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ABSTRACT

The method of function parametrization, developed and applied by H. Wind for fast
data evaluation in high energy physics, is presented in the context of controlled fusion
research. This method relies on statistical analysis of a data base of simulated experi-
ments in order to obtain a functional representation for the intrinsic physical parameters
of a system in terms of the values of the measurements. Some variations on Wind’s orig-
inal procedure are suggested. A specific application for tokamak experiments would be
the determination of certain global parameters of the plasma, characterizing the cur-
rent profile, shape of the cross-section, plasma pressure, and the internal inductance.
The relevant measurements for this application include values of the poloidal field and
flux external to the plasma, and a diamagnetic measurement. These may be combined
with other diagnostics, such as electron-cyclotron emission and laser interferometry, in
order to obtain also density and temperature profiles. There appears to be a capability
for on-line determination of basic physical parameters, in a millisecond timescale on a

minicomputer instead of in seconds on a large mainframe.
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1. INTRODUCTION

The following situation is common in experimental physics: the measurements that
are made in the course of an experiment do not immediately correspond to the physical
parameters that are to be determined, but seem to require for their interpretation
a complicated multidimensional parameter fitting procedure. This is the case with
virtually any diagnostic for which the recorded signals are a nonlinear function of two
or more unknown parameters. Situations occur where the amount of experimental
information that is utilized is not limited by the rate at which measurements can be
made, but more by the rate at which the raw diagnostics can be interpreted. Clearly
then an acceleration of the data evaluation process is desirable.

An important example from controlled fusion research is the determination of plasma
parameters during a discharge. MHD equilibrium of a tokamak plasma, specifically,
is governed by a two-dimensional partial differential equation with some unknown pa-
rameters to describe the current profile. This profile cannot be measured directly, but
may be estimated from measurements of the magnetic field made outside the plasma.
To interpret such measurements with the aid of the physical model then requires an
optimization process in the parameter space, involving repeated solution of the gov-
erning p.d.e. This is an expensive process, and not suitable for on-line monitoring of
the evolution of the system on a millisecond timescale. (MHD equilibrium refers to a
timescale well below 1 ms).

It was recognized by Wind [1], [2], in the context of momentum determination from
spark chamber data, that it may be possible to largely dispense with the physical model,
and instead employ some relatively simple functional representation for the relation
between experimental data and physical parameters. This representation, which gives
the estimated physical parameters as an explicit function of the measurements, is found
by analysis of a large data set of simulated experiments. A physical model is required
in order to generate the data set, but it need not be invoked to find a good functional
representation, nor to analyze subsequently the real measurements.

Wind’s method of experimental data evaluation through function parametrization
consists of three stages. (1) A code is written to model the experiment and the relevant
diagnostics. This code is used to generate a data base of simulated states of the system,
in which each state is represented by (at least) the values of the physical parameters and
of the associated measurements. (2) This data base is made the object of a statistical
analysis, involving techniques for dimension reduction and multiple regression, with
the aim to provide a relatively simple function expressing the physical parameters in
terms of the measurements. (3) The resulting function is then employed for the fast
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interpretation of real measurements.

In addition to supplying a function for the interpretation of ‘good’ data, the analysis
also yields criteria with which to test whether actual measurements are consistent with
the model that was used to generate the data base, and it yields a procedure to au-
tomatically correct erroneous measurements in a near-optimal manner. A substantial
effort may be required to generate and analyse the data base, and for the procedure
to be economical it is essential that many measurements will be made with the same
experimental setup. In such a case the ultimate gain in diagnostic capabilities can be
very large.

Function parametrization has been used successfully on several experiments in high
energy physics (see references in [2]), but it seems not to have become known outside
that field. Our purpose with this report is to present this method with a view to exper-
imental data evaluation in fusion research. In section 2 an outline is given of function
parametrization as it has been applied in high energy physics. Section 3 contains a
discussion of some variations on the original procedure. In section 4 we discuss possible
applications in tokamak physics, in particular the rapid determination of the magnetic
configuration.

This report is addressed primarily to plasma physicists, although the general presen-
tation in sections 2 and 3 could be of interest to a wider audience. We attempted to
make that presentation reasonably self-contained without assuming familiarity with the

methods of multivariate statistical analysis.




2. FUNCTION PARAMETRIZATION — OUTLINE OF WIND’'S METHODS

The function parametrization process as it has been employed in high energy physics

will now be outlined in more precise terms.

2.1. Preliminaries. A classical physical system is considered, of which P denotes a
typical state. The system may have any number of degrees of freedom, but interest will
be restricted to a (partial) characterization by n intrinsic real parameters, represented
collectively by a point p € R™. ng of these parameters will be independent. In the
experimental situation p is to be estimated from the readings of m measurements (m >
no; in many cases m 3> no), represented by a point q € R™. It is assumed that p is
completely specified by P, but that q may be a stochastic function of P, the stochasticity
being due to random errors in the measurement process. We will write p = p(P) and
q = q(P).

The aim of the function parametrization is to obtain some relatively simple! function
F : R™ — R", such that for any state P the associated p and q satisfy p = F(q) +e
with a sufficiently small error term e. (In the interpretation of experimental data,
the parameters pe,s may then be estimated from the measurements qobs by setting
Pest = F(Qoss))- F is to be found by analysis of a data base containing the values of the
parameters p, and of the measurements q, for N simulated states Po (1 < a < N).
This is a problem of function fitting over scattered data in the high-dimensional space
R™, for which techniques from multivariate statistical analysis are appropriate. To a
statistician the q, are the ‘conditions’, the p, are the ‘responses’,and Fisa regression.
(The terminology of conditions and responses is very unnatural in the present context,
and will not be employed in this paper). For the applications that we have in mind,
m ~ 100, ng < 10, and N ~ 10%.

2.2. The data base. In a preparatory stage a code G is employed to generate a data
base. This code must be suited to compute possible states of the physical system over
the whole of the system’s regime, and must also contain a model for the measurements.
G will take certain numerically convenient parameters (perhaps the components of p)
as input, and produce p and q as results. The input parameters are varied in a random
or a systematic fashion, and for each successful calculation o the values p, and qq
are saved. As the subsequent automatic analysis will only detect dependencies which
are reflected in the data base, one must ensure that every parameter or combination of
parameters that can vary in the actual experiment is also varied when generating these
data.

1based on low-order polynomials in only a few linear combinations of the components of q.
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It is advisable to store in the data base ‘pure’ values of the pseudo-measurements,
and not to model at this stage the random errors inherent in the real diagnostics. Some
considerations related to measurement errors are given in section 3.3.

It need hardly be stressed that the result of the function parametrization can never
be expected to improve upon the physical model that is embodied in G, nor can it be
employed to find the values of physical parameters that are not reasonably well reflected
in the measurements. The traditional least squares method of data interpretation would
actually rely on a code such as G, and attempt in an iterative procedure to optimize
the free parameters for minimal deviation between simulated and actual measurements.
With function parametrization the aim is to obtain a direct and much simpler connection

between measurements and physical parameters, without losing too much accuracy.

2.3. Transformation of the measurements. Since the dimensionality m of the
space of the measurements lies between several tens and several hundred in many cases,
and since a linear fitting function (of the form p = po + Aq) is not expected to suffice,
the dimensionality of the space of trial functions with which the parameters will be fitted

can be very large. A polynomial model of degree [, for instance, will have n(’"f’), or

~ nm! /1! degrees of freedom. It is neccesary to first reduce the number of independent
variables by means of a transformation to a lower-dimensional space.

A second, and also very important, aim for this transformation of variables must be
to eliminate or reduce multicollinearity (near linear dependencies) between the data
points, and thus to improve the conditioning of the regression problem (3, ch. 8]. Mul-
ticollinearity is likely to be present whenever m > ng; specific causes may be some
underlying smoothness in the data, or any explicit physical constraint that connects
different measurements.

Wind uses a principal component analysis (PCA) [4, ch. 8] for the dimension reduction
and transformation to independence, and that method will be outlined here. In section
3.1 the use of canonical correlation analysis (CCA) (4, ch. 10] will be suggested as an
alternative. The reader is referred also to [3, ch. 8] and to [5, ch. 43] for a discussion of
these transformations.

From the N suitably scaled pseudo-measurements q,, each of which is a point in R™,

the sample mean, § := N~} qq, and the m X m sample dispersion matrix,

Si =N ZQ(Qa - d)(qa — )7,

are calculated. S;; is symmetric and positive semi-definite. An eigenanalysis yields

m eigenvalues /\f > e 2 A?n > 0, with corresponding orthonormal eigenvectors
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ai,...,a,,. Any measurement vector ¢ may be resolved along these eigenvectors to
obtain a set of transformed measurements, z; := a; - (@ — ). These transformed mea-
surements are linearly independent within the sample, have zero mean, and variance
As.

One of the aims, the reduction of multicollinearity, is thereby achieved, but, if all m
components z; are retained, the dimensionality of the problem is not reduced. The credo
of PCA is that most information will be contained in the first few ‘principal components’
(z:)1<i<s, where s < m, and preferably s < m. The associated first s eigenvectors a;
are called the ‘significant variables’. The principal component transformation is the
mapping R™ — R* defined by x = AT - (q — §), where A is the matrix which has
columns a; (1 <1 < s).

Let us briefly discuss the assumptions underlying the use of PCA. The basic assump-
tion is that those linear! combinations of the measurements that display the largest
relative variance, are also best suited for the interpretation of the data. This requires
that the measurements have been properly scaled; beyond that it implies a requirement
that the diagnostics are all relevant to the data interpretation, and that variations in any
of the physical parameters are well reflected as variations in the measurements. These
assumptions may correspond to the experimentalist’s aims; in practice, though, signif-
icant information may well be concealed in linear combinations of the measurements
that show relatively little variation. A preliminary linear or nonlinear transformation of
variables based on physical insight can then be beneficial. PCA is invariant only under
orthogonal transformations; it is not invariant under scaling of variables, or under more
general linear transformations.

If no physical parameters each make a distinguishable contribution to the measure-
ments, q, then at least the first no eigenvalues of 8y, will be non-zero. The subsequent
eigenvalues need not all vanish (they would vanish if there were a linear relation be-
tween p and q), but they are expected to decrease to much smaller values. This property
can be employed to test actual measurements for consistency with the model that was
used to generate the data base: projecting an actual measurement vector on the sub-
space spanned by the least significant variables, one expects to obtain accordingly small
components z;. Any measurement in which one of the ‘insignificant’ z; turns out sub-
stantially larger in magnitude than the corresponding variance A; is suspect. The same
principle can be employed to automatically supply a missing component gx in an ac-

tual measurement; one simply sets gx to that value for which the sum of squares of

1 ‘affine’ would be more precise here. We always understand the adjective ‘linear’ to allow also a
constant term.




the scaled insignificant components, z;/],, is minimized. An interesting application to

pattern recognition is described in [2a].

2.4. Transformation in parameter space. A procedure similar to the one outlined
above is applied to obtain a transformation in parameter space, p — y. This transfor-
mation should usually be invertible; the aim is not to reduce the dimensionality, but
only to eliminate multicollinearity among the parameters that are to be fitted.

One now defines the sample mean of the parameters, p := N=! )" p,, and the nx n

sample dispersion matrix,
Seg = N1 Ea(pa = ii)(pa = f’)Ts

and performs an eigenanalysis on So;. This yields n eigenvalues, p? > ... > u2 >

0, with orthonormal eigenvectors by ...b,,. The transformed parameters y are then

defined by y := BT - (p — p), where B is the matrix which has columns b; (1 < 7 < n).

2.6. Regression analysis. Having defined the transformations ¢ — x and p — y it
is next neccesary to face the task of fitting the, in general nonlinear, relation between
x and y. The problem has been simplified by the dimension reduction obtained with
the transformation q — x, and it is expected to be better conditioned through the
elimination of multicollinearity.

It is desired to find for each component y; a regression, y; = f;(x)+¢;, to fit the data
(Xa)¥Ya)i<a<n. These n regressions may be carried out independent of one another,
so from here on in this section the index ; is discarded and only a single variable y is

considered. Wind suggests to use a polynomial model of the form

y=2 cx- [[or(zi/ri) +e
k

=1

The multi-index k has s components k,, ..., k, in the nonnegative integers, (cx )k are the
unknown regression coefficients, ($¢)¢>0 is some family of polynomials, r; is a suitable
scaling factor for the variable z;, and ¢ is the error term. Wind employs Chebyshev
polynomials and sets r; := max, |Zq4].

An upper bound on some norm of k must be supplied in order to make the model
finite, but for a reasonable bound the model would still have very many terms. This leads
one to employ with the above model some form of subset regression, the objective being
to retain in the final expression only the terms which make a significant contribution
to the goodness-of-fit. A variety of algorithms exists for deciding which terms to retain
and which to discard; see for instance 3, ch. 7], [8, ch. 6], or [7, ch. 12]. Wind employs
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a simple form of forward selection; his procedure is described in [1] and in [2b], and is
also available as a published algorithm [8b).
At this point we have obtained the desired function parametrization, p = F(q) + e,

in the following form:
p=Pp+B f(AT -(q—-g)) +e

with G and A defined in section 2.3, p and B defined in 2.4, and f defined in this section.
2.6. Use of a priori knowledge. From knowledge of the physics of the system it may

be possible to provide some a priori approximation F, to F. If F is sufficiently easy
to evaluate then instead of fitting F to (qa,Pa) 1<a<n one could fit F; to the residuals
P, := Pa — Fo(qa), and define F := Fo +F,. The trivial case Fy := 0 is allowed in this
context, and this should probably be used if one would only be able to provide a linear
Fy, because the linear terms in the fit are easily found by the automatic procedure
anyway (particularly if CCA is employed for the dimension reduction; cf. section 3.1).

A priori knowledge should certainly be employed to choose any initial transformation
of the measurements and the parameters (as already discussed in sect. 2.3). The stan-
dard automatic analysis is restricted to a polynomial model for p in terms of q, and

this may well be more effective with one representation than with another.

2.7. Conclusion. This completes our brief presentation of Wind’s construction of
a function parametrization. The stages in sections 2.3 and 2.4 are fairly straightfor-
ward, and the difficulty seems to lie mainly with the polynomial fit of section 2.5. The
objective is to obtain small residuals ||po — F(qa)|| for an acceptably small number
of terms in the polynomial expansion, and it cannot be guaranteed a priori that this
objective will be attained when the procedure is tried on the data base for a new experi-
ment. Certainly the procedure should not be expected to work ‘automatically’; physical
knowledge must be employed to select a good representation for the measurements and
the parameters, and should also be the guide when more complicated models than the

polynomial regression of section 2.5 seem to be required.




3. FUNCTION PARAMETRIZATION — VARIATIONS

Function parametrization in the form as presented in section 2 has been used suc-
cessfully in high energy physics. However, ‘fitting equations to data’ is a rich field, as is
exhibited clearly in [9], and different methods should be tried in order to obtain optimal

results. Some alternative approaches are suggested in this section.

3.1. Selection of the significant variables. In Wind’s approach, employing princi-
pal component analysis, the significant variables are choosen as the first s eigenvectors
of the dispersion matrix, S;; := N=!' Y _(qa — @)(qa — @)T. The underlying assump-
tion is that good experimental design and proper scaling of the components of q has
ensured that those linear combinations which display the largest variance are also the
most suited for the interpretation of the measurements. In fact, what is wanted of
the significant variables a; (1 < 1 < s) is that the physical parameters p can be well
represented as a function of the transformed measurements x € R® with components
z; '= a; - (a4 — @), with s much less than m.

This indicates that the most appropriate statistical technique for dimension reduction
is not principal component analysis, but canonical correlation analysis. In textbooks
on multivariate analysis and regression analysis one finds that both techniques are used
in practice, although PCA is much more popular. See e.g. [3, 8.5], 4, 8.8], [4, exercise
10.2.8] [5, 43.21], or [6, 6.9].

With canonical correlation analysis, two transformations, x = AT - (q — ) and
y = BT .(p—p), are obtained together. A and B are mxs and nxs matrices respectively,
with columns a; and b; (1 <1 < s). a; and b, are choosen so that z; = a, - (q — q)
and y; = by - (p — P) have the largest possible linear correlation within the sample
(QasPa)i<a<n. Y1 is therefore that linear function of the parameters that is best
predicted by a linear function of the measurements, and z, is the corresponding linear
function of the measurements. Generally, each pair (a;, b;) is choosen to maximize the
correlation between z; and y;, subject to a; being linearly uncorrelated with a, ... a4,
and b, being linearly uncorrelated with by ...b;_;. We refer to (4, ch. 10] for the
mathematical development.

One would expect CCA to be a better technique for dimension reduction than PCA
in those cases where the relation between measurements and physical parameters is
approximately linear. CCA selects those linear transformations of the measurements
that provide the best prediction for some linear transformation of the physical param-
eters, and disregards combinations which may show a large variance, but are irrelevant
to the data interpretation. On the other hand, if a certain linear combination of the
measurements enters only quadratically in the regression, then CCA would not select
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this combination, although it may be important, and could be found by PCA. So in any
case one does well to consider carefully the underlying physics, and also to cross-check
the results of a canonical correlation analysis with the aid of a PCA.

One further remark related to CCA is in order: For the present application it will
usually be advisable to employ some form of ridge analysis 3, ch. 8], [4, ch. 10], as the
data may be highly co-linear

3.2. Choice of polynomial model. With reference to the general polynomial model
of section 2.5, y = 3., cx - [Ii=; #&.(zi/ri) + €, it may be enquired whether there is
any reason to prefer one family of polynomials (¢¢)¢>0 to another, choosing among, say,
monomials, Chebyshev, Legendre, and Hermite polynomials.

In view of the fact that the first £ elements of any family of interest all span the same
space, Wind’s preference for Chebyshev polynomials is justified only if one is able to
choose the transformed measurements x, at an appropriate (Chebyshev) set of points.
In that case the polynomial model becomes exactly orthogonal, which is a desirable
property with regression analysis. Orthogonality implies that all coefficients cx can be
determined independent of one another, and that the choice of whether or not to retain
a particular term has no influence on the coefficients of the other terms in the series.

However, it is only in special cases that one has the freedom to choose the x4 at a
Chebyshev set of points. In the standard case discussed above the x, are obtained by a
transformation of the q, in the data base, and already the q, are irregularly distributed.
The consideration remains that near-orthogonality is a desirable property, and that the
correlations between the separate terms in the regression function should be minimized.
For that reason we propose to use Hermite polynomials and to set r; := ;. Within the
sample the z; are linearly uncorrelated with zero mean and variance A;, so it is sound
to employ a model which is exactly orthogonal over independent normal variables with

the same mean and variance. The Hermite polynomial model has that property.

3.3. Errors in variables. In applications of function parametrization, unlike in the
standard textbook regression problem, the ‘independent’ variables q are not known
precisely, but are measured with random deviations. This situation is commonly referred
to as ‘errors in variables’. Consideration must be given to the effect of these errors on the
accuracy of the constructed function F, and also to ways in which F may be improved
in the light of this effect.

In the first place it is important to be aware of a circumstance under which errors in
variables completely invalidate the original construction of the function parameteriza-
tion. This happens whenever there exists some particular linear combination § of the

transformed measurements z;, for which the variation in ¢ due to random errors in q
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dominates the intrinsic variation that is due to the spread of the physical parameters
represented in the data base. A careful application of PCA (proper scaling of variables,
and not choosing s too large) or of CCA (proper choice of ridge technique) should
prevent this circumstance.

Next we mention an a posteriori technique to correct F for the bias introduced by er-
rors in variables. This is the bootstrap [10], which was suggested to us by H.N. Linssen.

For every (Qa,Pa) in the data base one constructs a sample of pseudo-measurements

qg,k}, randomly distributed around q4 according to the model for the errors in the mea-
surements. The errors eg‘) = Pa F(qf,k)) are computed, and their mean &, and

dispersion o, are derived. Since F is in general nonlinear, the errors in q contribute
both to ¢ and to & The bootstrap technique is then to recompute F in order to com-
pensate as well as is possible for the bias . For the present application this would be

done by recomputing the coefficients ¢y in the polynomial fit of section 2.5.

3.4. Miscellaneous remarks. It appears as though function parametrization can be
tried, and may well be successful, using the standard techniques described in this and
the previous section, but that the efforts of a competent statistician could be of much
help. (The present authors are not statisticians).

One issue to be addressed is the use of robust estimators for the means, @ and p, the
dispersion matrices, S;; and Sg3, and the correlation matrix, S;, (which was implicitely
present in section 3.1). Even if normally distributed random parameter values are
employed to generate the data base, the nonlinearities in the physics (without which
there would be no problem in the first place) may cause the actual values p, and q4 to
depart very much from normality.

The use of robust (but biased) estimators for the regression coefficients cx may be
attractive in conjunction with the bootstrap technique described in section 3.3.

A third issue is the use of other than polynomial models for the regression, e.g. see
[11] for a very different approach.
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4. DETERMINATION OF A TOKAMAK PLASMA CONFIGURATION —-
AN APPLICATION TO FUSION RESEARCH

4.1. Outline. Determination of position and profile of the plasma column in a toka-
mak discharge seems a particularly indicated application of function parametrization.
Reasons for this are:

— A generally accepted and verified physical model exists (the axisymmetric MHD
equilibrium equations [12]), making the connection between unknown intrinsic
plasma parameters, externally applied fields and magnetic measurements a well
defined mathematical problem [13]-[16];

— Knowledge of the position and the profile of the plasma column is the basis for
interpretation of practically all other diagnostics. Their identification has therefore
to be made at many instants in time, and requires an efficient algorithm. Ultimate
aim is in fact on-line real-time analysis with use of the derived information for
feedback plasma control;

- Function parametrization allows to connect information from different types of
diagnostics: measurements sensitive to the interior structure of flux surfaces can

thus be combined with field and flux measurements external to the plasma.

An initial application of function parametrization would be the determination of only
a set of global parameters that describe the magnetic configuration (plasma current,
position, shape, pressure, and internal inductance), using only the magnetic signals
measured outside the plasma. In a more ambitious setup one would wish to determine
in a consistent fashion the current, density, and temperature profiles of the plasma,
employing an extended set of diagnostics. The two proposals are elaborated below.

4.2. Equilibrium determination from magnetic signals. As a first step we con-
sider only magnetic signals measured outside the plasma. In particular we consider
the situation in JET, where in many points along two adjacent surfaces enclosing the
toroidal plasma column the poloidal flux function and the tangential component of the
poloidal field are measured, and also the change in the total toroidal flux due to cur-
rents in the plasma is known. Fast determination of the plasma surface is particularly
important in this experiment in view of the variety of possible plasma cross-sections
and of the positional instability introduced by the shaping coils and the presence of the
iron core.

The relevant measurements would thus be the signals of the 14 poloidal flux loops,
the 18 poloidal field coils and one toroidal flux loop, whereas the physical parameters

to be determined would be

I (toroidal plasma current)
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ro (major radius of a suitably defined plasma center)

Zo (vertical displacement of the plasma center)
a (horizontal half-diameter of plasma column)
b/a (elongation of plasma column)
¥ (triangularity of plasma column)
B (poloidal 3)
¢ (internal inductance)

The pseudo-experiments to be carried out in preparation for the statistical analysis
consist of equilibrium calculations using some fast code for computing free-boundary
equilibria. The free parameters of the code are varied in order to cover the whole op-
erating regime of the JET apparatus, and for each calculated equilibrium the physical
parameters and the fictitious flux and field measurements are recorded. The dimension-
ality of the space to be spanned by these calculations is somewhat reduced by the fact
that the problem (formulated in terms of equilibrium calculations) is exactly linear in I;
and that the position of the plasma (o, o), shape of the column (b/a, #) and horizontal
half-diameter a are not independent: definiticn of the plasma boundary through con-
tact with the limiter constitutes one relation among these 5 parameters. Nevertheless, 6
truly independent parameters remain to be varied, mandating a Monte Carlo approach
to the selection of the combinations for which actual calculations have to be carried
out. Equilibrium calculations using a Buneman solver on a 64 x 64 mesh presently
require about 300 ms of Cray-1 CPU time per free boundary equilibrium, so that ~ 104
pseudo-experiments could be carried out per hr of CPU time if overhead operations are
kept sufficiently low.

The significant variables in the 33-dimensional space of measurements would be auto-
matically determined by the analysis of the pseudo-measurements; it is however a priori
clear on physical grounds that they will be closely related to the lower order Fourier
components of the flux and field measurements. The formal analysis will give the ex-
act weighting functions for the contribution of each signal to each of the significant
variables.

For this application it is known that I; = § B - dl, so the formal analysis should deliver
very nearly a linear expression for I; in terms of the measurements of the tangential
component of the magnetic field. The analysis given in [156] and [16] shows that, for a
suitable definition of ro and zp, there is a linear expression for r2I; and 2z,J; in terms
of the measurements; the latter parameter combinations are then the ones which one
should wish to obtain through function parametrization. (One will probably wish to

obtain several different characterizations of the plasma position: by moments of the
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current distribution; as the center of the outermost flux surface; and as the position of
the magnetic axis. An exact expression is available only for the first characterization).

The same references show that B; and ¢ should be replaced, for the function
parametrization, by 8717 and &IJ?, and that the first approximation will be quadratic
in the measured magnetic field values.

4.3. Use of additional signals. The limited degree to which information about the
intrinsic plasma parameters and the structure of the interior flux surfaces can be gained
from external magnetic measurements suggests an attempt to combine such data with
other diagnostics.

In particular it is already envisaged to derive the interior flux surface structure as con-
tours of constant 7., from electron-cyclotron emission and Thomson-scattering measure-
ments. Ideally one would like however to utilize for this simultaneously all information
about the equilibrium available, and impose also the restriction that the flux-surface
structure has to be consistent with solutions to the MHD equilibrium equations. A
possible way to do this could be the following.

To the set of measurements is added some representation of the T, values as obtained

with these additional diagnostics. At the same time we select an appropriate basis of
functions, (t), in the normalized flux coordinate t:l; = (¢ — Yedge)/(Vazis — Yedge),

and parameterize the temperature profile, Te(tz) = E'r 7,ty. We then employ function
parametrization to express all the previous parameters and the new parameters 7, in
terms of the complete set of measurements. Distinguishing feature of this approach
is that we use all information about the flux surface structure available, in order to
obtain a profile for the temperature that is also consistent with the MHD equilibrium
equations.

An additional set of signals to be considered for inclusion in the function parametriza-
tion would be Faraday rotation measurements as carried out on TEXTOR [17]. These
measurements will in general be too few in number to allow satisfactory interpretation
in isolation, particularly at high § and/or for non-circular cross sections, and function
parametrization may be the most suitable means by which to extract the information

that is contained in these data.
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5. CONCLUSIONS

We have outlined the method of function parametrization for experimental data
evaluation as it has been used previously, and suggested several variations. Function
parametrization may be an effective tool in plasma physics as well as in high energy
physics. A particularly important application for tokamak experiments would be the
rapid determination of global parameters characterizing the plasma current, position,
shape, pressure, and internal inductance.

An investigation along these lines is in progress at IPP.
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