1 25
op: M By 9q; Fi ()

where the last requirement ensures that the Euler-Lagrange equations hold. This yields

N
d0H, .
5 = = Y woat (26)
P Vo=m+l
N 2
-l RPN Yoo 0 o (27)
9qi d¢i |, 52 89:0qxk

Comparing eq. (26) with eq. (20), and eq. (27) with eq. (21) we obtain
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T, = GE'UO) q.s' . (28)

With this and eq. (22) it also follows that

oH aL
¥ i 1 (29)
and the Hamiltonian reads
H =H (q1,yqN,P1, --PN, 1)
N
e v ol o} aL (30)
= Hp + E qk a}: as-u (p| . a—q..' ) i
vo=m+1
This expression is to be taken at p; = g—‘q% , i.e. when derivatives are to be taken, p; — g%
is to be set equal to zero only afterwards. Furthermore, the N-m relations ®,, = 0 have

to be used in order to determine the N-m additional constants of integration when solving

the canonical instead of the Euler-Lagrange equations.
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V. Non-Uniqueness of the Hamiltonian

By means of eq. (10) with v = v, , A,, = 0 the p; 's can be expressed in different
ways without changing their numerical values. They then correspond to different forms of
the Lagrangians which, however, remain also numerically unchanged. As a consequence,
one obtains different forms of the Hamiltonians which are numerically identical with the

original ones. The example in Sec. 7 will also illustrate this point.

VI. Determination of the quantities g a}:'"}

Because of the general proof that H can be written as a function of the ¢; 's, p; 's
and t, it is clear that the quantities g ar’"’ can be expressed in terms of these variables by
using the canonical momentum relations (3) and the Euler-Lagrange equations (2). When
analysing the corresponding procedure one usually arrives at the concepts of secondary

and so on constraints and first and second-class constraints. With the representation

introduced in this paper we have the following situation:

For the functions

&, — o) (p,. - ?ﬁ) v=1..N (31)

we find at p; = 9L/dg;
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a(by _ a(bpr (“) — (U) 62‘1; (ﬂ)
Saa™  0a kT M 7 8 0gc) %
(gray’) ak qi OQk

- - AV 5[)” ; Vv ) ”- - 1.-..N

(32)

(1o)

'The quantities ®; and ®,, thus do not depend on gk a; °'. Since, in addition,

det m =[] - (33)

B(Qk a, p=1

one can obtain from ®; = O the quantities gi a“‘) as functions of the g; 's , p; 's and t.

(vo )t

In order to obtain equations for the gx a.”°"'s, we observe that ®,, = 0 must hold for all

times. Using p; = OL/0q; , we therefore find at p; = dL/dq;

oqi  dt 94;

dd,, .y (0L d 3L

d—;’—-af."’(-—— )Eafgl:o, (34)
which, of course, is just the projection of the Euler-Lagrange equations into the null vector
space of the a‘"“) s, i.e. eq. (34) is the same relation as eq. (10) with v = v, . Itisa

»secondary”constraint in addition to the "primary” constraint ®,, = ‘I)w = 0 . The

solvability of eq. (34) with respect to gk a(” ») is governed by the properties of the matrix

(2 2)
a9y a8y (4. 35)
(Ba) aq i (
6Qk a 9k

If its determinant does not vanish, we can obtain the gk a““’}

s from eq. (34).
Otherwise we introduce the left and right sided eigenvectors b)) and bpo) to the eigenva-

lues ¢(2) of eq. (35):
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iy OL2) «
A 9Pvo (mo) _ 4(2)
b0 25 ed g i)

Yo gk
e (36)
Vo (po _ 4(2) i o
‘a—ék—“ky PO = a3 B, B B = b
With these eigenvectors we form the quantities
v = ) o2 (37)
for which we find at 3{?) = 0
(.un) = by - 58]
aqk a.
Scalar multiplication of eq. (38) by bm’) yields
(2) (2)
LN ke = ¢'3) 8 (39)
g a(uo) Bo 8(gx alﬂ )b(A')

With the notation ¢(-2) #0 ¢&20) = 0 we obtain the result that ‘If(;} = 0 can be solved

(1) b(AJ

for the quantities gx a . In order to obtain the rest, we introduce a new function

@) _ 4 g2
which does not depend on d(gx a(”“) bl ')/dt, and try to obtain the quantities gy a““’) b“ )

from the tertiary constraint
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e =0 . (41)

One can now proceed in the same way as before. After a finite number of steps one
comes to an end which might imply that some combinations of the g aL""] can be chosen
freely in agreement with the Euler-Lagrange equations. The number of these combinations

is given by the number of the so-called first-class primary constraints which results from

the following consideration:

Let F, denote all the primary, secondary and so on constraints. We can then write

down the conditions dF, /dt = 0 at F, = 0 by using the Hamiltonian (30) as

dF, _ 0F,
dt

i [Hpan] + E dk GL“G) [‘I’un:Fn] =0, (42)

Ho

where the brackets denote Poisson brackets. If

Y e [@y,, Fu] = 0 foralln (43)
Bo

holds with certain coefficients é°' then

Y éleel @, = @l (44)
Bao

are called first-class primary constraints and all other combinations second-class primary

constraints. Choosing a full set of coefficients ELﬂ) : c!f;) with
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N

Z EL‘? cLﬁ) = by,v, - (45)
p=m+1
we can write
gk a}f"' = E Z dk a}c"") éie) clo) (46)
P Vs

Equation (42) thus does not contain the quantities

di af") &), (47)

which remain freely choosable, and their number is the same as the number of first-class

primary constraints.
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VII. Example

As a non-trivial simple example let us consider

1. 1,. . E
L= gqf + —(d1 g2 — q1 d2) — —23 (¢ + q2), E, = const.

2

The Euler-Lagrange equations are

51.1 =“42—qu“ 0=‘§'1—Eo%-

The matrix 82L/8¢;8¢x is

2L\ _ (10
84i dgx)  \0 O

Its eigenvalues and eigenvectors are therefore

We have further
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) 1 1
i gr + =¢2 , P2 = — - q (52)

and

1 1 E,
Hy = (1 - 50)° + 5= +43) . (53)
2 2 2
According to eq. (30) we find
1 1 E ; 1
H= 3/ - 30+ 5@ +a)+dap+ga). (54)
From eq. (49) we have
g2 = -4 - E,q = -E 42 — Eoqu

- where the second step corresponds to eq. (41) - or

E,
e ' (55)

The Hamiltonian written explicitly as a function of the ¢; ’s, p; 's and t is therefore
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1 1 E 1
H = = = = g5)° == (g? A o —— — . 56
) (p1 2 g2)" + 3 (¢ + a2) E, +1 q1 (p2 + 2 q1) (56)
Hamilton’s canonical equations with this H are
B Cnly 1%y O,
@1 = 2‘12,?2— Eo+1ql )
(57)
o 1 _E, SN I DR
P = oQ1+2EO+1t11,P2—2P1 2(12 o 92

The equation for ¢, is identical with the definition of p; in eq. (52). The equation for g3 is
the same as eq. (55), which was derived from the Euler-Lagrange equations. The equation
for p; is identical with the first Euler-Lagrange equation. The i, g2 and p; equations can

be combined into

g, — E, g2 =0

or

g1 — E;q2 = ¢ = const.

The p, equation can then be written as

P2 = — 5@ + ¢
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‘The relation ®; = p; + % ¢ = 0 yields c=0, from which it follows that

él—E0q2:0:

this being the second Euler-Lagrange equation. |

An equivalent expression for H is obtained by using the second of the equations (49)

in the definition equations (52) for p; and p;:

pr = (Eo + G2 ,P2=—--q - (58)

This implies

1 . 1 1 E,
L=+ Dad - tan-2(@rarma), 6

which is numerically identical with eq. (48) and leads to the Euler-Lagrange equations

equivalent to eq. (49):

1, . 1.
(EO+E)QQ=—§‘12“E0‘11 ’

1 . 1: .

—501:(Eo+'2')91_E0(1+E0)qz

The primary Hamiltonian is now
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E,
Hy, = T(Qf + (1 + Eo) q%) : (60)

Since the new Lagrangian has the property 82L/3¢;0qx = 0, we have v, = 1,2 and
therefore

E? ) : 1 . 1
H=g+5@+a)+d (m - (B, + 5)‘12) + 42 (pz + 5 91) , (61)

where again ¢, is given by eq. (49), and gz by eq. (55). In addition to these relations, we

find from eq. (61) the canonical equations

. 1. 1. .

P = — le—EQ:!:(Eo"FZ—)Q:a g
) 1. . 1.
P2 = "Eo(1+Eo)92+(Eo+ E)‘Il o —5‘11

Integrating these equations, we obtain

1 1
pr— (Bo + 3)qa = consty , pz + 341 = consts.

The two constants are to be determined by the two constraints which require them to

be zero.
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Summary

Analyzing the structure of the Euler-Lagrange equations and of the canonical mo-
mentum relations, it was found similar to a certain degree as in Ref. [4] that the N-m
eigenvectors (af-"c") , Vo = m+1, ..., N, corresponding to the zero eigenvalues of the
symmetric N x N matrix 82L/8¢;3¢y play a central role in determining a Hamiltonian

corresponding to a non-standard Lagrangian. Using ®,, = ai-"") (ps — gTL)

= 0
as constraints, secondary and so on constraints do not occur. They appear to have only
a more technical meaning as do the first class primary constraints the number of which
being equal to the number of the freely choosable functions. The main result of the paper
is the closed representation of a Hamiltonian as given by eq. (30) with H, defined in eq.
(2). In addition, it is found that this Hamiltonian is not the only possible one, the reason
being that there is an ambiguity in expressing the canonical momenta as functions of the

gi 's,d; 's and t because the relations af.”") (;? g—q{i - %) = 0 do not contain the g; ’s.
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