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Abstract

This report describes the design of a LIDAR (Light Detection and

Ranging ) Thomson scattering system.

The time-resolved measurement of the backscattered light from a
sub-nanosecond laser enables spatial resolution via time-of-flight
measurements. A spatial resolution of 12 cm is achieved using an

iodine laser (15 J at 657 nm, 300 ps pulse duration) in combination
with microchannelplate photomultipliers (response time 400 ps FWHM)

and a 1 GHz oscilloscope.

The statistical errors of the electron temperature and density measure-
ments are calculated. For a five channel spectrometer a dynamic range
(defined by AT /T, € 10% at n_ = 1 x 10"3 cm™3) of 0.7 keV to 15 kev
can be achieved. The minimum statistical errors.ATe/Te = 4% and

Ane/ne = 2.6% are reached at 5 keV.

Several laser input and collection optics for measuring vertical spatial
profiles over a 2.5 m chord length are =xamined and compared. A spatial
scanning option enabling measurements at the inner part of the plasma
cross section is considered. Suppression of stray light is accomplished
by means of suitable stops. Alignment and calibration methods are dis-
cussed.

With a small, frequency-doubled test laser system the feasibility of

1 Hz operation over a sequence of 10 shots has been demonstrated success-
fully. The design of a 15 J frequency-doubled laser system is considered
in detail.

The performance of a high-speed MCP photomultiplier was investigated
experimentally. Risetime, saturation recovery and gating properties

were determined. The results show that the detector is well suited

for the intended use.

The stray light level to be expected was determined in a full-scale




optical set-up using a low-energy, frequency-doubled iodine laser.
It is shown that the stray light will constitute no problem for the
Thomson scattering experiments due to the good gating properties of
the detector. Even Rayleigh scattering measurements for absolute

calibration at 1 Torr hydrogen filling pressure should be possible.

In summary, the design study shows that the proposed LIDAR Thomson

scattering technique is applicable to JET and to future large fusion
devices.
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1 TINTRODUCTION

LIDAR Thomson scattering is a laser backscatter technique proposed
recently /1/. It uses a time-of-flight method to measure spatial
profiles along the laser beam, For this purpose a high energy,
subnanosecond laser and a sensitive highspeed detection technology
are needed.,

The LIDAR scattering method seems promising with respect to the

following points of view:

1. Simple optics. Only a small number of optical components is
located in the torus hall,

2. Only a small window is needed on the torus vessel,

3. Plasma background radiation is negligible for the short obser-
vation times and does not deteriorate the measurements.,

4, Stable alignment. No feedback alignment is required,

This study investigates whether a LIDAR Thomson scattering tech-
nigque can be applied to measure electron temperature and density
profiles on JET.

First, we establish what results can be obtained using a 15 J / 300
ps frequency doubled iodine laser pulse (A = 657 mm). The statisti-
cal errors to be expected for the electron temperature and density
are calculated., The spatial resolution along the laser beam is

obtained from simple arguments as well as from a numerical simula-

tion.

Second, we describe in detail an optical laser input and scattered
light collection system whose parameters are consistent with the
above considerations. This optics is designed to measure a vertical
spatial chord of JET. The alignment and stability problems of the
optical system are discussed and calibration techniques are inve-

stigated.

Third, an iodine laser system is described which produces laser

pulses with the required parameters. The operation of such an exi-
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sting laser system at 1 Hz repetition rate is investigated. Main-

tenance and lifetime problems are discussed.

Fourth, the properties of a high-speed photomultiplier (risetime
less than 200 ps) are examined. Especially, it is investigated how
to gate this detector, Gating of the photomultiplier is necessary
since an intense stray light pulse in advance of the measuring

signal is expected for a backscatter set-up.

Fifth, the level of stray light is measured in a full scale set-up
of the proposed input and collection optics.




2 _SUMMARY OF RESULTS

The results of the investigations conducted under contract JE
3/9009 show that the proposed LIDAR Thomson scattering diagnostic
is technically feasible on JET. In the following, the results are
summarized briefly under the headings of the sections where the
investigations are described in detail.

An analytical treatment yields that at n_ = 1 x 1013 cm™3 and T, =
5 keV a statistical error of + 4 % is to be expected for the elec-
tron temperature. The dynamic range of the described 5-channel
filter polychromator (defined by errors < * 10 %) is about 0.7 kev
to 15 keVv. It can be shifted by changing the spectral filters. The
corresponding statistical errors of the electron density measure-

ment are 2.6 % at 5 kev, 10 % at 0.5 kev and 5 % at 20 kevV.

The errors of both the electron temperature and the density will

improve approximately with the square root of the density.

A simple consideration shows that the spatial resolution Al is

given by Al = %(TL + Tppr.)r where T,  is the laser pulse duration
and THET is the response time of the detection system. For our case
a resolution of 13 cm is obtained., Thus a single laser shot yields
a radial profile consisting of about 16 measurements. A numerical
simulation taking a sin? - shaped laser pulse (FWHM = 300 ps) and
an available 1 GHz-detection system confirms this result. It shows
in addition that the spatial resolution can be improved by using

numerical unfolding techniques.

Different laser input and collection optics for measuring vertical

spatial profiles over a 2.5 m chord length are examined and compa-
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red. The optical systems are identical with respect to solid angle
of collection and transmission, parameters being used to evaluate
the expected error bars, Each optical system requires two 10 cm
dia. ducts through the ceiling. These ducts are inclined to ease
radiological shielding. Laser and detection system are located in
the roof laboratory.

The optical solution which is favourable from the point of view of
its remote handling capability features a telescopic collection
optics mounted to the limbs of the magnetic circuit. A total number
of 3 optical components to be aligned individually will be located
in the torus hall.

LIDAR scattering in principle offers the possibility to scan the
plasma with the laser beam without the need of realigning the col-
lection optics., This could give access to the inner part of the
plasma. However, an experimental test is still needed to check the
impurity production by the laser pulse hitting a beam dump on the
inner wall of the torus vessel.

A simple procedure for first alignment is described. Due to the

rather large tolerances of the alignment precision, no feedback

realignment is necessary.

Calibration

At the stray light level expected on the basis of measurements on a
full-scale optical set-up and taking advantage of the measured
gating properties of the detector, Rayleigh scattering will be one
feasible calibration technique. Changes of the spectral transmis-
sion of the window are included in the calibration of the relative
sensitivity of the spectral channels by viewing a blackbody light

source through the vessel. Comparison with the electron line den-
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sity obtained from DCN interferometry will constitute a further
calibration method.

With a small test laser consisting of a water-cooled mode-locked
oscillator, a pulse selecting system, one air-cooled amplifier and
a frequency doubling KD*P crystal the feasibility of a 1 Hz-opera-
tion extending over a sequence of 10 shots could be successfully
demonstrated. At 2w (657 nm) the pulse had an energy of 40 mJ and a
duration of 950 ps whereby a conversion efficiency of 45 % was
achieved. According to our present experience a system meeting the
required specifications of 10 pulses with 1 Hz repetition rate and
15 J/0.3 ns per pulse at 657 nm can be confidentially built based
upon the technology and design considerations employed in the small
test laser,.

A 2- to 3- Hz operation seems feasible if the flow velocity of the
laser medium is correspondingly increased and all amplifier quartz
tubes are water-cooled. Eventually the flashlamps have also to be
gas—-cooled.

The projected laser system can be operated by a single technician.

The envisaged service times and their frequency are such that they
will not interfere with the routine operation of the diagnostic

system,

Detector Tests

A high-speed microchannelplate photomultiplier with a gain of 10°
was tested experimentally. A risetime of 180 ps was measured. The
FWHM response time is less than 400 ps (thus rendering the 1 GHz
oscilloscope the bandwidth limiting component of the detection
‘system).

Saturating the detector by overloading does not affect the measure-

ments at the next laser pulse (at 1 Hz repetition rate).




The gating tests show that light pulses containing up to 10°
photons within the response time of the detector can be tolerated
18 ns in front of the measuring signal. This time interval corre-
sponds to the time lapse between the stray light pulse from the

entrance window and the scattering signal from the plasma boundary}

Since the level of stray light cannot be predicted reliably, measu-
rements were performed on a full-scale optical set-up using a fre-
quency doubled 1 ns iodine laser. The measurements yield that the
entrance window will cause ~ 2 x 10!0 stray light photons incident

on the detector in case of the investigated optical system.,




3 DESIGN CONSIDERATIONS

3.1 Statistical Errors of Electron Temperature and Density

3.1.1 Method of evaluation

In order to facilitate a check of the calculated statistical errors
we have chosen an analytical method for their evaluation. With this
analytical procedure the error of the measurement of Te is conside-
red first. For this purpose the n signals from the n spectral chan-
nels are used to perform n-1 independent temperature measurements
by using the two channel ratio method /2,3/. The error propagation
in this method can be treated very easily. From the calculated
statistical errors of the n-1 independent measurements the error of

the mean is then obtained in the usual way.

Second, the error of the electron density measurement is treated.

For this purpose the ratio R of the number N of scattered photons
within the spectral range of detection to the number Ntot of scat-
terede photons within the whole spectrum is calculated as a func-
tion of the electron temperature. The uncertainty of the factor R
is calculated from the statistical error of the electron tempera-
ture. Then the number of scattered photons within the spectral
range of detection is obtained by summing up the no. of photoelec-
trons within the spectral channels, weighted with the corresponding
quantum efficiency of the detector. The error of this quantity is
obtained from the errors of the photoelectron numbers. Finally the
total number of scattered photons (the measure of the electron
density) and its error is calculated taking into account the cor-
rection factor R and its error.
In detail the procedure is as follows:
1) The spectral channels are chosen,
2) The expected number n? of background photoelectrons in each
spectral channel i is calculated for parabolic plasma profiles

and given central density and temperature.
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3) The number n? of photoelectrons due to scattered light is calcu-
lated for each spectral channel i as a function of the electron
temperature.

4) The results for the 5 spectral channels are used to calculate
the 10 possible ratios ni/n% as a function of Te'

5) The errors of the numbers ny at the photocathode of the detector
(photomultiplier or streak camera + image intensifier) are given

by the inverse of the corresponding SNR

22t m((SNRy) = Dbl
s s
n. n;

L t

6) At the output of the detector the SNR will be deteriorated by
the excess noise of the amplification process. This effect is

described by the excess noise factor which is defined here as

P o= SNRGyrpUT
SNR- ATHODE
. Thus
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7) These errors propagate to the rations nk/ni as
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8) The error of ni/ni propagates to the electron temperature when
using the two channel ratio method and results in an electron

temperature error of

0T, $
Tl

AT, -
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9) From the obtained 10 values Te - ATe those 4 with the lowest
errors ATe are chosen which are evaluated from independent
: S, S
ratios nk/ni.
10) The errors of these 4 independent sample measurements yield an
error of the mean given by /4/

z 4
AT, U= ' —
)
=1 ATe
11) The ration of detectable photons to the number of photons con-

tained within the whole spectrum is calculated (see Sec. 3.1.4)

&
f(&-ﬂ\S(ﬂdé
= £

R(T)= £
f({M)S(é) dé

12) The error of the electron temperature determined by steps 1) to

10) results in an error

AR(T,)= CL AT,
07

13) The numbers Ni of scattered photons contained in the spectral
channels are summed up assuming an average quantum efficiency

of each spectral channel

3
n-

N._.Z .
l ?;
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The error of the sum is

o fZ(ET ]

14) The number Ntot of photons contained in the whole spectrum (the

measure of the electron density) is given by

N

Niot = R(Te)

and its error by

e e

e 2y

A&ot

15) Thus finally

AN (1, n)= EEZ(A"?/?;): . %(n)-an(m 2
e (Z(n¥/n))* R0

v

3.1.2 Set of parameters

The statistical errors of the measurement calculated in the follo-

wing are obtained for the parameters:

Laser energy at 6576 A (2uw) 15 J

Laser beam diameter 7.5 cm

Laser beam divergence 5 x diffraction limit
Laser pulse duration 300 ps

Focal length of focusing lens 840 cm

Focal spot location 85 cm above equatorial plane
Focal length of collection optics 420 cm

(surrounding the focusing lens)




Diameter of collection optics 25 cm outer dia.
7.5 cm inner dia.

Spatial chord length 2.5 m
(40 cm below equatorial plane

to upper plasma edge)

Resulting observed plasma volume v = %-52 cm2 x 420 cm
(stop diameter chosen to allow

collection of scattered light from

the whole spatial chord length

without vignetting)

Resulting solid angle for d90=5.22x10‘“ sr
observation of plasma centre

Transmission of collection optics T = 0.1

No polarizer used in the detection optics

Spectral channels I 6247 A - 6027 A
11 6027 — {55817
III 5587 - 5037
v 5037 - 4487
\' 4487 - 3937
Detector quantum efficiency S 20
Excess noise factor of detection system F=1.8
Bandwidth of detection system 1l Ghz + 1t = 600 ps
Resulting length of spatial channel , L =13 cm
Electron density profile parabolic
= e gk A0 =
N, = n_(1-()%), rg= 2.1 m
o
Electron temperature profile parabolic
o 3
= oy
T = To(1-(57)2)
o
Plasma central density 1 x 1013 cm—3
Plasma central temperature 5 kev

Plasma radiation 100 x pure hydrogen bremsstrahlung
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3.1.3 Plasma Radiation

Assuming parabolic profiles of electron density and temperature the

spatial profile of the emission coefficient reads

rz\3/2
&y (1) & (0N (2Y)

For calculating the number of background photoelectrons the small
variation of solid angle of collection along the spatial chord has
been neglected. The gquantum efficiency n is assumed to be constant
within the wavelength interval AX of the spectral channel centred
at A. Thus

5
0= 100 p ()Y 42, 82 iﬁb—g—) [@-(Z)) dr

A D

which yields the numbers given in Table 3.I. In the mean time the
plasma radiation from JET was measured to be 5 x 10!l photons

/cm?2/s/sr/mm at 524 nm, This is ~ 7 times less than in this esti-

mate.
Spectral channel Tg = 1 kevV Tg = 5 kevVv Tg = 20 kevV
I 4 A2 ]
II 12 5 3
I1I 22 10 5
v 32 14 8
\Y 42 19 10
Table 3.1
p

Number of photoelectrons ny due to background radiation. Parameters

as given in 3.1.2.
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3.1.4 Scattering Signal

The spectral density function S(e) of the relativistic Thomson
backscattering spectrum is calculated from the formulas given by
Mattioli et al. /5/ which yield exactly the same results as those

given by Zhuravlev /6/. In /5/ the scattering cross section o is
given by

Ay 1
z == ; )
(}\ 9- 430) ( s 5 o 2 &xp '_;é({f’:\-‘:i.z‘s,‘_:_
VT, \/4 23 ( ) TP

where Te is normalised to the electron rest mass energy Te +
2kTe/mc2 and lL and AS are the laser wavelength and the wavelength
of the scattered light.

ro is the classical electron radius. Introducing =T = -1

R — : ep{-4(Z52)]
£ 480)- i &

: \[,:f (1) (£+2) T *:-?:ﬂe &rt
Defining the spectral density function S(e) as

Sk)- €
r-L

(=]

shown in Fig. 3.1 the number of electrons released from a photo-
cathode per unit interval of ¢ for a laser pulse of energy E_ is

L
given by

o[n(é)_n | E ry A T ?(5)(£+1)5(£)
o & hy,
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This function is plotted in Fig. 3.2. The quantum efficiency of the
S 20 cathode was thereby approximated by

7@)‘ 0.225- 0.‘!5’(6-} 0.4)

Integration over the width of the spectral channels yields the num-
bers of signal photoelectrons n? in channel i = 1 - 5 as function
of the electron temperature. These functions are shown in Fig. 3.3.
Please note that the results shown in Fig. 3.2 and 3.3 apply to n,
=5 x 10!3 cm™3, AQ = 1 x 1073 sr and a length of the scattering
volume of 18 cm. The numbers of signal photoelectrons obtained from
the spatial channel located at the plasma centre at the given refe-
rence conditions (nZ =1 x 10!3 em™3) are listed in Table 3.II.
Since we are interested in the errors of single shots, photoelec-
tron numbers of the order of 1 and below in the spectral channels

cannot be used for an evaluation as indicated in Table 3.II.

3.1.5 Statistical error of the electron temperature

Figs. 3.4 - 3.7 show the ratios of the signals from the different
spectral channels versus electron temperature, Using the ratio
method small temperature errors will be obtained in temperature
ranges where the ratio depends strongly upon temperature and where

the number of signal photoelectrons in both channels is large.
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Pigs 3.2

Number of photoelectrons per unit of €

Parameters: Laser energy 15 J at 6576 A, n_, = 5 x 1013 cm™3
d2 = 1 x 1073 sr,
L =18 cm, T = 0.1, S 20 - photocathode.
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Number of photoelectrons per spectral channel.

Parameters: Laser energy 15 J at 6576 A, n, = 5 X 103 cm™3
dn 1 x 1073 sr,
L 16 cm, T = 0.1, S 20 - photocathcde,
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Fig. 3.5

Ratio of photoelectrons per spectral channel
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Ratio of photoelectrons per spectral channel
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Ratio of photoelectrons per spectral channel
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Electron Temperature n? ng n§ ni ng
0.25 keVv 209 61 0.4 4x10~ 6 1x10~ 1%
0.5 269 217 18 0.05 3x10~°
075 271 323 67 A 2x10~3
150 260 385 133 8 0.06
125 - 248 419 200 21 0.5
1.5 236 437 261 43 1.8
1%75 225 446 314 69 5
270 215 449 358 100 10
2+:25 206 448 396 -39 18
2.5 199 444 426 167 28
205 191 440 451 200 41
3.0 185 434 472 233 55
3,25 179 428 488 263 72
3.5 173 422 502 292 90
3,75 168 416 513 319 109
4.0 164 410 521 345 130
4.25 160 403 528 368 150
4r5:5 156 397 533 389 171
4,75 152 391 537 409 192
5.0 148 385 540 427 213
5.5 142 374 . 543 459 254
6.0 136 363 543 486 293
6.5 131 353 542 508 330
730 127 344 539 526 364
7.5 123 335 535 541 396
8.0 119 326 531 554 425
8.5 115 319 526 564 452
9.0 112 311 521 572 477
9.5 109 304 515 578 499
10.0 106 298 509 583 519

continued on next page

okl 000 0 2W




Electron Temperature ni n; ni nj n?
11.0 kev 101 286 498 590 554
12,0 97 275 486 592 583
1350 93 265 475 393 606
14.0 90 256 464 591 625
15.0 86 248 453 588 640
16.0 83 240 443 584 651
17.0 , 81 233 433 579 660
18.0 78 226 424 574 667
19.0 76 220 415 568 672
20.0 74 215 406 562 676

Table 3,11

Number of signal photoelectrons in the spectral channels I - V
in case of the scattering volume located at the plasma centre
(d@ = 5.22 x 10~% sr) and an electron density of 1 x 1013 cm™3,

Figs. 3.8 - 3.11 show the relative errors of the electron tempera-
ture determined by applying the two channel ratio method to all
possible channel combinations. The curves ATe/Te = f(Te) apply to
the spatial channel located at the plasma centre. The electron
density was taken as 1 x 10!3 em™3 and F = 1 (no excess noise) was
assumed) .

Before showing profiles with expected error bars, let us discuss
briefly on the basis of these results whether the chosen distribu-
tion of spectral channels is a good one. For this purpose the
statistical errors of the measurements at Nl 1 x 10!3 cm™3 are
listed in Table 3.III. The numbers are obtained using an excess
noise factor of 1.8 as specified by the producers of microchannel-
plates.

Table 3.III describes the dynamic range of the chosen distribution
of spectral channels. For low temperatures the numbers of photo-
electrons in the spectral channels III - V are so small that only

the ratio II / I can be used for measurements. For high temperatu-

res the numbers of photoelectrons in the different channels are of
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Fig. 3.8

Error of electron temperature measurement versus electron tempera-

ture; n_ = 1 x 1013 cm—3, excess noise factor 1, central spatial
channel
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Fig. 3.9

Error of electron temperature measurement versus electron tempera-
ture; n_ = 1 x 103 cm~ 3, excess noise factor 1, central spatial

channel
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Error of electron temperature measurement versus electron tempera-

ture; n, = 1 x 10!3 cm™3, excess noise factor 1, central spatial
channel
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Error of electron temperature measurement versus electron tempera-

ture; n_ = 1 x 1013 cm™3, excess noise factor 1, central spatial

channel
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5
ciably with temperature. Thus for high temperatures (>10 keV) a

sixth spectral channel in the uv would be helpful whereas the chan-

nel distribution seems to be adequate for the low and medium tempe-

the same order of magnitude, but only the number n_ changes appre-

rature range. Since the influence of the background radiation on
the SNR is negligible, the errors improve with the square root of
the electron density, e.g. at n =5 X 1013 cm~3 and T =i5%keV

the statistical error is of the order of 2 %.

3.1.6 Statistical error of the electron density

According to step 11 of the described procedure the ratio R of
scattered photons within the spectral range of the detection system
to the total number was calculated. Fig. 3.12 shows R versus Te'
Taking the numbers n? applying to the spatial channel located at
the plasma centre and an electron density of 1 x 10!3 cm™3 from
Table 3,II, assuming mean quantum efficiencies of

n Lo= 57sha%
n, Il = 9.8 %
n IIT = 13.1 %
n IV =16.9 %
n A% 20.6 %

for each channel, the steps 13 to 15 were performed. The results

are summarized in Table 3,1IV.

For higher densities both errors AN/N and AR/R will improve with
about the square root of the electron density (assuming that the
background radiation remains negligible). Thus the error of the
electron density measurement will improve with the square root of
the density too.

The errors have been calculated assuming a solid angle of the col-
lection optics of 5.22 x 10™% sr in case of the scattering volume
at the plasma centre. This value is achieved with a 140 mm useful
diameter window located at a distance of 4.8 m from the torus hori-
zontal plane. If an array of smaller windows must be used the solid
angle will be reduced by a factor of 2 - 3 (e.g. using windows of
74 mm useful diameter and an outer diameter of 100 mm). This will

result in an increase of the given errors by a factor of about 1.7.
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T, T et N e et
e tot e
0.5 kev  0.2355 0.30 .7 % .9 8 s ¥ 6
1.0 kev  0.3286 0:13 1S .78 4.6 %
2.0 kev  0.4125 0.06 .8 % R 11 3.1 3
5.0 kev  0.5039 0.01 % .5 % 2.6 %
10.0 kev  0.5161 0.005 i . 6% 2.3 %
15.0 kev  0.4841 0.008 % $ : i g
20.0 kev  0.4458 0.008 o b .5 % 5.1 %
Table 3,1V

Statistical error of the electron density measurement (Central

spatial channel, errors of Te as given in Table 3.III)

The expected error bars of the electron temperature and density

measurements are shown in Figs. 3.13 and 3.14 for parabolic profi-

les with Te

= 5 keV and n

o

eo

=1 x 1013 cm™3. When calculating the

error bars for these profiles the variation of temperature, density

and solid angle of collection along the spatial chord is taken into

account. However, the inhomogeneity of the electron density and

temperature within the scattering volumes has been neglected.

The calculations have been performed for a given set of spectral

channels. This channel distribution can be changed to shift the

dynamic range versus lower or higher temperatures. The dynamic

range can be increased too, by adding spectral channels, one near

the laser line and the other located in the uv,
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3.2 Spatial Resolution

A) Simple Considerations

The spatial resolution Al of the proposed diagnostic method along

ey + TL) /7/, where Thet

is the temporal resolution of the detection system, T is the laser

the line of sight is given by Al = % 5+

pulse duration and c¢ is the velocity of light. This relation can be
derived from a simple consideration (see Fig. 3.15). A laser pulse

of spatial length ct_ propagates in a medium which scatters light.

L
Within a time interval t, it moves over a distance ct,. The scat-

tered light travelling backwards, which is produced during that

time extends over a length of c(2t, + TL) =2 Al - crT,. Assuming

that the signal from an infinitely fast detector is gated for a

time T resulting in the registration of the backscattered

Det'

pulse, one gets t, = (rt TL)/2. Consequently:

Det ~

al - CK%et+‘z;')/2

B) Numerical Simulation [

We have done a numerical simulation in order to check whether the
simple considerations still hold for a laser pulse with a more
realistic pulse shape combined with a photomultiplier and a regis-

tration system with finite risetime.

The laser pulse shape has been chosen as

.2 Tt

?l: P Sn Ii- 0<% Jzzl

i o
[ .

where the peak power Pois related to the laser energy EL by

B EL/TL' T being the FWHM of the laser pulse,

This laser pulse is assumed to propagate through an inhomogeneous
plasma characterized by ne(x) and Te(x). Refractive index effects
being negligible, PL(x,t) is given by

P (xt) - Ee i (x-ct) cte x £ Ct+2cT
- TL 2T, E
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A detector located at x = 0 will then receive scattered light pro-
duced by a laser pulse at a retarded time t' = t - x/c. Thus, with
the same denominations as used in the section on the statistical

errors of the measurement, the number of photoelectrons per norma-

lized spectral interval and per time interval is given as a func-

tion of time t' by CT+C*'
2
Ay !
odn €),n_* £ -,,zm)n )S(e T () ol x
I Ote)-ro pleragT =2 [’g. 2 ne 636 )
ct £« /;\\é_,,
2 L

Integration over the spectral intervals of the spectral channels I
to V then yields the photocurrents of the detectors and thus the

signals in case of a detection system unlimited in bandwidth:
[ g@ee | oAdn '@
Tia ¥ A€

d€; ¢
The output voltage of this ideally fast detection system would then

be

Uk)-1i ()G R
0 T.Y

where G is the gain of the detector and R the impedance of the

oscilloscope.

The finite bandwidth of the detection system is taken into account
by a first, rather crude approximation, which nevertheless should
reveal the main features of a realistic measuring system. This
approximation consists of characterizing the detection system with
respect to its temporal response by a simple RC-circuit.

The risetimes of the F 4128 photomultiplier (11 = 125 ps) and of
the TEK 7104 oscilloscope (1, = 350 ps) - defined as the time in-
terval between the 10 % and the 90 % points of the signal response
to a step function - yield a risetime of the complete system

—
ot = /%az +’U22 = 370 ps. The falltime of the detector is
10-90

larger than its risetime (ITT Electro-Optical Products Div., Techn.
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Note No. 127, 1980). Combining its value of 280 ps with the fall-
time of the oscilloscope (350 ps) gives Atgg-109 = 450 ps. In our
numerical simulation we have used a rise- and falltime of 440 ps

which corresponds to a RC time constant of 2 x 10 ~10 s,

Describing the detection system by a simple RC-circuit model, the

measured signal U(t) is then obtained by integrating the differen-

tial equation (J
L{(%)*"Rt: eiéi_ﬁ = [10[%)
dt

Figs. 3.16 to 3.18 give results for a situation in which a laser
pulse of EL= 15 J and T 320 ps propagates over a distance of
60 cm in a plasma of constant density, n, = 1 x 1013 cm™3, The
electron temperature is a step function, the step occuring at

X = 30 cm, The other parameters are as given in the section on

statistical errors:

() — $20 42=522x10 4r , T2 0.4, G=3x10%, R-SaR.

For the numerical integrations we have used a step width in space
of 0.6 cm and a step width in time of 40 ps. The integration over
the spectral widths of the channels I to V was done by dividing
each channel into 5 slices of equal width.

Fig. 3.16 shows the temporal evolution of the photocurrents iI—IV
for an ideally fast detector, when = 5 keV and Tooan 10 kev. Fig.
3.17 gives the signal voltage traces to be expected for our detec-
tion system with a finite risetime of 440 ps. In this figure we
have indicated for the most decisive spectral channel at these .

temperature (no. V) the rms noise voltage which can be predicted

according to & Lrn1'> = QQB‘—F@?-L'CMMDE = 2eRFEG “auT‘
. rmg§ 1
in =V2eBF6& %

U™ = [2eBFGUR'
2:-46&Ha  Ge 3xA0° F-48 , R-50R

2 )
For a much smaller temperature step (5.0 kev to 5.5 keV) - but one
which according to our error analysis is well resolvable - Fig.
3.18 shows those ratios of the channel signals which are used si-
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multaneously for temperature evaluation in this temperature range.
Here the error bars of the most important ratio V/I are indicated
in the figure, too.

The conclusions that can be drawn from this numerical simulation
are:
1. Without any numerical unfolding of the signals, the spatial
resolution of the envisaged scattering system will be about
12 cm.
2. A numerical unfolding method is highly desirable since it will
allow to improve the spatial resolution.
This unfolding requires a detailed knowledge of the frequency
response of both the detector and the oscilloscope as well as
the knowledge of the laser pulse shape. Thus
a) the laser pulse shape must be measured for each laser shot,
and
b) the complete detection system should be automatically cali-
brated with respect to sensitivity and response between the
shots.
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3.3 Laser Input and Collection Optics

3.3.1 Optical systems

In this section we will discuss only optical systems which allow
the investigation of a vertical optical chord. Consequently, both
the laser and the detection system would be placed in the roof

laboratory.

The main effort in designing the collection optics must be dedica-
ted to the suppression of laser stray light. For a backscatter
experiment a high level of stray light is to be expected origina-
ting from the laser input optics, the input window, the laser exit
window and the beam dump. We have therefore investigated optical
systems which collect only light scattered back into a cone sur-
rounding the laser beam. This makes it possible to mask the laser
focusing lens, the parts of the input (observation) window and the
laser exit window illuminated by the laser pulse and the beam dump
by suitable stops. This method will be straigthforward if only a
single point is to be observed. In our case of an extended scatter-
ing volume located between windows of given distance and size, the
position of the laser focal spot must be optimized to allow for
unvignetted observation of the total scattering volume at maximum
solid angle, masking at the same time the mentioned optical compo-

nents.

In order to minimize the diameter of the output duct penetrating
the 2.25 m thick torus hall roof it is reasonable to use an optical
collection system which images the 2.5 m spatial chord length with

1:1 magnification into the output duct.

Four possible collection optics with 1:1 imaging are sketched in
Fig. 3.19. In the following we will discuss their properties and
compare their specific advantages and drawbacks.
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Version I

In the first proposed version, the collection optics is placed in
the middle between the torus equatorial plane and the ceiling. All
the 1:1 imaging collection optics are similar with respect to the
method of stray light suppression of the laser beam., Therefore we
will discuss this method in detail taking this optical system as an

example,

A difficulty common to all four possible solutions rises from the
fact that the laser input duct as well as the collection duct pene-
trating the ceiling should look away from the torus to ease the
shielding problems. In case of solution I, this requires to bend
the laser input beam as well as the collected light beam by small
angles which is done best with prisms, These introduce chromatic

effects into the collection optics.

Fig. 3.20 shows the input and collection system for an entrance
window of 140 mm clear aperture (only 135 mm will be used) located
4800 mm above the equatorial plane and a laser exit window 3300 mm
below it. The laser beam is focused by lens L1 to a focal spot
positioned 309 mm above the equatorial plane., The spatial chord

to be investigated extends from -400 mm to the plasma boundary
(+2100 mm). The laser beam diameter at the entrance window is 36.4
to 38.8 mm (depending on the laser beam diameter of 75 to 80 mm at
L1), resulting in an energy density of 1.45 to 1.3 J/cm? which is
well below the destruction limit of fused gquartz. The scattered
light is collected by lens L2 surrounding Ll. The location and the
focal length of L2 are chosen to minimize the collection duct dia-
meter necessary to let pass the collected light through the torus
hall roof. The focusing lens L1 is positioned at the same height as
L2 for simplicity. Two prisms Pl and P2 with 5° apex angle each are
mounted together with the lens assembly L1 + L2. They deviate the
laser axis and the axis of the collected light beam by 2.6°. The
prisms are rotated against each other slightly in such a way that
the two optical axes intersect the ceiling of the torus hall at two
points 120 mm apart (Fig. 3.21). The input and collection ducts
(identical to the laser input duct of the KE 1 scattering system)
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start from these points. They are inclined by about 6.7° against
the vertical direction and look to the outside of the torus. Two
prisms of 19° apex angle bend the axes of the laser beam and the
collection optics according to the inclination of the ducts. All
optical components located within the torus hall are made from

synthetical fused quartz.

The described bending of the optical axes is necessary not only due
to shielding problems but also because the C3 opening in the ceil-
ing is positioned above the torus outside (see. Fig. 3.21). In
addition, it is necessary to split apart the axes of the laser beam
and the collection optics in the plane of L1/L2 in order to avoid
additional, stray light producing optical elements along the line

of sight of the collection optics.

Due to the prisms, the optical system is anamorphotic. However, by
using the prisms at minimum deviation, no one-dimensional magnifi-
cation of the collected light beam will result. The chromatic ef-
fect of the prisms and its consequences will be discussed later.

In the following we will neglect the prisms when treating the opti-
cal lay-out.

For a first design of a collection system we have taken the geome-
try of the shielding block for the KEl laser input (Fig. 3.22). Two
mirrors each will be used within the shielding block for both the
laser beam and the collected light. It is intended to use dielec-
tric mirrors with "cold mirror" characteristics (high reflection
for 400 nm to 630 nm, good transmission for 657 nm) for the collec-
ted light (see section 5.3). This will result in additional sup-

pression of laser stray light.

Fig. 3.23 shows the complete collection optics including the inter-
ference filter polychromator. In this drawing the lengthening of
the optical paths due to the slight inclination of the optical axes
against the vertical direction is neglected. Please note that the
laser beam and the beam of collected light are separated from each
other below the torus hall roof (Figs. 3.20 + 3.21).
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The collecting lens L2 images the beam waist of the collected light
beam with 1:1 magnification onto a field lens L3 located in the
middle of the collection duct. The diameter of the diaphragm at L3
(stop 1) defines the length of the scattering volume which is seen
without vignetting. For a spatial chord extending from the plasma
boundary to 400 mm below the equatorial plane the diameter must be
46.6 mm. The stop S1 simultaneously determines the level of plasma
background radiation,

The diameter of the collected light beam is 73 mm at the bottom of
the roof and 67 mm top of it. Thus the 100 mm dia. laser input duct
of the KE-1 system will be suitable for the collection optics too.

The field lens L3 images the lens assembly L1 + L2 into the plane
of lens L4 located outside the shielding block. The stop S2 posi-
tioned in this plane masks totally the central bore of lens L2.
Thus not only the focusing lens L1 is masked, but also the laser
transmitting part of the observation window and all parts hit by
the laser more than 3300 mm below the torus equatorial plane (e.g.

laser exit window and beam dump).

L4 images the field lens L3 (stop S1) with 1:1 magnification at a
distance of 4.135 m from the shielding block. The interference

filter polychromator is located in a region where the beam is less
than 80 mm in diameter. It will be a folded 5-channel system (Fig.
3.24), where the interference filter of the first channel is loca-

ted 2.8 m-apart from the shielding block. Thus the experimental

area required in the roof laboratory for the collection and detec-
tion system will be about 3 x 1 m2 adjacent to the shielding
block.

As can be seen from Fig. 3.24 no lenses are used between the inter-
ference filters. Therefore the angle of incidence onto the filters
can be kept as low as 4.3°, The interference filters will be illu-

minated with rays deviating up to *1,2° from the optical axis.

Simple lenses behind the interference filters will concentrate the
output of the different channels onto the respective MCP photomul-

tipliers.
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The optical elements being defined, the transmission of the differ-
ent spectral channels can be estimated. We assume a transmission of
0.6 for the interference filters. The reflection coefficient for
the other wavelengths is estimated as 0.9. This value is also taken
as broadband reflection coefficient of the 90° - deviating mirrors
in the shielding structure. The observation window will be uncoated
(T = 0.962)., Then the optical transmission of the different spec-
tral channels will be

channel 1: 0,397 - 0,292

channel 2: 0.358 - 0.263

channel 3: 0,321 - 0.236

channel 4: 0,289 - 0,213

channel 5: 0,261 - 0.191,
depending on whether the optical components in the torus hall (be-
sides the observation window) are AR-coated (T = 0.992) or uncoated
(T = 0.962).

We will now discuss the chromatic effect of the prisms and its con-
sequences, Of course these effects are negligible for the laser
input optics, but they can play an important role for the collected
light with a spectral bandwidth of more than 200 nm (625 nm - 394
nm), It is especially the short wavelength range needed for the
measurement of high temperatures (>5 keV) where the increasing

dispersion of quartz leads to greater angular dispersion.

The combination of lens L2 (f = 4245 mm) and the 5° quartz prism
can be considered as a £ = 8490 mm quartz prism spectrometer. Tak-
ing the refractive index of synthetic quartz for the border wave-
399 nm - 1.47097, Necenm = 1.45637) the image of the beam
waist of the collected light on lens L3 would consist of two circu-

length (n

lar discs of 46.6 mm dia., shifted by 9.4 mm against each other
(Fig. 3.25). The prism positioned at the ceiling (19° apex angle)
partially compensates this chromaticity. An elliptically shaped
stop S1 with a = 50,1 mm and b = 46.6 mm will let pass all the
collected light. However, the chromatic effect in the plane of stop

S2 (where the stray light is to be suppressed) is much more pro-
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nounced. Seen through the two prisms the images of L2 (seen at the
extreme wavelengths) are displaced by 15 mm. Let us assume that the
optical axis of the red beam is coincident with the symmetry axis
of lenses L3, L4 and of stop S2. In that case the diameter of lens
L4 must be increased to 145 mm in order to let pass all collected
blue light., If the stop S2 remains adjusted to block the (red)
stray light, it will vignette about 12 % of the collected light at
399 nm (Fig. 3.26). It would further be necessary to change
slightly the spectrometer arrangement since the beam diameter is a
little bit larger. Thus the effect of chromaticity does not inflict
the stray light suppression, but only leads to a continuous reduc-
tion of the effective transmission when going from the "red" chan-

nel to the "blue" one. The reduction is less than 12 %.

Keeping in mind that the chromatic effects in the plane of lens L4
are caused by the prism at the ceiling (not by the prism at L2),
one can think of alternate solutions., Such solutions could consist
in a reduction of the deflection by this prism. E.g., one could
choose the same apex angle as for the prism at L2 which would lead
to a vertical orientation of the collection duct. In that case the
radiological problems of viewing directly the plasma through the
duct could be reduced by installing a shield between the JET vessel
and the lens assembly L1/L2. Another possible solution would be to
omit the prism at the ceiling completely. In that situation the
duct will be inclined by less than 2.3° in order to fit into the C3
opening.

We will discuss now the implications of vibrations or misalignment
of the (prealigned and fixed) lens assembly L1/L2. If this lens
assembly is mounted to the ceiling, it must be removed occasionally
to let pass the crane. Thus the problem of realignment has to be
considered. Of course, the realignment will be controlled by a HeNe
laser. However, in the following we will discuss the consequences
of a severe misalignment in order to get an idea what the precision

of alignment must be.

First, all vertical displacements by even up to several cm can be

neglected. Also, tilting of the device is uncritical.
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Second, the effect of a lateral displacement of the lens assembly
by 5 mm is shown in Fig. 3.27. All other optical elements shall
remain in their original position. We assume that the focusing lens
is 10 mm larger in diameter than the incident beam. Thus the laser
will be focused without attenuation to a spot "B" 5mm below the
optical axis of L3, L4 and the spectrometer. Due to the large focal
length of the system, the scattering volume is inclined only
slightly versus this axis. In Fig. 3.27 the consequent displace-
ments of all images with respect to the optical axis are shown and

the amount of dislocation is given in mm,

The effects can be summarized as follows:

1., If the interference filters of the spectrometer are chosen
slightly larger than necessary for an aligned system, no
scattered light is lost by vignetting in the spectrometer. The
photocathode of the photomultiplier to be used is considerably
larger than the scaled down image of L3 on it.

2, Stop S1 should be 9 mm larger in diameter than necessary. This
will increase the plasma background radiation by 50 %, but this
level will still be neglibible compared with the signal level.

3. In case that the laser beam incident on L1 is only 69 mm in
diameter, but the diaphragm S2 is chosen to mask an 80 mm dia.
laser beam in an aligned system, the stray ligth will still be
blocked off completely. The collected light will be attenuated
by only less than 3 %.

Thus it can be concluded that the lens assembly should be aligned

with a lateral error of less than 5 mm,

These considerations can also be applied to estimate the tolerable

rotation of the combined lens (L1/L2) and prism (P1/P2) assembly. A

rotation of the prisms will rotate the intersection of the collec-

ted light beam with the ceiling on a circle with 333 mm radius
around the optical axis of L1/L2. If we permit a maximum lateral
displacement at the ceiling of about 5 mm, the maximum allowed
rotation of the lens and prism assembly is 50', This corresponds to

a movement at its circumference of less than 2 mm,
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Version II_

The second proposed optics also works with 1:1 imaging, allowing a
small duct diameter., However, the optical path length between the
scattering volume and the roof is doubled. This allows to fix the
collection optics to the ceiling. The large distance between the
lens and the image is realized by installing an optical delay line
below the ceiling.

Since this solution again uses 1:1 imaging, the subsequent optics
(lenses+polychromator) is not changed. Only the diameters and the
focal lengths of the lenses L1 and L2 are increased due to the
longer optical path length. Figs. 3.28 and 3.29 show the optical
system as viewed side-on and from top. The input and output ducts
are the same as for version I. Since the laser spot size on the
torus vessel window must be conserved, the beam is expanded and
focused by a lens system LO (f = -140 cm, 7.5 cm dia.) and L1 (f =
211 cm, 14 cm dia.). The lens LO is positioned at the lower end of
the input duct, whereas the lens L1 is placed at a height 48 cm
below the ceiling. The collection lens L2 (f = 769 cm, 43 cm outer
dia., 27 cm inner dia.) surrounding the laser focusing lens L1 is
positioned at the same height.

The delay line is accomplished by the mirrors M3, M4 and M5. It is
folded onto the ceiling as shown in Fig. 3.29. The lens assembly
L1/L2 has been shifted towards the torus centre so far that the
magnetic -axis can still be diagnosed through the useful opening of
port "B" (diameter >100 mm). This gives maximum distance of L1/L2
from the lower ends of the ducts and thus allows to set up the
delay line outside the ductwork area and without passing below one

of the ceiling penetrations.

All optical components are positioned within a distance of 50 cm

from the ceiling, keeping clear from the space required for the

crane,

A possible geometry for the shielding block structure is given in

Fig. 3.30. The outline dimensions of the shielding block still need
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to be minimized on the basis of neutron shielding calculations. The
input and output ducts of the shielding block point to the place in

the roof laboratory foreseen for the laser system,

The mirrors M1, M2, M6 and M7 bending the laser beam will be di-
electric ones, but in case that these mirrors are not adviseable in
the torus hall, they can be replaced by quartz glass prisms., The
mirrors M3, M4 and M5 for the collected light will have a high re-
flectance silver coating with R > 95 % over most of the interesting
spectral range (see Appendix). The mirrors M8 and M9 will be "cold"
dielectric mirrors, reflecting the signal light with R » 80 % and
transmitting the laser stray light with better than 90 % (see Sec-
tion 5.3). The transmission of _the optical set-up is calculated as

before using the following reflectivities and transmissions:

Laser Input Collection Optics Interference Filter
M6 R = 0.99 W T = 0.93 T = 0.65
M7 R = 0,99 L2 T = 0.93 R = 0.95
LO T = 0,93 M3 R = 0.95
M1 R = 0,99 M4 R = 0.95
M2 R = 0.99 M5 R = 0.95
L1 T = 0,93 L3 T = 0,93
W T.=:0.93 M8 R = 0.8

M3 R = 0.8

L4 T = 0.99 (AR-coated)
T = 0,77 T = 0.43

The transmissions of the system for the individual spectral chan-
nels are:
Channel no. I 0.21

no. II 0.20

no, III 0.19

no. IV 0.18

no. V 0.17
Coating of the lenses in the torus hall improves the overall trans-
mission by about 25 %. This means that in the worst case (channel V)
the transmission is at least a factor of 1.7 better than assumed

when calculating the statistical errors.




Version III

The version III 1is complicated by the fact that the telescopic
system has to be placed within the free space below the ceiling
(permitted height <50 cm). For 1:1 imaging a point 1236 mm above
the equatorial plane into the middle of the ceiling and maintaining
the solid angle of collection, this requires a telescope front lens
with £ = 53,6 cm and a diameter of 43 cm, Such a £/1.2 lens is not
feasible.

Version IV_*)

In case of version IV the situation is different from version III
with respect to the possible length of the telescope. The telescope
can be longer and thus the f-numbers of the lenses will be smaller,
For example, placing the diverging lens near the window and the
collimating lens at the height of the limbs of the magnetic cir-
cuit, f-numbers of 1/5.7 and 1/4 are required, respectively. Such a
system is feasible, e.g. by taking two £/8 collimating lenses as
indicated in Fig. 3.31.

With respect to chromatic effects, this system is equivalent to
version I: The focal length of the corresponding prism spectrometer
is increased, but the necessary deviation angle of the collected
light beam and thus the apex angle of the prism have become
smaller., The linear dispersion of the collected light beam in the
plane of the ceiling is the same as in case of version I and thus
is tolerable.,

The telescope must be fixed to the limbs of the magnetic circuit
and not to the vacuum vessel which moves too much when being heated
up. At the moment there exist no measurements of the movement of
the magnetic limbs at the relevant radius. For a discussion of the
created misalignment of the telescope we will use the following

estimates given by JET engineers:

*) The possible use of telescopic systems was proposed by
Mr. R. Lobel/JET at a meeting on January 31,84
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a) no movement in the radial direction during the discharge,

b) vertical movement with a maximum amplitude of 3 mm,

c) twist movement with a maximum amplitude of 1 mm.

In case that the movement of the limbs occurs simultaneously, the
only resulting movement of the telescope that could give rise of
misalignment is the horizontal shift of about 1 mm amplitude. With
regard to such a movement the telescopic system again is equivalent
to the version I optics. Therefore this movement should be toler-
able, requiring no realignment. However, a measurement of the real
movement of the limbs is needed, before a decision in favour of
version IV (which is the most promising one with respect to the
mechanical mounting of the optical elements) can be taken. Especi-
ally the possible movements of the limbs which tilt the axis of the
telescope must be investigated. In addition, the stray light measu-
rements reported in section 5.2, which apply to the geometry of
version I should be repeated for the optical system IV. This is ne-
cessary since there are a number of different optical elements lo-

cated near the window.

The required precision of the vertical tilt alignment of the teles-
cope can be estimated as follows: Tilting the telescope (Fig. 3.31)
by an angle a is approximated by a lateral movement AX of the diver-
ging lens L2,, where AX = a.L. This leads to a movement of the

image of the scattering volume element at r = 1236 mm on lens L3.
The amplitude is given by 1.2 x AX. For a permitted amplitude of

* 5 mm, a maximum angle of misalignment a = 12' results.

In Table 3.V a comparison of the three possible versions is give

with respect to different properties.

From this Table it can be seen that version I, which has been in-
vestigated experimentally with respect ot its stray light proper-
ties (section 5.2), is the optimum solution besides the problem how
to mount the lens. If this technical problem is decisive, solution
IV would be the best choice. However, this solution requires that
the mechanical stability of the mounting structure, namely the mag-

netic limbs, is measured. The amount of stray light produced in

this set-up must be measured too in a full scale experiment.
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3.3.2 Scanning Option

The LIDAR scattering system in principle allows to scan the plasma
discharge by means of a beam steering mirror in front of the win-
dow. This is due to the fact that the collected light beam is
collinear with the laser beam and that it is deflected in the same
way. The realization of a scan however postulates that the stray
light created at the beam steering optics and at the inner torus
wall can be tolerated.

Fig. 3.32 shows how such a scan could be done and what parts of the
plasma would be accessible in case of the optics version II. The
set-up has been designed to investigate the inner part of the plas-
ma. In the equatorial plane the scan covers a region of 800 mm from
the magnetic axis to the inside. At the expense of a reduced scan
range even plasma regions nearer to the inner wall might be acces-
sible.

The main idea behind the scan optics shown in Fig. 3.31 is that it
should be a modular technique. That means, that in case of malfunc-
tion one should be able to restore the normal LIDAR arrangment,

measuring on a fixed chord, by simply removing the scan module.

With the scan option, one is confronted with the problem that the
full laser energy hits the inner torus wall. For the given geome-
try, taking into account the curvature of the inner wall, the load-
ing of the wall is approximately 3 J/cm? on the average for all
scan angles. This corresponds to 1010 W/cm2, Since evaporation of
the material starts at about 3 x 108 W/cm?2, a beam dump must be
used., Such a dump could be made of an array of vertical knife edges
as sketched in Fig. 3.33. Using such an arrangement the effective
area of the laser spot on the wall can be increased by a factor of
30 chosing the ratio a/b = 30. Of course, the loading of the edges
is still 1010 W/cm2, Thus the amount of iron released with each
laser shot and the lifetime of the dump structure should be deter-

mined experimentally.
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Since the stray light created at the dump arrives at the detector
after the measurement has been accomplished, we have to care only
about possible permanent damages to the photomultiplier or long
recovery times. The MCP photomultiplier operates from the charge
distribution stored in the MCP and is recharged only very slowly.
Thus the photomultipier should be protected against being damaged
by the stray light. This question has been investigated in the
course of the photomultiplier experiments. It turned out that over-
loading the detector with stray light after the measurement is not
gritical.

The mirrors M10 and M1l of the scanner are composed of two mirrors
each. The inner one, which reflects the laser beam, will be a hard
dielectric coated mirror. The outer will be a broadband reflecting
mirror, which to our momentary knowledge would be realized best by

a high reflective silver coating (see Appendix).

Near the entrance window, where the scan module has to be placed,
the spacing between the laser beam and the surrounding beam of
collected light is very small. Thus, since the metal mirror coating
is destroyed by the laser beam, the scan module is sensitive to
misalignment, To improve this situation, the high power capability
of broadband 45°-reflecting mirrors has to be investigated in order
to replace the metal mirrors (see Section 5.3).

3.3.3 Alignment

As pointed out in Section 3.3.1, the alignment problems of the two
favoured optical systems no. I and no. IV are similar. In both
cases three optical elements have to be aligned individually in the
torus hall (see Table 3.,V). In Table 3.VI the numbers for the
required precision of the alignment of the different degrees of
freedom are taken from Section 3.3.1. We do not envisage that feed-
back alignment is necessary in view of these moderate alignment

requirements.
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The basic reason for this insensitivity against misalignment is
that with the short laser pulse duration it is possible to view a
rather large plasma cross section (5cm dia.) without being distur-
bed by plasma background radiation. In fact, the first measure in
case of misalignment would just be to increase the diameter of stop
1 (Fig. 3.23) without any considerable reduction of the precision
of the measurement.

In case of the optical version IV (the more difficult one to
align), the procedure of initial alignment is as follows:
First, the telescopic system (Fig. 3.31) is prealigned outside the

JET torus hall,

Second, a HeNe laser beam is expanded to 60 mm dia. and focused
from below into the torus vessel. The focal plane coincides with
the focal plane of the iodine laser (309 mm above the equatorial
plane). The axis of the HeNe laser beam is aligned to the axis of
the laser exit window (at the bottom) and the observation window
(at top).

Third, the telescopic system is mounted to the magnetic limbs and
centered to the HeNe light cone emerging from the observation

window.

Two HeNe spots will be visible at the ceiling: The first one, 80 mm
in diameter, has passed lens L1 which collimates that part of the
beam entering the laser exit window through the inner 31.2 mm dia.
spot ("E", see Fig. 3.23). The second, much smaller one is produced
by that part of the laser filling the outer part of the laser exit
window (52.5 mm < dia. < 60 mm). This part is imaged by lens L2
(assembly L21,L22,L23) onto the ceiling.

Fourth, the telescopic system is rotated around its vertical axis.
Due to the two 3.5° prisms the two HeNe spots at the ceiling will
rotate around a common centre (the intersection of the telescope
axis with the ceiling). The telescope axis is then adjusted in such

a way that both spots hit their corresponding ducts.
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Fifth, the 18° prisms below the ducts are rotated around their
vertical axes in such a way as to align the deviated HeNe beams to
the axes of the ducts.

Ssixth, the deflecting mirrors in the shielding block are adjusted.

The further alignment of the collection optics is straightforward.

Last, the iodine laser is aligned to the HeNe beam from below by

means of two beam steering mirrors,

3.3.4 Calibration

Absolute independent calibration of the Thomson scattering device
with respect to the electron density measurement usually is done
with the help of either Rayleigh- or Raman-scattering. These tech-
niques combine the determination of the absolute sensitivity of the
detection system with the check of the alignment and the measure-

ment of the laser energy at the scattering volume.

For our case we consider Raman-scattering as not feasible since the

Antistokes lines are too weak and averaging over a large number of
shots would be required /8,9/.

Until the measurement of the stray light level reported in section
5.2, which was done at the end of this study, we considered
Rayleigh-scattering as not possible too. Since a high level of
stray light was expected, a central spectral channel including the
laser wavelength was omitted in all considerations. The measured
stray light level, however, indicates that Rayleigh-scattering can
be done.

We envisage four density calibration methods, two independent ones
(Rayleigh-scattering and calibration with a blackbody light source)
and two methods using the results from other diagnostics.

First, since a spatial profile on a vertical chord is measured by

the LIDAR technique, a comparison with the corresponding electron
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line density taken from the DCN interferometry will give an abso-

lute calibration without the need of assuming a density profile,.

Second, for the plasma centre, the result from the single point

Thomson scattering measurement can be taken as a reference.

Third, we will consider Rayleigh-scattering. The detector tests in
section 5.1 show that gating of the photomultiplier allows a stray
light pulse of up to 102 photons to occur 18 ns before the measu-
rement., Up to this level the subsequent measurement of the scat-
tered light signal is not deteriorated. The stray light measure-
ments reported in section 5.2 yield that about 2 x 10!0 stray light
photons are to be expected for the invisaged 15 J laser pulse,
Thus, a neutral density filter with an attenuation factor of 30 in
front of the central spectral channel detector will reduce the
stray ligth level to a tolerable level. On the other hand, even in
the presence of this filter, the Rayleigh scattering from a 1 Torr
hydrogen filling in the JET torus vessel will give a signal ampli-
tude comparable to the amplitude of the Thomson scattering signal.
About 200 photoelectrons are expected for each spatial channel of
13 cm length. Summing up the Réyleigh scattering signal over a
spatial chord length of about 1 m, a statistical error of less than

3 % results for a single laser shot.
There are two effects which could affect the Rayleigh calibration.

First, the laser line is adjacent to the Balmer line Ha of atomic
hydrogen. Therefore the effect of near-resonant Rayleigh scattering
must be considered. It can be shown, however, that even if all
hydrogen would be dissociated and excited to the second and third
excitation state, this effect is negligible compared with the
Rayleigh scattering signal. This is due to the rather low satura-
tion level which is about 108 times lower than the power density in

the converging laser beam.

Second, gas breakdown could occur at the high power density level
of the laser beam inside the vessel, At the low filling pressure of

1 Torr hydrogen, a threshold of > 10!3 W/cm2?2 can be expeded in the
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absence of dust particles /10/. Thus it is unlikely that gas
breakdown occurs, However, even if breakdown would occur in the
vicinity of the laser focal plane (309 mm above the equatorial
plane), the Rayleigh scattering signal can be measured from the
region above,

The fourth possible calibration method uses a blackbody light
source to calibrate the absolute spectral sensitivity of the detec-
tion system. This includes the spectral transmission of the window,
the collection system, the spectrometer and the spectral responsi-
vity of the detectors. The blackbody calibration set-up is under-
stood considering the following: As the laser pulse runs down the
spatial chord, the scattered light from each volume element is
collected by the annular lens L2. The solid angle of collection
varies only slightly along the spatial chord length under investi-
gation. The scattered light seems to originate from an annulus
around the laser exit window. This annulus shrinks in the course of
the laser pulse propagation (Fig. 3.34). Thus, placing a blackbody
source into a scattering volume of the spatial chord is equivalent
to a blackbody source with the size and the position of the corre-
sponding annulus. The calibration will be done using a small window
located within the annulus and a blackbody light source outside the
vessel, This thermal light source will then be seen by the detec-
tion system as a thermal light source with the area of the scatte-
ring volume, weighted with the ratio of the window area to that of
the annulus, and with the corresponding solid angle of detection.

An estimate of the detector signals to be expected with a tungsten
ribbon-lamp operated at 2600 K yields a detector current of approx.
5 mA for the spectral channel no., I. Thereby it was assumed that a
2 X 2 mm2 area of the tungsten ribbon is imaged (with 25-fold mag-

nification) onto the 50 mm dia. window,

The photomultiplier output current of 5 mA requires gating of the
photomultiplier in the 100 ns range. Integration over the gate

duration will give signals with small error bars.
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As mentioned, this calibration method does not include the check of
the laser alignment as it is the case with Rayleigh scattering.
However, it is very useful in addition to the Rayleigh calibration
since it monitores whether the spectral transmission of the obser-
vation window changes nonuniformly with time. In order to protect
the lower window (that for the blackbody source) against deposits
from plasma discharges, the window should be covered by a shutter
always during JET operation.




4 LASER SYSTEM

The following report deals with a feasibility study for the con-
struction of a frequency-doubled iodine laser which is to be opera-
ted with a repetition rate of 1 Hz for a sequence of 10 shots. The
required output energy is in the range of 15 - 20 J at A = 657.6 nm
(2 w). Provided that a frequency-doubling conversion efficiency of
about 50 % is obtained, the output energy at A = 1.315 pm should
then be in the range of 30 to 40 J. The pulse duration of the laser
should not exceed 300 ps. Since this laser is to be employed as a
radiation source for a LIDAR-Thomson scattering experiment in JET,

it will be referred to in the following as JIL (JET Iodine Laser).

Until now the iodine laser has been exclusively used in single-
pulse operation with pulse intervals in the minute range. So far
output energy levels of up to 300 J at pulse durations of 250 to
350 ps have been obtained /11/ and frequency-doubling experiments
revealed maximum conversion efficiencies of 70 & /12/.

The gaseous iodine laser medium is partially used up during opera-
tion and iodine molecules are formed, which act as strong quenchers
for the excited iodine atoms of the following shot. In order to
guarantee stable and reproducible laser operation, the used up
laser medium has to be replaced and the Iz—molecules have to be
extracted after each shot. This can easily be accomplished by a
laser medium regeneration system /13/ as long as the laser shot
rate is in the range of minutes, With this system the laser medium
is regenerated between subsequent shots and the laser medium is at
rest during laser operation, Excellent optical homogeneity of the
laser medium is thus guarenteed for each shot. This mode of opera-
tion cannot be employed for a 1 Hz laser since the laser medium
needs more than 1 s after the regeneration process to recover its
optical homogeneity, which is a mandatory requirement for the good
beam quality (~ 3 times diffraction limited) necessary for effi-

cient frequency conversion (n > 50 %). The only chance of reali-

2w
zing a 1 Hz iodine laser with a sufficient good beam quality is
therefore to operate the laser with a highly turbulent laser medium

flow. For such a mode of operation the laser medium regeneration
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system has to be enlarged so that fast and complete regeneration of
the laser medium is ensured. In addition, precautions have also to
be taken to ensure that thermal effects caused by the high-repeti-
tion flashlamp pumping do not impair the optical homogeneity of the

laser medium,

In the following the layout of a 1 Hz test laser delivering output
energies in the 50 mJ range at 2 w is described and the results
regarding beam quality, frequency conversion efficiency, stability

and reproducibility are discussed,

Since for the realization of a 1 Hz laser technical aspects such as
the liefetime of flashlamps are also of basic importance, these
have to be investigated as well. The lifetime of flashlamps hither-
to used in single-shot lasers is of the order of 2000-3000 shots, a
number much too small for 1 Hz operation. A test programme was
therefore instituted to investigate measures for prolonging the
lifetime of flashlamps. The results of these investigations will be
described in detail in a separate report, but the essential results
necessary for the construction of high-repetition iodine laser will
be described in the chapter dealing with the design and outlay of a
1 Hz iodine laser with an output energy of 15-20 J at 2 w. The
report concludes with a description of the maintenance effort ne-
cessary for the operation of JIL and with the prospects for increa-
sing the repetition rate beyond the 1 Hz level.

4.1 Description of the Test Laser System

The laser system used to demonstrate the feasibility of a 1 Hz-
operation was built from components already available at MPQ. New
components were only constructed as far as they were necessary to

enable extrapolations needed for the design and outlay of JIL.

The test laser system schematically shown in Fig. 4.1 consists of

an actively mode-locked oscillator, a Pockels cell shutter for

single pulse selection and oscillator/amplifier decoupling, an

amplifier and a KD*P-crystal for frequency doubling.
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4,1: Schematics of the test laser

In the oscillator the quartz tube is double-walled to enable water

cooling. This turned out to be a very efficient method in removing

the heat released by the flashlamps. Quartz tube and flashlamps are

imbedded in a double elliptic, electro-polished aluminium reflec-

tor. The laser medium (100 mbar i—C3F7I + 2 bar argon) is contained
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in a closed loop and is forced to circulate by means of a magneti-
cally driven radial pump. The molecular iodine built up after the
photolysis of the C3F;I is removed in a cold trap kept at a tempe-
rature of -10 °C. This value is equivalent to an i-C,F,I vapor

pressure of 100 mbar which matches the i-C3F7I pressure needed in

the quartz tube.

The flow velocity in the quartz tube can be as high as v = 30 m/s.
Its actual value should be chosen such that a sufficient medium
recovery between two succeeding shots and at the same time a turbu-
lent flow necessary to maintain a good beam quality is guaranteed.
The first requirement is certainly met when the repetition rate is
smaller than the inverse of the quartz tube throughput time &/v (2
quartz tube length) by a factor of five or more. The second requi-
rement calls for a Reynolds number > 10,000, In the experiments
reported below v is kept at a value of 12 m/s.In a mixture of 2 bar
argon + 100 mbar i-C;F,I this corresponds to a Reynolds number of
Re = vd,/v = 17.000 (4, = 1x10=2 m, v = 0,7x107° m2/s) and a
throughput time of 2/v ~ 0.1 s (&2 = 1.1 m). These values are thus
sufficient for an operation of up to 2 Hz.

In the oscillator 4 sealed flashlamps are used for pumping. The
routine voltage is 40 kV corresponding to a loading of 230 J per
lamp or 10 J/cm3., The rise time of the UV-light (240-300 nm) is 800
ns and the discharge time 2 us (first current zero) leading to a
power density in the flashlamps of ~ 5 MW/cm3., The electrical cir-
cuit consisting of flashlamps, spark gaps, capacitor, trigger and
loading units enables repetition rates up to 2 Hz. Up to now the
flashlamps have been fired 15.000 times. They are still in good
shape so that their life time may well be expected to be in the
range from 20,000 to 30.000 shots.

The pulse selecting system is of conventional type. It consists of
two crossed polarizers (Glan prisms) between which a Pockels cell
with a switching voltage of 10 kV is placed. The crystal is made of

KD*P. The electrical pulse released by means of a laser triggered

spark gap has a duration of 17 ns and a rise time of 2 ns., The

SRR YT RS eSS P
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optical transmission of the pulse selecting system is 60 * 15 % at
a contrast ratio of 1 : 1000. It can be operated up to a few Hz.

The amplifier is air-cooled. The 4 home made flashlamps filled with
30 mbar Xe and the laser tube (di = 25 mm, £ = 2 m) are embedded in
an double elliptic, electro-polished aluminium reflector. The clo-
sed loop of the laser medium is principally the same as in the case
of the oscillator. The flow of the laser medium is, however, effec-
ted by a membrane pump which because of its intermittent mode of
operation is not as favourable as a radial pump. In JIL only pumps
of the latter type should be used. At a total pressure of 750 mbar
(80 mbar i-C3F,I + 670 mbar Ar) the flow velocity achieved in the
quartz tube amounts to v = 12 m/s yielding a Reynolds number of

16.000 and a throughput time of &/v ~ 0.2 s what is sufficient for
an operation of up to 1 Hz.

The electrical circuit is a little bit slower than that of the
oscillator., The uv-light rise time is 1.5 us and the first current
zero occurs after 4 us. The routine voltage is 40 kV corresponding
to a flashlamp loading of 500 J 2 12 J/cm3 or 3 MW/cm3 each. The
flashlamps have been fired for over 10.000 shots and are still in
good shape. Their lifetime estimated on their present state should
be more than 20.000 shots. The electrical circuit allows repetition
rates up to 1 Hz.

The frequency doubling crystal is made of highly deuterated KD*P

(> 95 %) and cut according to type II phase matching. The effective
area is 12x12 mm?Z, The phase matching angle amounts to 51°. The
crystal is enclosed in a cell filled with dry air. Crystal cooling
turned out not to be necessary. In order to achieve a power density
of the order of 1 GW/cm? the beam is gently focused by means of the
spatial filter behind the pulse cutting system (see Fig. 4.1). The
crystal is placed in the beam waist to ensure optimal conditions

for a good frequence conversion,
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4.2 Results Obtained with the Test Laser Facility

Firstly investigations regarding the oscillator including the
Pockels cell shutter will be reported. Then the performance of the

entire system will be presented.

4,2,1 Oscillator

In all the experiments described below the oscillator is operated
with 100 mbar i-C3;F,;I and 2 bar argon. Under these conditions the
oscillator emits a pulse train with an energy of 6.3 * 0.5 mJ in
the TEMOO-mode.

a) b)

ourk 15
125 m Y/ m2

367 hte

Fig. 4.2: Pulse train energy a) and mode pattern b) at 1 Hz.

As can be seen from Fig. 4.2 pulse train energy and mode pattern
are stable at the desired 1 Hz-operation., The three peak pulses of
the pulse train have almost the same energy and one of them is
selected for transmission by the pulse cutting system which works
with a reliability of 90 %, i. e. in 9 out of 10 cases it functions
properly. (The JIL pulse cutting system will have a better perfor-
mance). Figs., 4.3a,b show single pulse energy and duration behind
the pulse cutting system.



Fig. 4.3: Single pulse energy a) and duration b) behind the pulse
cutting system at 1 Hz

The average single pulse energy and duration are 0.9 mJ and 0.95
ns. The pulse shape is not as stable as it could be. This is due to
the mode locker whose depth of modulation is insufficient, The JIL-

mode locker will produce more stable pulses.

The directional stability of the transmitted oscillator pulse is
measured by focusing it on the screen of a near infrared sensitive
vidicon placed in the focal plane of a lens. Within the measuring
acuracy of * 20 uyrad the beam proved to be directionally stable.
This means that after a distance of 100 m the transverse beam dis-
placement will not vary by more than * 2 mm from shot to shot at

1 Hz. This satisfying result does not change when the amplifier is
also fired.

4.2.2 Entire System

When the entire system is fired pulse energy and duration at w and
2w are simultaneously recordes (see Fig. 4.1), The pulse durations

at w and 2w turned out to be equal and have an average of .95 ns.
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This value is larger than that aimed at in JIL where 300 ps are
required. This pulse duration will be realized by two measures,
Firstly a mode locker already in operation in STERIX III will be
used yielding a pulse duration of 500 ps. Secondly, by amplifica-
tion in the saturation regime the pulse will be compressed to 300
ps. Since in this feasibility study the exact realization of the
desired pulse duration is of minor importance no effort was made in
this directions,

Fig. 4.4: a) Calorimeter recordings at w and 2w
b) 2w-burn pattern magnified by a negative lens

Fig. 4.4a shows recordings of the pulse energy at w and 2w for a
sequence of 12 pulses at a repetition rate of 1 Hz yielding E, = 90
t 11 mJ and E2m = 40 * 5 mJ with a corresponding conversion effi-
ciency of N, = E2m/Em = 45 £ 3 %. This value is rather close to the
desired 50 % so that no attempt was made to increase the conversion
efficiency any further by modifying the beam optics and thereby
enhancing the intensity at the crystal position above the 1 GW/cm2
level used in the experiments described. The measured conversion

efficiencies agree with the values previously reported /12/.
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As can be seen from a comparison of Figs. 4.2b and 4.4b the 2w-burn
pattern is a good reproduction of that at w. This result is further
supported by measurements of the 2w-beam quality using a pinhole.
In reference to the w-case no deterioration could be detected lea-
ding thus to the conclusion that the frequency conversion process
does not impair the beam quality which is here about 2 times dif-
fraction limited.

In conclusion, it can be stated that the test laser has met all the

requirements imposed as far as 1 Hz-operation, directional and

transverse mode stability and conversion efficiency are concerned.

4.3 Design and Qutlay of JIL

A 1 Hz iodine laser with an otuput energy in the 35 J range (1 w)
was designed on the basis of the results of the feasibility study
described in the preceding sections and on the basis of our expe-
rience with pulsed high-power iodine lasers. The guiding lines here
were: simplicity of layout, loading of components (per shot) lower
than in systems designed for single-shot operation and low mainten-
ance effort.

The active components of the 1 Hz laser are the oscillator and
three amplifiers of increasing beam diameter and stored inversion

energy (Fig. 4.5). The specifications of this laser are listed in
Table 4.T.

The oscillator has to be acousto-optically mode-locked to ensure
pulses with lengths of about 500 ps. These pulses will then be
shortened to the required output pulse length of about 300 ps in
the saturation region of the following amplifiers. Since the pulse
length of an oscillator is inversely proportional to the sqguare
root of the gas pressure (band width of the laser transition), a
shorter pulse length can be achieved when the buffer gas pressure
in the oscillator is further enhanced /12,p.51/.
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Table 4.1

Layout data of JIL
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The amplifiers are of modular design. They consist of 2 or 3 sec-
tions., Each section has an active length of 0.9 m. It consists of a
quartz tube for the laser medium and is surrounded by linear flash-

lamps and their reflectors. Each section has its own capacitor
bank.

The first of the three amplifiers is operated in the double-pass
mode. This kind of operation was chosen in order to provide a
faster transition from the small-signal to the saturation region
and hence more effective energy extraction from the amplifier
chain. The incoming and outgoing beams are separated by a polarisa-
tion sensitive mirror. The polarisation plane is rotated 90° with
the Pockels cell PZ1 (Fig. 4.5).

From the pulse train emitted by the oscillator a single pulse has
to be extracted by a pulse selection system. Such a system more
advanced and with better performance than that used in the test

laser is already commercially available.

Optical beam expansion elements have to be installed between the
amplifiers in order to prevent overloading and thus destruction of

optical components at the exits of the amplifiers.

Pockels cells are used for optical isolation of the amplifiers and

for decoupoling the first amplifier from the end-mirror.

The frequency doubling of the laser light will be provided by a
KD*P crystal. Since the beam gquality of the laser light is expected
to be 2-3 times diffraction-limited, a conversion efficiency of
about 50 % should be achieved. KD*P crystals have, however, a lower
damage threshold than AR coatings of optical components. After
leaving the last amplifier the beam is therefore firstly expanded
to the desired diameter of 75 mm and then fed to the crystal.

The laser medium of the oscillator and the amplifiers will be cir-
culated at a velocity ensuring a turbulent flow. For regeneration

of the laser medium the same principle will be used as in conven-

tional iodine lasers. The laser gas passes through a vessel where
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stored liquid i-C3F;I is cooled to a temperature at which its va-
pour pressure corresponds to the required i-C,F,I pressure in the
laser tube. The storage vessels for the laser medium should be of
such a size that the laser medium has to be replaced after several
thousand shots. The cooling temperature of the storage vessels
ranges between =10 °C and -35 °C.

Feasibility studies with the most commonly used argon as buffer gas
showed that flashlamp heating impairs the optical homogeneity of
the laser medium. The laser tubes have therefore to be cooled. At
MPQ a double-wall water-cooled amplifier has been developed which
has proved to be very reliable in operation, In 1 Hz operation an
optically homogeneous laser medium could be maintained with this
cooling system., The pumping efficiency, however, dropped by 10 %.
Later investigations performed with helium as buffer gas revealed
that with this gas the optical homgeneity is much less affected by
thermal influences than in the case of argon. It cannot yet be
decided, however, whether the water cooling of the amplifier for 1

Hz operation will not be necessary if helium is used.

The oscillator and the amplifiers are pumped by flashlamps consi-
sting of quartz tubes filled with xenon at a pressure of 40 mbar.
For these flashlamps a new type of current duct will be used which
not only reduces the inductance of the electric circuit but also
appreciably prolonges the lifetime of the flashlamps. The details
are described in the flashlamp report. Tests revealed that at the
proposed loading the lifetime of the flashlamps will exceed 25,000
shots.

The 4 flashlamps of the oscillator and of one amplifier section are
operated in parallel and powered by a capacitor bank. The specifi-
cations of these capacitor banks are listed in Table 4.II. The same
type of capacitors shall be used for the capacitor banks of the
amplifier sections. Only for the oscillator a different type with a
lower inductance is proposed. To obtain short pumping times the
inductance of the electric circuits should be as low as possible.

The capacitor banks should therefore be positioned as close as




Table 4.11

JIL-Capacitor Bank

Osc. 1. Ampl. 2. Ampl. 3. Ampl.
Data of a single capacitor '
capacity of 1 capacitor 1,1 uF 5 wF 5 uF 5 uf
inductance 50 nH 75 nH 75 nH 75 nH
resistance = 15 mex 15 m2 15 ma
Ftored energy at 40 kv 0,88 kJ 4 kJ 4 kd 4 kd

dimensions L x W x H (cm3) 33x15x55 cm3 | 36x22x49 cm® | 36x22x49 cm3  36x22x49 cm3

1
—

i Data of 1 capacitor bank

|
; 1
number of ¢ap. danks | 1 2 2 | 3

i
s

humber of cap./oank 1 1 2 i 2

1 kJ at 42,6 kv| 4,4kJatd2 ki| 7kJat37,5kV! 8,3 kJ at 41 kﬂ

stored energy at kV

Eaaacity of a dank 1,1 uF 5 wf 10 wF ¢ 10 wF

Inductance of 1 circuit

capacitor Jans 50 nH 75 nH 38 nH 38 nH

spark gap i 70 nH 70 nH 70 nH 70 nH
flashiamp (numoer) | B0 nH  (4)]160 nH (4) 170 nH (84) 176 nn (4)
%able I 60 nH 60 nH 60 nH © 60 nn

Stric line | 15 nH 15 nH 20 nH 20 nH

Total inductance 275 nH 380 nH ETE __"é 353-;;_
T=2ayLC 3,0 us 8.6 us 11,9 us 11,9 us
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possible to the flashlamps to reduce the inductance of the supply
line,

The oscillator and the amplifiers have to be equipped with a vacu-
umpumping system which allows the laser tubes to be evacuated to a
pressure of 1073 mbar. Measures have to be taken to prevent pumping
0il vapour from penetrating into the laser tube and iodine into the
pump. Otherwise chemical reactions will take place, leading in the
laser tubes to formation of pump light absorbing layers, and in the
pumps to decomposition of the pumping oil. Fluorinated oils have
turned out to lead to significently less

contamination problems then hydrated oils. All components which
have contact with the i-C3F;I of the laser medium have to be made
of quartz, glass, special plastics or aluminium. Metals such as
iron, stainless steel and copper show a chemical reaction with the
laser medium.

All the components of the laser system are listed in Table 4,I1I.

The specifications on the weights are estimated values which may
have an accuracy of 20 %.

4,4 Maintenance Effort, Spare Components

From our experience with a conventional high-power iodine laser the
maintenance effort for JIL in daily operation can be expected to be
relatively modest. It is mainly concerned with control of the beam
alignment., In long-term operation the laser medium has to be re-
plenished after a certain number of shots and the molecular iodine
has to be removed from the storage vessel for the laser medium,
This procedure can be performed within 2-3 hours. This maintenance
interval depends on the size of the storage vessel for the laser
medium, It should have a capacity sufficient to allow at least 5000
shots.

The flashlamp should be replaced after about 25.000 shots. With the
amplifier contruction used at MPQ, in which the flashlamps are
fixed to detachable shells, the flashlamps can easily be replaced.




Table 4.111

Register of JIL-Components

Components term, |weight term |weight term ight term peight Remarks

posit|(kg) posit| (kg) posit [(kg) posit |(kg)
Laser tube
housing, flashl., etc.]Osc 80 Al 60 A2 120 A3 220
Capacitor panks BO 30 Bla,b| 60 B2a,b 200 B3a,y 320 Pos. close to osc.,

c amplifiers

Trigger units tor 10 ;?r 30 Igr 30 xgr 30

Osc.
Charging units CHO 20 CH1 100 CH2 | 200 CH3 | 250
Laser medium for for for for Pos. close tc osc.
regeneration syst. Osc. | 10 Al 10 A2 20 A3 20 amplifiers
Cooling Units cuo 30 cn 30 cu2 200 Cu3 | 300
Amplifier for for for for Pos. close to osc.
cooling systems Osc. | 10 A 20 A2 30 A3 30 amplifiers
Beam expans.
systems BE1 5 BE2 5 BE3 10 BE4 10
Pulse selection syst.
Pockels cells ; PSS 40 PC1 30 PC2 30 PC3 30
o ) fror for for for Pos. close to osc.,
Vacuum systems Osc. | 30 Al 40 A2 50 A3 53 amplifiers
KD*P crystall KD*P| 10
Total 265 385 890 1250 2790 kg
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Spare shells can be prepared in advance so that replacement of the
flashlamps is not time-consuming. The spark gap of the capacitor

banks should also be checked at the same time intervals.

Further maintenance service is necessary for the vaccum systems of
the oscillator and the amplifiers. The pumps have to be checked at
certain time intervals and care always has to be taken to ensure

that no molecular iodine penetrates into the pumping system.

An important condition for reliable laser operation at the required
energy level is the vacuum thightness of the laser medium circula-
tion system. The leak rates should not be larger than 107% mbar %/s.
Otherwise too much oxygen, which is a strong quencher for the exci-
ted iodine atoms, diffuses into the circulation system in spite of
the fact that the pressure of the laser medium is higher than the
atmospheric pressure and thus impairs the laser performance. To
ensure that all parts of the system are tight, it should be checked
with a He leak detection system after assembling. It should always
be ensured that no pump oil vapour penetrates into the circulation
system. It will be decomposed by the pump light and a carbon layer
then forms on the inner surface of the amplifier quartz tube. Such
a layer can reduce the pumping efficiency by more than 50 %. The
cooling fluid of the coolers for the laser medium storage vessels

should be replaced at time intervals of about 1 year.

A stock of spare parts should be kept to avoid excessively long
standstill times when system components fail. Besides parts such as
flashlams which are subject to wear, other components which can
become defective or which may be destroyed during operation should
also be kept in stock. To keep this number small, these parts
should be standardized as far as possible. The stock should com-
prise the following components: two types of flashlamps (for the
oscillator and the amplifiers), span shells for the flashlamps,
quartz tubes for the oscillator and the amplifiers, vacuum compo-
nents such as 1 pumping set, pressure gauges, valves etc., 2 types
of spark gaps and capacitors (for the oscillator and amplifiers), 2
types of trigger units (for the oscillator and the amplifiers), 1

time delay unit, 1 charging unit for the trigger units of the am-
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plifiers, spare parts for the charging units of the capacitor bank,
spare parts for the pulse selection system and for the driving
units of the Pockels cells, 4 storage vessels for the laser medium
(to replace those used and contaminated with molecular iodine),

1 circulation pump for the laser medium, 1 cooling unit for the
laser medium storage vessel, optical components such as oscillator
and amplifier windows, dielectric-coated mirrors, polarisers,
Pockels cells, 1 KD*P crystal, beam splitter, lenses for the beam
expansion system, spare components for the pulse length and pulse
energy measuring system,

The whole JIL system can be operated and maintained by one well-

trained technician.

To summarize:

With a small test laser consisting of a water-cooled mode-locked
oscillator, a pulse selecting system, one air-cooled amplifier and
a frequency doubling KD*P crystal the feasibility of a 1 Hz-opera-
tion extending over a sequence of 10 shots could be successfully
demonstrated. At 2w (657 nm) the pulse had an energy of 40 mJ and a
duration of 950 ps whereby a conversion efficiency of 45 % was
achieved. According to our present experience a system meeting the
required specifications of 10 pulses with 1 Hz repetition rate and
15 J/0.3 ns per pulse at 657 nm can be confidentially built based
upon the technology and design considerations employed in the small
test laser,

A 2- to 3- Hz operation seems feasible if the flow velocity of the
laser medium is correspondingly increased and all amplifier quartz
tubes are water-cooled. Eventually the flashlamps have also to be

gas—-cooled.
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4.5 LIFETIME TEST OF FLASHLAMPS

The limits of energy deposition in a flash lamp on a single pulse
capacitor discharge have been investigated in an earlier work /14/.
This work was performed with sealed type flash lamps as designed by
industry for laser pumping applications. It was found that destruc-
tion of an 18 mm I.D., 3 mm wall, quartz tube flash lamp occurred,
if a single current pulse of typical 10 usec length and having an
energy of 10 - 12 kJ is supplied to the lamp.

Life tests with 8 kJ pulses showed, that the "sealed type" lamp is

clearly inferior to lamps with demountable electrodes as described

later. The current wave shape of the discharge current pulse in the
lamp is shown in fig. 4.6 for currents from 46 to 77 kA first cur-

rent maximum and corresponding energies from 4 - 12 kJ stored in

the capacitor bank at 40 kv charging voltage.

The Life time of "sealed type" lamps at 8 kJ is only 118 pulses

(mean life, 3 samples) and therefore quite unacceptable.-

A) Flash Lamp Design and System Geometry

The flash lamps used now in all high-power iodine laser systems at
MPQ are all of a demountable electrode design. In a linear quartz
tube of e.g. 18 mm I.D. and typically 1 m length, the electrodes
are held in position by two 0-rings in combination with a conical
pressure ring design. One electrode with a bore allows connection
to the vacuum pump and xenon filling system. The flash tubes under
test were pumped to less than 0.1 mbar and filled with xenon to 40
mbar. If during testing the pressure gradually rises, pumping and
filling has to be repeated.

In normal operation the xenon has to be renewed after 80 - 100

shots at the 2 kJ pumping level.

In the usual laser geometry, the flash lamps are arranged within a
stainless steel laser tube close to the tube wall as indicated in
Fig. 4.7 A lamp reflector, made of aluminum sheet, is situated be-
tween flash tube and laser tube wall.
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In this geometry, called "normal, with reflector", a magnetic pres-
sure due to the return current within the reflector and SS-laser
tube wall is driving the xenon plasma towards the opposite quartz

wall causing there extensive wall erosion.

In earlier tests it was demonstrated, that an increased tube life
with much less wall erosion is achieved, if the return current is
led through a coaxial copper tube, enclosing the flash tube comple-
tely. After more than 2000 shots a 8 kJ, the quartz wall was still
clear, with only a few tiny cracks inside the wall structure,
However, the completely closed "coaxial return" conductor is not
applicable for laser pumping, as it screens perfectly the laser
pumping light.

A new design with a three-conductor return cage has been designed
and tested in collaboration with MPQ. This configuration, as shown
in Fig. 4.7, called "cage geometry", has been adopted for the new
laser amplifier system of ASTERIX at MPQ and it also is planned for
the proposed LIDAR diagnostic laser system,

B) Life Test with Flash Tubes for LIDAR

The main goal of the life tests is to establish a safe energy level
for the 18 mm I.D., flash lamps for the LIDAR laser. As listed in
Table 4.1V, the life of 18 mm tubes was found for a 40 kV bank
charging with varying capacitor number, to store either 4 or 8 kJ
and dischérge to the lamp under test. The maximum pulse sequence
obtained with the equipment available, is 10 pulse/min with a wave
shape as shown in Fig. 4.6. This is well enough representative for
the diagnostic laser operation at 1 Hz - with a pulse train of 10
pulses per each experimental run - as thermal problems are not

envisaged.

3 lamps were subjected each to 8 kJ per pulse and this gave a mean
life of 1237 pulses (sample JET 1 and JET 3). The third sample was
broken during routine inspection and therefore its pulse number was
been neglected. At the 4 kJ level one lamp withstood 4931 pulses.
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Table 4,IV: Life-test Results
Flash-Lamps for LIDAR-Laser

General: Lamp Diameter 18 mm ¢i
Lamp Length typ. 1 m
Quartz Tube Heralux WG

wall thickness ~ 3 mm

Sample type Pulse data total pluses to destruction
U E I
max
KV KJ KA
JET 1 40 8 65 1360

small line-cracks

JET 2 40 8 65 680
breaking by mounting

JET 3 40 8 65 1115
small cracks all over inner
surface

JET 4 40 4 48 4931

small cracks, loss of vacuum

JET 5 40 4 41* 2151
test stopped due to
Laboratory rebuilding

JET 6 40 2 20000

tests stopped without
indication for near-future
failure

JET 7 40 2 20000

' tests stopped without
indication for near-future
failure

* stainless steel return cage gives lower current.
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From experience with flash lamps pumped in the msec-range, life
scales with energy according to an l/En-law. From the small sample
test, so far conducted in the psec-range, n ~ 2 has been found,
which is in disagreement with the predicted n-values in the order
of 8.

In the LIDAR laser system flash lamps will be subjected to pulses
of about 2 kJ. This means, according to the 1/E2 law, a lamp life
of about 2.10% pulses or 2000 experimental runs can be expected.

Two flashlamps of the new design have been tested at the envisaged

level of 2 kJ. Both flashlamps withstood 20000 discharges without
breaking. i

The subsequent optical inspection showed that the quartz tubes
remained clear at this energy level and shot number. There was no
indication that the flashlamps would tend to break soon after com-
pletion of the 20000 shot cycle.

Both lamps were evacuated and filled with 25 Torr of Xe only once,
at the start of the test. After 20000 discharges the filling pres-
sure had risen only by a few Torr.




5 DETECTION SYSTEM

5.1 Detector Tests

An ITT F 4128 microchannelplate photomultiplier has been chosen as
detector since this photomultiplier offers the best compromise be-
tween speed and gain. 1Its data are summarized in the attached data
sheet (see Appendix). The general properties of MCP detector devi-
Cces are given in the attached Technical Note by ITT (see Appendix).

In order to investigate experimentally the properties of the detec-
tor, one sample has been bought. The photomultiplier was ordered
with

- MA-1 photocathode which equals in spectral sensitivity approxima-
tely the S-20 type being used for the s/N estimates,

= a 10 mm diameter sensitive area which is large enough for the
proposed diagnostic method,

- no ion barrier film on the MCP. Thus the expected lifetime of the
detector corresponds to an accumulated charge output of about 20
mC (instead of about 2 C with film). This output will add up over
about 3 x 106 laser shots, quite a large number for the intended
application.

The attached performance test report by ITT (see Appendix) des-
cribes the spectral and the gain properties of the detector.

We have tested the speed of the detector, its gating and its satu-

ration recovery properties.

5.1.1 Response Time

For measuring the response time of the detector, a subnanosecond
Na:Fluorescein dye laser pumped by a nitrogen TEA laser was set up.
The signals were recorded with a TEKTRONIX 661 sampling oscillos-
cope with a 4 S 2 plug-in (10 % - 90 % rise time of 90 ps). For
reference the laser pulses from the dye laser were monitored using
a@ VALVO TVHR 06 vacuum photodiode with 70 pPs rise time, The com-

bined risetime of photodiode and sampling oscilloscope is about
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115 ps. Signal averaging was performed with the sampling oscillos-
cope in case of the photomultiplier signals.

Fig. 5.1 shows the diode signal and Fig. 5.2 that of the photomul-
tiplier. The photomultiplier was operated with the following volta-
ges: PC-MCP: 150 Vv, MCP: 1760 VvV, MCP-Anode: 300 V. The pulse

heights correspond to pulse heights expected for the LIDAR scatter-
ing signals.

From the 10 % - 90 % risetime of the signal in Fig. 5.1 the rise-

time of the laser pulse is inferred to be

AR LensizL  , DiodE \2 Ny
2 j//?;,, )l ) - () = A30ps

Inserting this value into the corresponding relation for the photo-
multiplier signal, one gets a risetime of the F 4128 of about 180
ps. This value compares well with the number of 125 ps given by ITT
(Technical Note No. 127, 9.4, see Appendix), taking into account
that it was taken from a measurement with finite laser pulse dura-
tion (using a relation for the combined risetime which holds for

linear electronic systems).

The FWHM of the photomultiplier signal is about 400 ps. Thus, even
without any correction for the finite laser pulse duration, it can
be concluded that the response time of the detector is shorter than
that of the available 1 GHz oscilloscope system. The F 4128 there-
fore satisfies the requirements of the LIDAR system with respect to

frequency response.




Fig. 5.1: 200 ps/div. VALVO TVHR 06 100 mv/div,

Fig. 5.2: 200 ps / div. ITT F 4128 100 mv/div,
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5.1.2 Saturation Recovery

Considering the possibility of a spatial scan and the question
whether a laser beam dump is really required, we have investigated
the behaviour of the detector when it is irradiated by an intense
light pulse directly after the measurement. For these measurements
the detector was irradiated with two dye laser pulses 18 ns apart
at the repetition rate of 30 Hz. The signals were registered with
a 500 MHz TEK 7904/7A19 plug-in oscilloscope.

First, both laser pulses were attenuated individually to about

equal amplitude. Fig. 5.3 shows an overlay of 120 oscilloscope

traces at these conditions.

Then the attenuation of the second laser pulse was reduced by a

factor of 103, Thus the second laser pulse completely saturated

the photomultiplier.

The result is shown in Fig. 5.4 a+b (again an overlay of 120

traces). As can be seen from the oscillograms, the first signal

remains unchanged. This demonstrates

a) that the photomultiplier is not destroyed by heavy over-
loading even without gating, and

b) that the detector will registrate a weak signal (pulse 1
contains about 1000 photoelectrons) 30 ms after such a
maltreatment with its normal sensitivity.

These effects are explained by the fact that the device operates

from the charge stored capacitively in the highly resistive MCP.

An intense light pulse will deplete this charge, thus reducing the

gain - which in turn protects the photomultiplier against destruc-

tion.,.

5.1.3 Gating

For testing the gating properties of the F4128 a cable discharge
pulser with a transistor switch was built capable of delivering
pulses of up to -180 V. The switch is triggered optoelectronically
with very low time jitter from a Si PIN diode (risetime 0.5 ns).
The internal delay of the switch is 24 ns. The gating pulses are
coupled via capacitors to the photocathode / MCP input. They can
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TRIGGER PULSE

PULSE

no. 1 no., 2

roy

Saturation Recovery

Fig. 5.3 : 5 ns/Div.
200 mV/Div.

Fig. 5.4a : 5 ns/Div.
200 mV/Div,

Fig. 5.4b : 5 ns/Div.
10 ¥ /Div.
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be delayed with respect to the optical pulses by changing the
length of the transmitting cable.

In the "off"-mode of the detector the photocathode potential with
respect to the MCP input can be kept at different positive levels
or at zero.,

The gating properties of the detector were tested with a set-up
shown schematically in Fig. 5.5.

The light pulse 2 irradiating the detector was delayed by 18 ns
against pulse 1. This corresponds to the time interval between the
stray light pulse from the window at the torus vessel and the
onset of the scattering signal from the plasma boundary. Approxi-
mately the same time interval occurs between the end of the meas-

urement and the arrival of the stray light from the exit window.

The attenuation of the laser pulses was done by reflecting filters
and absorbing neutral density filters. In the latter case blea-
ching effects can be excluded since the attenuation factors were
measured both at the dye laser power level and at a much lower cw
intensity; no changes were observed.

In case of the attenuator A3 the optical filters were placed be-
hind a scatter plate ensuring homogeneous illumination of the
photocathode.

I. Static closure ratio

At a +10 V photocathode potential (with respect to the adjacent
MCP input plane) the attenuation of A3 was reduced by a factor of
10® and the sensitivity of the oscilloscope was increased by a
factor of 10. No signals could be observed., This result agrees
with measurements at ITT (see Appendix), which yielded a closure
factor of 2 x 108,

First, it was tested whether the gating pulse was applied to the
photocathode at the correct time, that means at a time when light
pulse no. 1 arrives still in the "off"-mode of the detector and

pulse no. 2 arrives in the "on"-mode.
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Fig. 5.5 : Optical Set-Up , Schematic
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For this purpose the length of the cable connecting the pulser
with the detector was varied. The series of oscillograms in Fig.
5.6 shows

a) once more the time history of the light pulses for reference
(output signal of the F 4128; the height of pulse no. 2
corresponds to 500 photoelectrons).

b) the gating pulse signal as observed when feeding the pulser
output (after 1:100 attenuation) directly to the oscilloscope,
and

c) the signal of the F 4128 when it is gated with this pulse
without any additional delay lines. The optical filters in
front of the detector (A3) are the same for a) and c).

Each oscillogram is an overlay of 120 traces.

From this series of oscillograms one can see that

I. The amplitude of the ringing induced in the MCP photomul ti-
plier output at this time is still of the same amplitude as
the signals to be expected for the LIDAR experiment. However,
the ringing is very reproducible and can easily be subtrac-
ted.

II. The time jitter of the optically triggered pulser is negli-
gible.

III. The shape of the ringing signal indicates that the gating
pulse is distorted and delayed when being applied to the
photomultiplier supply circuit. This distortion however does
not lead to a noticeable change of the photomultiplier gain.
This is explained by the rather weak dependence of the multi-
plier gain on the photocathode/MCP input voltage,

IV. Pulse no. 1 is already suppressed by a factor of >20, that
means that gating already is observed,

In order to optimize the timing of the gating, optical filters

were removed from the attenuator Al (Fig. 5.5), thus increasing
the optical pulse power at the detector by a factor of 10%,

Fig. 5.7 shows a series of oscillograms where the delay of the
gate pulse is increased with increments of 2.5 ns. The stationary
potential of the photocathode with respect to the MCP input was
chosen as + 10 Vv ("off"-mode).
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v

Gating Properties

DETECTOR "ON"

Fig., 5.6a : 5ns/Div.
200 mV/Div.

GAITING PULSE

Fig. 5.6b : 5ns/Div.
500 mV/Div.
20 dB Atten.

DETECTOR GATED

Fig, 5.6c : 5ns/Div.
200 mV/Div.




Fig. 5.7a: At = 0.0 ns
Fig. 5.7b: At = 2.5 ns
Fig. 5.7c: At = 5.0 ns

Fig. 5.7d: At =

Fig. 5.7e: At =
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The oscillogram 5.7a corresponds to the case of oscillogram 5.6c
with the only difference that the power of light pulse no. 1 is
increased by 10%. As can be seen, the detector is driven into
saturation. It has not recovered its gain when pulse no. 2 arrives
18 ns. later.

When the gating pulse is delayed by 2.5 ns in addition (oscillogram
5.7b the overloading of the detector disappears and pulse no. 2 is
observed with normal amplitude. This indicates that the gating

pulse in a) was applied a little bit too early.

However, for all the different delay times one observes a signal
pulse with an extended tail which occurs at a fixed amplitude of
the leading edge of the gate pulse. The charge contained within

this signal decreases with increasing delay time.

The amplitude of pulse no. 2 always remains unchanged by the pre-
ceding signal. This is understood by considering that the preceding
signal depletes the available output charge from the MCP by only
less than 3 %,

At the optimized delay (2.5 ns) a second series of oscillograms
shown in Fig. 5.8 demonstrates the influence of the stationary
cathode potential (in this series chosen as +40 V). In this series
optical filters were taken from attenuator A3 and added to attenua-
tor A2. Thus the intensity of the optical pulse no, 2 remained un-
changed, whereas the power of the preceding pulse no. 1 is in-
creased.

For reference the oscillogram 5.8a once more shows the case where
the detector is operated in the dc "on"-mode (cathode potential

= 150 Vv dc). In oscillogram 5.8c the power of pulse no, 1 is in-
creased by 10" and in oscillogram 5.8d by 7 x 104, respectively.
For reference, the pulse no. 1 is blocked off in the oscillograms
5.8b and 5.8e. Again the preceding signal due to pulse no. 1 can be
observed. It depletes the available charge by 3 % in 5.8c and by

15 % in 5.8d. Even in the latter case the amplitude of pulse no.2

remains unchanged, but the subtraction of the base line would in-
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Gating Properties, Delay Fixed (2.5 ns)
Varying Intensity of Pulse no., 1

Fig. 5.8a: 5 ns / div.: 200 mv / div,
DETECTOR "ON"

Fig. 5.8b: 5 ns / div.:
DETECTOR GATED

200 mv / div,

Fig. 5.8c: 5 ns / div.:
DETECTOR GATED

200 mv / div.

Attenuation Factors: §+ = 104

2

Fig., 5.8d: 5 ns / div.: 500 mv / div,

DETECTOR GATED with pulse no. 1

Attenuation Factors: §+ = 7x104

2

Fig., 5.8e: 5 ns / div.:

DETECTOR GATED

500 mv / div.

without pulse no. 1

without pulse no. 1

with pulse no, 1

]
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crease the errors in the LIDAR experiment.
Experiments with cathode potentials of up to +75 V showed no signi-
ficant changes in the gating behaviour.

To summarize:

The experiments which could be done in the short time since the
delivery of the MCP photomultiplier have not yet clarified com-
pletely the gating behaviour of the detector. Strong light pulses
before the gating evidently create a space charge in front of the
photocathode which is not removed completely by counter potentials
of up to 75 V on a time scale of 10 - 20 ns. When the gate pulse is
applied, the remaining charge is swept to the MCP and amplified.
The resulting signal however does not deteriorate the measuring
signal as long as its total charge output is small compared with
the possible charge output of the MCP device. We have not yet found
the optimum gating parameters, but we have operated the photomul-

tiplier under conditions (at full gain!) which allow an optical

prepulse of stray light containing up to 109 photons.
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5.2 Stray Light Measurements

Using a full-scale set-up of the optics shown in Fig. 3.23 (optics
version no. I), measurements of the stray ight level were per-
formed. For this purpose 1 ns frequency-doubled iodine laser pulses
from a mode-locked oscillator with a subsequent single pulse selec-
tion system were used. The energy content of the laser pulses was
50 uJ and the laser was operated at 1 Hz repetition rate. The back-
scattered light was registered with a calibrated HAMAMATSU R 928
photomultiplier (response time 3 ns FWHM, gain 4 x 105 at 600 V,
quantum efficiency 8 % at 657 mm). As mirrors for bending the col-
lected light beam, Al-coated front surface mirrors were taken. The
only difference with respect to the optical system no., I consisted
in using a mirror instead of a prism for coupling in the laser
beam. Four RG 610 colored glass filters, each 3 mm thick were used
in front of the detector to suppress spurious short-wavelength
light from the laser flashlamps. A KG 3 filter served to discrimi-

nate against the fundamental radiation of the iodine laser.

Fig. 5.9 shows the result obtained when neutral density filters
with an attenuation factor of 50 were introduced to ensure unsatu-
rated operation of the photomultiplier., Besides a trigger pulse
from a vacuum photodiode, three pulses can be seen on the trace.
The first, weak one, stems from the lens system L1/L2 and the mir-
rors coupling in the laser beam. The second one results from the
quartz glass window W which was adjusted in such a way that the
specularly reflected part of the laser beam passed outside the lens
system L1/L2. The third, saturated pulse originated from the wall
of the lab hit by the laser pulse.

In Fig. 5.10 the window W was tilted in a manner that the specular
reflection of the laser beam hit the lens L2. Consequently the
signal (charge output) is stronger (by a factor of about 30) than

in the first case.

Taking into account the attenuation of the filters (approx. 200) as
well as the qguantum efficiency and the gain of the detector, a

number of 6.7 x 10% stray light photons are inferred. Thus, for a
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15 J laser pulse, we expect about 2 x 10!0 stray light photon when

an optical system like version I is used.

This number is much smaller than expected by us at the beginning of
this study. It demonstrates that an extremely high degree of stray
light supression can be achieved with geometrical optics for an

optical system with such long optical path lengths.
The low stray light level in combination with the good gating pro-

perties of the F 4128 photomultiplier will allow to use Rayleigh

scattering for calibration (see section 3.3.4).

5.3 Optical Components

At an early stage of the investigations, when both the stray light
level and the gating properties of the photomultiplier had not yet
been examined, much effort was put on the spectral discrimination
against stray light.

Spectrally unshifted laser stray light can be suppressed by the
interference filters of the polychromator and in addition by the
use of mirrors with "cold mirror" characteristics. Such mirrors can
be put into the shielding block to deviate the collected light beam
twice by 90 degrees (see Section 3.3.1).

a) Interference Filters

The possible degree of suppression of the laser radiation is deter-
mined by the ratio of the transmission bandwidth (FWHM) of the
filter and the difference of the laser wavelength AL and the peak
transmission wavelength Ao of the filter. For the envisaged distri-
bution of the spectral channels (see Section 3.1) this ratio is
1.96 for channel I, 1.73 for channel II and 2.28 for channel III,
respectively. Thus, channel II is the most critical one with re-

spect to stray light suppression.

In case of 4-cavity interference filters, producers (e.g. ORIEL)

quote a typical suppression of 10* at a parameter FWHM/(XL - AO) =
1.75 - 2.12 in the visible and near IR spectral region, Better

values can be achieved with filters with more cavities. As an
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example, at the 100 Hz Nd: YAG scattering system on ASDEX, filters
produced by BARR Ass, are presently being used, which show a sup-
pression ratio of up to 107 (see Fig. 5.11) at a parameter FWHM/(A
- AO) = 1.9. Thus, a suppression of 10% can be taken as a conserva~
tive number for this design study.

b) "Cold Mirrors"

The 90° deflecting mirrors located in the shielding block reflect
the polarized collected light one in the s-mode and one in the p-
mode (see Fig. 3.23). In case of dielectric dichroic coatings, the
edge of the reflection band is different for s- and p-polarisation.
Thus, two mirrors with different coatings must be used in order

to minimize the spectral separation between the edge of the resul-
ting transmission band and the laser wavelength.

In a first approach, a set of two mirrors, coated in one charge but
positioned at different distances from the source, were investiga-
ted. The broad bandwidth of the reflection band down to 400 nm was
achieved using two series of cavities of different dielectrics.

The results given in Figs 5.12-5.14 show that this simple method
did not give sufficiently good results. The laser radiation is
suppressed by a factor of 30, but the edge of the transmission band
(80 % absolute transmission) is shifted too far versus the short-
edge = 580 nm). This is due to the fact that
the dip in the slope of the "s"-mirror is too much blue-shifted. An

wavelength region (A

optimisation of the dip position would again yield a suppression of
the laser radiation by about 30, wheres the transmission bandwidth
would cover the whole needed spectral range 390 nm to 620 nm.

In case that the stray light suppression is not needed, these mir-
rors are an alternate choice to broadband metal-coated mirrors (see
Appendix)., This is due to their high reflection coefficient, espe-
cially of the "p"-mirror.
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Proposal for a time-of-flight Thomson backscattering technique for large

fusion devices

H. Salzmann and K. Hirsch

Institut fiir Plasmaforschung, Universitdt Stuttgart, 7000 Stuttgart 80, Federal Republic of Germany
(Received 10 May 1983; accepted for publication 27 October 1983)

The application of 180° Thomson scattering using ultrashort laser pulses for measuring electron
temperature and density profiles in large fusion devices is proposed. Spatial resolution along the
laser beam is achieved by high-speed detection allowing time-of-flight measurements. This
LIDAR (light detection and ranging) technique uses a minimum number of window ports and
reduces the number of optical components in the vicinity of the discharge vessel. As an example,
the performance of such a system for the JET tokamak geometry is discussed on the basis of

available laser and detection technology.

PACS numbers: 52.70.Kz, 42.60.Kg, 52.40.Db, 52.25.Lp

INTRODUCTION

Thomson scattering of laser radiation is a well-established
technique for measuring electron temperature and density in
aplasma.' The application to large plasma devices, however,
becomes difficult when the plasma machine and its vicinity
become inaccessible due to activation.’”

This means that the intricate collection optics for a spa-
tial multichannel system, located near the plasma device,
must be kept aligned with respect to the laser beam by re-
mote control. Thus, the costs of a Thomson scattering sys-
tem for a fusion device are very high. Also the problems of
access for repairs make reliability a key issue.

Keeping in mind an application to a plasma machine
with parameters near ignition, one can write down a number
of conditions which should be met by a Thomson scattering
arrangement: (1) The diagnostic system should require the
minimum possible number of windows, which furthermore
should have small dimensions. (2) The number of optical
components in the vicinity of the plasma machine should be
kept to a minimum, thus facilitating remote control. (3) The
collecting and transmitting optics should be radiation resis-
tant. (4) The required penetration of the biological shield
surrounding the plasma machine should be as small as possi-
ble. (5) The laser and the detectors should be located outside
the biological shield and be accessible for maintenance. (6)
Electron density and temperature need to be measured with
sufficient resolution along a spatial chord and with sufficient
accuracy to accomplish the experimental goals. The mea-
surements should be repeated as often as possible during a
plasma discharge.

Based on the geometry of the JET tokamak we will dis-
cuss a possible Thomson scattering arrangement which
meets all these requirements. JET is a large tokamak with
dimensions (minor radii 1.25 X 2.2-m D shaped, major radi-
us 2.96 m) within a factor of 2 or 3 of those expected in a
future reactor. For Ohmically heated discharges a mean
electron density of 1-3X 10" cm~* and a mean electron
temperature of about 600 eV are expected. With 25-MW
additional heating power (neutral injection and rf heating) an

457 Rev. Sci. Instrum. 55 (4), April 1984
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average electron temperature of more than 5 keV at a density
of about 10" ¢cm~? is predicted in case of the hydrogen and
deuterium discharges.

I. PRINCIPLE OF OPERATION

For Thomson scattering on large plasma devices there
exist two possible arrangements in which the optical align-
ment can be made stable so that remote control is not neces-
sary, namely, small angle forward scattering and back-
scattering. In both cases it is possible to couple the collection
optics rigidly with the focusing optics.* Thus, the scattering
volume may be shifted slightly within the plasma due to vi-
brations, but the alignment between laser and detection sys-
tems remains fixed.

Neither of these scattering geometries have yet been
tried on large plasma devices. There are several reasons for
this: (1) The spatial resolution decreases when the scattering
angle approaches either 0° or 180°. (2) Plasma radiation is
strong in the case of backscattering due to the broad scat-
tered spectrum. (3) Stray light suppression can be a problem
for both forward and backscattering.

For backscattering (Fig. 1) all these disadvantages can
be avoided using subnanosecond laser pulses and a high-
speed detection system: (1) The spatial resolution will be
achieved via a time-of-flight measurement as in LIDAR
techniques. It is determined by the laser-pulse length and the
response time of the detection sytem. (2) The plasma back-
ground radiation registered during the gating time of a few
hundred picoseconds will be two orders of magnitude less
than with conventional 90° Thomson scattering setups. (3)
Stray light will arrive at the detector at other times than the
scattered light and can thus be discriminated against.

This scheme offers two additional advantages: (a) In
principle the scattering system needs only one window, and
(b) for 180° scattering and time-of-flight discrimination, only
one collection and transmission optic is necessary. In this
single-optical channel the signals from all spatial points are
multiplexed in time.
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Fi1G. 1. Scheme of the Thomson backscattering arrangement.

The spatial solution Ax achieved in backscattering is
given by

Ax =c/2(t; +t,), (1)

where ¢ is the velocity of light, ¢, the laser pulse width, and 7,
the response time of the detection system.® With reasonable
numbers for ¢, and ¢, values for Ax well below 10 cm result.
This resolution is sufficient for large tokamaks like JET.
Though in principle this arrangement seems simple, its real-
ization on a large machine needs a detailed discussion of the
components and the measuring procedure.

Il. LASER TECHNOLOGY

In order to achieve a small statistical error of the Thom-
son scattering measurements, a large number of collected
scattered photons is necessary. This requires single-pulse la-
ser energies of several Joules. To our knowledge at present
there exists only two laser systems which are capable of deli-
vering such an energy in a subnanosecond pulse:

The ND: glass laser (A = 1.06 pm): For laser fusion
multikilojoule subnanosecond laser systems have been de-
veloped by different laboratories. Typically, an energy of 30
J in the IR with a pulse duration of 500 ps requires a four-
stage amplifier chain with a diameter of the final rod of about
6 cm.” For a 50-ps operation the output of such a system is
only about 1J.

The photochemical iodine laser (A = 1.315 um): The io-
dine laser operated at the Max-Planck-Institut fiir Quanten-
optik, Garching, emits pulses of 7, = 300 ps duration with
an energy of up to 300 J.% The beam divergence is about twice
the diffraction limit. Pulses of 150 J are being frequency dou-
bled routinely to yield about 90 J of laser energy at 657 nm.
For obtaining a laser energy of 30 J at the fundamental or 15
J at the harmonic, three amplifiers are needed.” The diame-
ter of the last amplifier is about 5 cm.

A point in favor of the iodine gas laser is the possibility
of repetitive operation. There are no physical reasons which
prohibit, respectively, pulsed operation in the 1-Hz range.
As an example, at the University of Manchester a small
sealed iodine laser in which the required gas flow was driven
thermally was operated with 100 mJ at 10 pps.'®

Important for the intended application of the ultrashort
pulse laser is the peak-to-background contrast. Since this is
also a decisive factor for laser fusion experiments it has been
investigated thoroughly for both laser types. In case of the
300-ps iodine laser at its fundamental wavelength the 30-J,
laser pulse rises from a background intensity of about 100 W
which is due to amplified spontaneous emission in the ampli-
fier chain.” The duration of the background intensity is ap-
proximately 10 us corresponding to the flashlamp pump
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pulse duration. In addition to the continuous background,
spurious pulses of ~2 uJ occur periodically corresponding
to the round trip time of the mode-locked oscillator. These
pulses are due to the finite contrast ratio of the pulse-selec-
tion system. In the case of the frequency-doubled iodine laser
the contrast is expected to be much better.

IIl. DETECTION TECHNOLOGY

A number of detectors exist which are suitable for the
detection of subnanosecond light pulses. Among these are
image converter streak cameras, photomultipliers with dis-
crete dynodes, photomultipliers with microchannelplates,
vacuum photodiodes, semiconductor photodiodes, and se-
miconductor avalanche photodiodes. For low-level light de-
tection as in the intended scattering experiment, detectors
without internal amplification cannot be used. Their signal
would be too small to overcome the input noise level of
broadband electronic amplifiers. Taking the parameters of
the example discussed in Sec. IV the product of internal gain
and quantum efficiency of the detector should be at least 50
to ensure a good SNR, even for low-density plasma
(n, = 1x 10" cm—?). Thus, vacuum photodiodes and semi-
conductor photodiodes cannot be used. Semiconductor ava-
lanche photodiodes with the required bandwidth offer only a
small sensitive area, which is not sufficient for the intended
application. In the case of photomultipliers one must also
consider the possible limitation in bandwidth due to the elec-
tronic data acquisition. This could be either a fast real-time
oscilloscope with an oscillogram digitizing system or a fast
transient digitizer. Dynamic range is also an important fac-
tor, since the scattered light power can vary strongly.

The dependence of the dynamic range of streak cameras
on the temporal resolution has been investigated thoroughly
by Thomas et al.''~"* According to their measurements the
dynamic range of the LLL streak camera employing a RCA
C 73435 tube is ~ 10* at a resolution of 100 ps. Of course it is
the dynamic range of the whole detection and registration
system which has to be considered. The photoelectrical scan
of the screen of the streak camera can be done by intensified
charge-coupled devices. The performance of intensified
CCD’s was investigated for a Spacelab spectroscopic sys-
tem.'> A dynamic range of the whole system (including the
image intensifier and data acquisition) of 3 X 10* is reported.

Shorter rise times than those obtained with available
photomultipliers with discrete dynodes'®'” are achieved
with microchannelplate (MCP) photomultipliers. Single-
stage MCP photomultipliers offer a FWHM response time
of about 300 ps (e.g., ITT F4126 and HAMAMATSU R
1564). The low gain of single-stage MCP photomultipliers
(~ 1000) requires further amplification of the signals. Suit-
able amplifiers exist whose noise figure within the required
bandwith is low enough to maintain the SNR of the photo-
multiplier output signal.

The drawback of the MCP photomultipliers is their low
dc current capability which might call for electronic gating
in a Thomson scattering experiment. Gating is possible ac-
cording to the data sheets. Furthermore, the internal ampli-
fication is not as noise-free as that of a conventional photo-
multiplier. This fact is described by a noise factor F which is
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defined as the ratio of the MCP input SNR to the MCP
output SNR. Its value is given as F~1.8.

The signals from the photodetectors can be registered
with fast real-time oscilloscopes or transient digitizers. A
bandwidth of at least 1 GHz is achievable (for instance, using
a TEK 7104 oscilloscope with a 7A29 plug-in).

IV. PERFORMANCE OF A POSSIBLE SYSTEM

We now discuss the performance of a possible setup on
the basis of the geometry of the JET tokamak. A possible
arrangement is shown in Fig. 2.

The laser data of the frequency-doubled, linearly polar-
ized iodine laser are assumed as follows:

pulse energy 157 at 657 nm;
pulse duration 300 ps;
beam diameter 7.5cm; and

beam divergence 5 x diffraction limited.

This laser is located in the roof laboratory above the
torus hall and focused by a /= 840-cm lens L, vertically
through the discharge vessel. One single ceiling penetration
is used both for passing the laser beam and for transmitting
the collected scattered light back to the roof laboratory. A
hole of 10-cm diameter in the 2.5-m-thick biological shield is
sufficient. The laser beam diameter at the window (14-cm
diameter) on the discharge vessel is 4 cm in diameter, which
is large enough to avoid damage by the laser radiation.

The focal-spot diameter in the plasmais ¢ , = 0.04 cm.
Thus, for a 15-J 300-ps laser pulse the ratio of the electron
quiver energy in the electromagnetic laser field to the ther-
mal energy of the electron is only 1% at T, = 300 eV.
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FIG. 2. Proposed setup for the JET tokamak. To allow the display of the
path of rays the scales are different in the vertical and horizontal direction.
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The collection optics is laid out to scan a spatial chord
of 2.5-m length covering the upper part of the plasma and 40
cm of the lower part. It consists of a 23-cm-diameter,
f=420-cm lens L,, with a 7.5-cm hole into which the laser
focusing lens is inserted. Thus, remote control is unneces-
sary since the rigid coupling of focusing and collecting optics
conserves the alignment. The separation of the back-
scattered light from the laser beam can be achieved in the
roof laboratory using geometrical optics (Fig. 2). Introduc-
ing a diaphragm into the detection optics which passes the
collected scattered light from the whole length of the spatial
chord to be investigated (length 2.5 m) without vignetting, a
rather large plasma volume is seen by the detectors: If the
stop is located in the image plane corresponding to the focal
spot of the laser, a plasma volume of 4 ; = 5-cm diameter
(see Fig. 4) and 420-cm length will illuminate the detectors
with an effective solid angle of 4.8 X 10~ * sr. For calculating
the number of background photoelectrons the emission coef-
ficient has been taken as 100 times bremsstrahlung of pure
hydrogen. Furthermore, a transmission of the detection op-
tics of 0.1 is assumed.

The spectrum of the backscattered light was calculated
from the formulas given by Mattioli et al.'® which yield ex-
actly the same results as those given by Zhuravlev.'” When
the shape of the scattered spectrum is folded with the spec-
tral sensitivity of a S-20 photocathode the heights of the
maxima at different temperatures become approximately
the same due to the increase of sensitivity in the blue region.
In Fig. 3 the number of photoelectrons per unit wavelength
is plotted versus wavelength for 1-J laser energy, a spatial
resolution of 9 cm corresponding to ¢, =1, = 300 ps, a
transmission of the collection optics of 0.1, a solid angle of
the collection optics of 1 X 10~ 3sr, and an electron density of
1 10" cm~>. The spectra are measured by dividing the
spectral range of interest into five channels as indicated in
Fig. 3. If photomultipliers are used as detectors the spectral
resolution can be achieved preferably by an interference fil-
ter polychromator. This presents no problems for the re-
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F1G. 3. Number of signal photoelectrons per unit wavelength interval vs
wavelength for a $-20 photocathode. Spectral channels: I: 624.7-602.7 nm,
II: 602.7-558.7 nm, III: 558.7-503.7 nm, IV: 503.7-448.7 nm, and V:
448.7-393.7 nm.
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quired throughput of 8 X 10~ cm? sr (if filters of 5-cm diam-
eters are used, the divergence of the incident light beam is
less than 4 0.9°). Using a streak camera, a grating spectrom-
eter displaying the spectrum along the input slit will be ap-
propriate.

We now discuss two cases. First, we consider the simple
version using MCP photomultipliers and an available 1-

GHz registration system. Second, the application of a streak’

camera, which results in an improved spatial resolution will
be treated.

A. Photomultiplier

We consider measurements at the plasma center and
assume an electron density of 1x 10" cm ™. The spatial re-
solution is taken as 13 cm, which can be achieved with the
described iodine laser (r, = 300 ps), a MCP photomultiplier
with 300-ps temporal resolution, and a 1-GHz oscilloscope

(Tp =/ Thm + 7. = 583 ps). With these parameters the
number of photoelectrons n obtained within each of the five
chosen spectral channels 7 (see Fig. 3) varies between 100 and
600 for a wide range of temperatures (2-20 keV). This yields
photomultiplier signal levels high enough for noise-free elec-
tronic amplification within the required bandwidth. The
number of photoelectrons due to background radiation is
less than 20 in each spectral channel. Thus, the SNR of the
measurement will not be deteriorated by the background ra-
diation.

Of course the maximum ratings of the sensitive detec-
tors must be observed. A simple estimate shows that for an
electron density of 1 X 10" cm ~* the dc anode current due to
plasma background radiation (typical duration 105s) is of the
order of 6 A and thus exceeds the tolerable value. On the
other hand, the charge output during the passage of the laser
pulse through the plasma is only about 7x 10~ "' C, which is
50 times less than the maximum rating. Thus, by gating the
photomultiplier for a time of less than approximately 5 us, a
reliable operation of the MCP photomultiplier can be
achieved. The MCP incorporated in the photomultiplier
could also be overloaded in case the spectral discrimination
against stray light resulting from the focusing lens and the
window on the vessel is not sufficient. We assume that under
unfavorable conditions, 1072 of the laser energy might be
scattered from an optical surface. This light would be col-
lected within a solid angle of 1 102 sr and suppressed by
the rejection filter and spectrometer by a factor of 10*".
Thus, a number of 2.5 X 10° photoelectrons is released from
the photocathode. This causes a current of 70 mA during a
time of 450 ps which is within the specified maximum rat-
ings. This current could be reduced by gating the photomul-
tiplier for the duration of the scattered signal expected. In
case of JET the entrance window is located at least 2.7 m
from the plasma edge, which requires gating with less than
20-ns rise time. According to the photomultiplier specifica-
tions*® gating times as short as 1-3 ns are achieved by switch-
ing the cathode-MCP voltage.

We have also to consider the effect of the spurious back-
ground laser pulses which can cause stray light from the
optical components during the time the main laser pulse
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passes the plasma. However, under the conditions assumed
above the signals caused by pulses containing less than 1 uJ
of energy are negligible.

The statistical error of the electron temperature mea-
surements is calculated analytically: The n signals from then
spectral channels are used to perform n — 1 independent
electron temperature measurements using the two-channel
ratio method.?"* The error of the mean temperature is ob-
tained from the statistical errors of the n — 1 independent
sample measurements.??

The results are summarized in Table I for the given
parameters. Since the influence of the background radiation
on the SNR of the signals is negligible, the errors decrease
with the square root of the electron density.

B. Streak camera

In the second case we will discuss the spatial resolution
along the laser beam that can be achieved with a 300-ps laser
pulse and streak cameras. For this purpose we use the pa-
rameters of the optical setup sketched in Fig. 2 and calculate
the influence of the finite depth of field on the spatial resolu-
tion of the LIDAR system. The spectrometer has been omit-
ted for the sake of simplicity. In contrast to the setup with
photomultipliers, two detection systems will be used to in-
vestigate the upper and lower half of the chord separately.
For this purpose the collected light beams are divided by two
totally reflecting mirrors, each using one-half of the solid
angle of the collection optics. In each of the two paths of rays
the diameter and position of a separate diaphragm defines
the length and position of the spatial chord from which the
scattered light is observed without vignetting. In this geome-
try the throughput of each of the two low-resolution spec-
trometers must be 1 107> cm?sr, a value which can be
realized.

To let all the collected rays pass from a scattering vol-
ume with diameter @{x) located at a distance x from the
collecting lens, the diameter d of a diaphragm in the image
plane corresponding to x = g can be calculated. The diame-
ter d' of the image of this diaphragm inside the plasma is
given by

_ FglD+4(x)] —Dx

d'(x) 2 F

x<g, (2)

and

TaBLE I. Expected statistical errors of measurements at the plasma center.
Spatial resolution 13 cm.

T, /keV ATET:
0.5 15.4%
1.0 7.4%
2.0 5.3%
5.0 4.0%

10.0 6.6%
15.0 10.0%
20.0 13.5%
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where the laser beam diameter ¢ (x) is approximated by
do— &
$x)=6,+ —L |f—x]|. 4)

f

The results are plotted in Fig. 4 as a function of the coordi-
nate x along the line of sight inside the plasma. This is done
for two cases: (a) one diaphragm located at the image plane of
the laser focal spot plane (as used for photomultiplier detec-
tion) and (b) the case of two streak camera detection systems
for the upper and lower part of the spatial chord, respective-
ly. In this latter case the two diaphragms are positioned in
such a way as to minimize the diametersd , ~d 3 ~2.5 cm
and using f/2 optics in front of the streak cameras the col-
lected scattered light can be concentrated on the photocath-
ode to spots of 1.6- and 1.2-mm diameter, respectively.
These values determine the input slit widths of the streak
systems. However, the rather large values only determine
the level of background intensity but do not limit the tempo-
ral resolution of the system with respect to the scattered laser
light.

Figure 5 shows schematically how the image on the
screen of the streak camera develops in time. The size of the
image of the input slit illuminated by the background radi-
ation is the same everywhere on the screen [Fig. 5(a)]. With-
out the spectrometer the image of the laser pulse moving
along the spatial chord, however, decreases until a sharp
image is formed on the streak tube. Then it increases again
until it covers the input slit image [Fig. 5(b)]. The spot size
varies along the streak direction according tod '(x). For very

STREAK

al b)

FIG. 5. Formation of the streaked image (a) for the background radiation, (b)
for the scattered laser light.
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FIG. 6. Spatial resolution along the line of sight. (a) Limit of resolution deter-
mined by the laser-pulse duration and the streak camera. (b) Limit due to the
laser-pulse duration alone.

small values of d '(x) the finite resolution of the streak tube
(about 250 zm) would determine the spatial resolution Ax,
but this limit is not reached in the example given.

The following data for the streak camera (RCA
C 73435 tube, as used in the LLL streak camera and in COR-
DIN 179-LLL) are used for an estimate: Magnification 0.7;
used size of image on the screen 22-mm width, 33-mm
length; luminous gain 50; and streak speed 330 ps/mm. With
these data and using Eq. (1) the curves d’(x) (Fig. 4) yield
directly the variation of spatial resolution Ax along the spa-
tial chord. Figure 6 shows the spatial resolution that can be
achieved for the system with two streak cameras in compari-
son with that for the MCP photomultiplier/1-GHz oscillo-
scope system. Thus, about 30 independent measurements
can be taken along the spatial chord if the streak camera is
used compared to 19 measurements with the photomulti-
plier system.

One has to pay for the improved spatial resolution with
a decrease in the SNR since the number of collected scat-
tered photons is reduced by a factor of up to 1.8. Further-
more, the reduction in solid angle when using the two streak
cameras yields another factor of 2. On the other hand, for
high plasma densities some improvement is achieved by the
fact that the plasma background radiation is reduced by a
factor of about 10. The reduction results from (ratio of stop
diameter)’ X (ratio of solid angle) X (ratio of time resolution).
The SNR of the measurement will be determined by the shot
noise of the photoelectrons released from the cathode of the
streak tube and by the excess noise produced by the follow-
ing image amplification process. Using MCP image amplifi-
er tubes this excess noise will be of the same magnitude as in
the case using MCP photomultipliers. Some improvement
might be achieved using first-generation image intensifiers
with lower noise figures.?* In that case the expected statisti-
cal error of the electron temperature measurement is of the
same magnitude as for the photomultiplier system (Table I).

V. DISCUSSION

For application to large plasma machines the proposed
LIDAR Thomson scattering scheme offers many advan-
tages over conventional Thomson scattering arrangements.
Among these are insensitivity against vibrations and the
need for only a small number of optical components in the
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vicinity of the plasma machine. These facts facilitate the ap-
plication to large machines operating with D-T mixtures. A
special feature of the proposed system is the low level of
observed plasma background radiation which leads to large
SNR values determined practically by signal statistics.
Among the two possible realizations discussed the MCP
photomultiplier/1-GHz oscilloscope system represents a
straightforward solution. The streak camera system offers
better local resolution but requires more technical effort.
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of the visible spectrum. The maximum reflectance is never less than 86% and frequently approaches 90%. As coated
on glass, the FS-80 Aluminum SiO mirror will meet or exceed all requirements of MIL M-13508C.

FS-80A ALUMINUM-QUARTZ

FS-80A Aluminum Quartz mirror has a very heavy quartz overcoating for extreme durability. Deposited on glass, this
coating will withstand the 20 eraser rub test of MIL-C-675. Such durability was unheard of in front surface mirrors
until introduced by DENTON VACUUM. The quartz overcoating extends the useful range of the mirror to the near
ultraviolet and near infrared regions. With the heavy quartz overcoating, this mirror averages 85% reflectance and is
insensitive to angle of incidence when white light is employed. This coating is particularly appropriate for such
things as solar reflectors which will have a high degree of environmental exposure.

QUALITY CONTROL STANDARDS

As noted, all of the coatings described above—the FSS-99, FSS-99H, FS-80, FS-80A, and FS-80H—meet or exceed all
the requirements of MIL M-13508C. This includes the Scotch tape adherence test, the cheesecloth abrasion resistance
test, the high and low temperature test, and the 95% humidity at 120°F corrosion test. The FS-80 Aluminum SiO is de-
signed to meet the optical reflectivity test of MIL M-13508C, and the other mirrors generally meet or exceed this as
shown by the curves. To assure compliance with the required standards, DENTON VACUUM checks each run with
spectrophotometric and physical tests.

FS-72 UV ALUMINUM

The FS-72 mirror coating has been designed especially for the ultraviolet region. It reflects an average of over 88%
between 1800A and 4000A and maintains good reflectivity throughout the visible averaging over 85%. The coating
can be applied to highly polished metals as well as to glass. A polish frge of fine pits is necessary to obtain the best
reflection values in the ultraviolet region. The coating is protected against oxication and abrasion; this allows the
mirror surface to be cleaned with care. Special overcoatings for varying angles of incidence or for maximum refiec-
tivity at specific wavelengths will be quoted upon request. Ultraviolet films must be very carefully prepared to achieve
good reflectivity in this region. The DENTON VACUUM FS-72 has proved to consistently meet the highest standards.
Every run is checked for ultraviolet reflectivity.

REFLECTANCE OF DENTON FS-72 MIRROR
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F4126
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Fort Wayne, indiana 48801
Telephone 219-423-4341 TWX 810-332-1413
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F4128

F4129

MICROCHANNEL PLATE GENERAL:

MULTIRLIER PHOTOTUBE The F4126, F4128 and F4129 series of photomultiplier

C tubes (PMTs) incorporate microchannel plates (MCPs) as the
‘ompact Size A i s )

electron multiplying element. Proximity focusing between the
MCP and the input photocathode and the output anode is used
Minimum Electrical Connections to combine small overall size with high peak current, fast
response, high quantum efficiency and wide dynamic range.

UV Through Near IR Response The F4126 uses a single microchannel plate (MCP) to
achieve modest gain; the F4128 uses two MCPs in cascade (a
“V-plate” MCP) to obtain more gain; and the F4129 uses three
Low Voltage Nanosecond Gating MCPs in cascade (a “Z-plate” MCP). The F4128 and F4129
have sufficient gain for single electron counting.

High Photocathode Uniformity Because of the special method used in constructing these
MCP PMTs, in which the photocathode is made separately
from the tube body and the tube subsequently assembled in an
ultra-high vacuum chamber, these PMTs are readily adaptable
to a wide variety of input window materials and spectral re-
Subnanosecond Response sponse characterisics. This technique also assures ultra-
reliable tube behavior and long operational life.

High Magnetic Field Tolerance

High Peak Current Qutput

Single Electron Counting (Pulse
Saturated Mode)

ELECTRO-OPTICAL PRODUCTS DIVISION ITT




F4126

F4128
F4129
OPTICAL/MECHANICAL CHARACTERISTICS
Overall Tube Diameter (Note 1) ..... 36 mm
Note: See Fig. 1
Overall Tube Length ............... 40 mm
Effective Photocathode
Diameter (Note 1) ............... 18 mm
Input Faceplate (Note 2)............ borosilicate glass
plano-plano
Faceplate Thickness................ 2 mm
Photocathode Type (Note 3) ........ multialkali
(on internal face-
plate surface)
(see Fig. 2)
Photocathode-MCP Spacing ........ 0.3 mm
MCP Channel Diameter............ 12.5 um
(hexagonal close
packed)
Bias Angle (Noted) ................ 5°
MCP L/D Ratio (Note 5) .......... (F4126) 40:1

(F4128) 80:1
(F4129) 120:1

ELECTRICAL CHARACTERISTICS:

MCP Strip Current (Note 6) ........ 2.5 uA, nominal
(at 800V per plate)

MCP-Anode Spacing (Note 7)....... 1.3 mm

Anode Diameter (Note 8) ........... 18 mm

Pk-MCP Capacitance .............. 2pf

MCP Face-to-Face Capacitance
(NOIE F)iviinm sni v ssioionana s o F4126) 60 pf

MCP-Anode Capacitance (Note 10) ..5 pf

Photocathode lead . .................. (#24) wire
MCP Input Lead .................... (#24) wire
MCP Output lead ................... (#24) wire

MAXIMUM RATINGS

Input Photocathode-to-MCP
Voltage (Note 11, 12)............. 300V

MCP Input-Output Voltage .. ....... F4126 900V
F4128 1800V
F4129 2700V

MCP-Anode Voltage (Note 12)...... 3kV
Photocathode DC Current Density
(Note13) .. ......ciiiiinnnn,.. 0.1u4A/em?
Anode DC Current Density
(Note 14) .....bicvvrvrenccasaanns 1 yA/cm?
Temperature ............c00vvunnnn Max. 35°C
Min. -35°C
Temperature Change Rate .......... 20° C/Min.
Anode Lead..............ccouuunn. 6 mm diameter
metal stud

MCP PMT are supplied potted
with flying leads.

TYPICAL PERFORMANCE CHARACTERISTICS
(Note 15)

Gain (Note 16) .................... F4126: 750
F4128: 3 x 105
F4129: 2 x 10¢

MCP Voltage (Note 17) ............ F4126: 800V
F4128: 1600V
F4129: 2400V

Photocathode-MCP Input Voltage

(NOtR I8) «: iifoenins sis snann S5 150 v
MCP-Anode Voltage (Note 19)...... fast response: 3 kV
photon

counting: 300V

Maximum Linear Peak
Output Current (Note 20)......... F4126: 3A

Maximum Peak Charge
Output (Note 21) ................ 3nC

Maximum Average Linear Output
Current (Note 22)................ 0.1 uA

Maximum Pulse Repetition Rate

High Current Mode (Note 23) ....... F4126 250 pulse/sec.
Single Electron Counting Mode,

Flooded Input .................... F4129 1(° pulse/sec.
Single Electron Counting Mode Point Source

Input (Note 24) ................... F4129 10 pulse/sec.
Qutput Signal Pulse 10-90%

Rise Time (Note 25).............. F4126: 100 ps
Output Signal Full-width-at-half-

Maximum Time (Note 26) ........ F4126: 300 ps

F4129: 500 ps

Dark Count Rate (25° C) (Note 27)...F4129:  104c/sec

ELECTRO-OPTICAL PRODUCTS DIVISION ITT

Tube and Sensor Laboratories, Fort Wayne, indiana 46803
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MCP Dark Count Rate (Note 27) ...... 10Pc/sec

Photocathode Thermionic Emission
Temperature Coefficient
(NOte 28) .. vovoicinossmn i iiaas 15%/°K

Peak-to-Valley Ratio (Note 29) ...... F4129:

Width of Pulse Height
Distribution (Note 30)............ F4129:

Photoelectron Counting Efficiency

(NoOte 31) . 2% ciiid sushans vas s F4129:
Noise Factor (Note 32) ............. 1.8
Tube Life (Note 33)................ 20 me/cm?

Note 1: MCP PMTs with 25 mm
effective photocathode diameter are
also available and 40 mm are under
development

Note 2: Faceplate of other materials
such as fused silica, magnesium
fluoride, or fiber optics are also
available on request.

Note 3: The multialkali photocathode
can be adapted, on request, to various
different spectral responses. Other
photocathode materials, such as

KsbhCs bialkali, CsTe, AgCsO, etc.
are also available.

Note 4: This is the angle of the MCP
channels with respect to the front
surface of the MCP.

Note 5: 60:1 ratio is also available.
This is the ratio of the effective
electron multiplying length of a
channel to the diameter.

Note 6: The strip current on a given
MCP sample may vary from this
nominal value by factors of = 2 or more.

F4126
F4128

F4129

ADDITIONAL INFORMATION:

The user, or potential user, of an MCP PMT is invited to
contact ITT/EOPD for added information on MCP
devices, including applications and technical notes (e.g. ITT
Technical Notes 119, 120, 125, 126, and 127). There are also
many published technical papers concerning MCPs and
MCP devices, including, as an example:

3:1 Applied Optics 18, 1418 (1979)

Applied Optics 16, 2127 (1977)

Applied Optics 18, 2440 (1979)
100% Proc. Electro-Optical Systems Design Conf. Sept. 1976

(p623-670)
Physics today, Nov. 1977 (p42)
85% Nuclear Instr. & Methods 127, 87 (1975)
If you have specific questions regarding the use of an MCP
PMT in a special application, or a modification of a present
tube design to meet special requirements, please contact
ITT/EOPD and enjoy the benefits of our special technical
information services. We specialize in custom devices
helping you meet these requirements.
NOTES:

Note 7: This spacing is adaptable to
individual requirements, with
resultant changes in the maximum
permissible MCP-anode voltage.

Note 8: MCP PMTs with arrays of
separate smaller anodes are also
available (e.g. the F4149 with a

10 x 10 array of 100 anodes).

Note 9: Includes feed through
capacitance.

Note 10: Includes feed through
capacitance.

Note 11: 1000V for filmed MCPs. See also following note.

Note 12: Voltages must be supplied to these tubes in
proper sequence so that these voltage differentials are not
exceeded during the turn-on and turn-off transients. A
typical voltage divider network is shown in Fig. 3.

Note 13: Maximum rating for low gain operation where
anode current may fall within ratings.

Note 14: Tube life is proportionally reduced when ope-
rating at or near this limit.

ELECTRO-OPTICAL PRODUCTS DIVISION ITT

Tube and Sensor Laboratories, Fort Wayne, Indiana 46803
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F4126
F4128
F4129

Note 15: The following characteristics are typical of MCP
performance, but can be expected to vary from sample to
sample.

Note 16: These are nominal values, selected by the user,
depending on the voltage applied across the MCP.

Note 17: To obtain the nominal operating MCP gains
listed above, these applied voltages must be experi-
mentally adjustable. The voltages listed here are typical
for the gains listed above. Each PMT manufactured by
ITT is supplied with anindividual gain voltage calibration
curve. An MCP PMT should NOT be operated at these
listed voltages unless the gain voltage calibration curve
confirms proper operating gain.

Note 18: This voltage can be easily and rapidly changed
for all-electronic gating purposes. Gating times as low as
1-3 ns are achievable, depending on the characteristics of
the external gate circuits, which must be capable of

charging and discharging the associated photocathode-to-
MCP capacitance. If fast gating is required, the tube can
be supplied with a suitable low impedance photocathode.

MCP PMTs can also be supplied with an ionbarrier film
over the input to the MCP, which protects the photo-
cathode from ion sputter damage, and thus lengthens tube
life (by factors of 100 or more) when operating at high
average anode current density. In this configuration, the
photocathode to MCP voltage should be increased to

600-800V to assure proper electron penetration of this
film.

Note 19: The higher anode voltage should be used for high
peak current or fast response applications,

Note 20: The total charge per pulse and the pulse
repetition rate must meet the restrictions noted below.

Note 21: For linear response to a photocathode-flooding
input flux pulse.

Note 22: For MCPs with lower strip currents, this current
will be proportionally reduced. This DC current limit
establishes the maximum permissible repetition rate for
high peak current pulses.

Note 23: For 3 nc pulses. (flooded input):

Note 24: For a Point Source Optical Image on the Photo-
cathode.

Note 25: For 3 kV MCP-anode voltage and fast, low
capacitance, coaxial tube socket.

Note 26: An output pulse (observed by EGG/LASL/

LLL) on an F4129, including time spread in the tube sockets,
cables, light source and sampling circuits.

Note 27: With activated multialkali cathode. The MCP-
orginating dark count, with the photocathode cooled or
electrically biased-off is approximately:

Note 28: For typical multialkali cathodes.

Note 29: This is the ratio of the peak in the observed pulse
height distribution (Fig. 4) to the valley. Operation of the
bias discriminator level of the pulse counting circuits at
this valley position (usually  509% of the peak) is recom-
mended, and gives the dark count rates listed above.

Note 30: The width of the pulse height distribution has not
yet been determined for the F4126 and F4128.

Note 31: Ratio of output single electron counts to photo-
electrons incident on the MCP.

Note 32: Ratio of the anode signal-to-(noise-in) signal
power ratio to the signal-to-(noise-in)-signal power ratio
for the photoelectrons incident on the MCP.

Note 33: For an overall responsivity (gain times cathode
sensitivity) loss of 50% and no MCP film. This is the total
charge density accumulated at the anode. Increases by
about 100 times (to 2 ¢/cm?) for filmed MCPs. Tube life is
partially increased by raising the MCP voltage to com-
pensate for MCP gain losses (a recommended procedure).
Tube life in seconds can be obtained by dividing the tube
life in coulombs/ecm? by the average anode current in
amperes/cm?.

ELECTRO-OPTICAL PRODUCTS DIVISION ITT

Tube and Sensor Laboratories, Fort Wayne, Indiana 46803




PHOTOTUBE HOLDERS

Type F-4545

The F-4545 phototube holder is designed to accomodate the
F-4126, F4128, or F-4129 microchannel plate photomultiplier
tubes. The holder provides an excellent way of isolating
the anode into a standard shielded termination, as well as
a convenient means for mounting the tube.

————2.75 INCHES
: TUBE
} ' \" HOLDER

153 COLLECTOR
INCHES
DIA —=
; \\\GRB?4 SERIES COAX
- CONNECTOR
/ MCP PMT
PK ,\\MCP
ﬂﬁp ouT

ELECTRO-OPTICAL PRODUCTS DIVISION ITT

Tube and Sensor Laboratories, Fort Wayne, Indiana 46803
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ITT ELECTRO-OPTICAL PRODUCTS DIVISION
TECHNICAL NOTE NO.- 127

PARAMETERS PERTAINING TO MICROCHANNEL PLATES
AND MICROCHANNEL PLATE DEVICES

E. H. Eberhardt August, 1980

PURPOSE: - The resulting electron amplifying device
has proven to be so successful that it is now
The purpose of this technical note being used in a wide variety of electron
is (a) to tabulate and define a set of devices and can be expected to be used in
parameters useful in describing the per- even more devices in the future.
formance of microchannel plates and
microchannel plate dévices, (b) to show UNITS AND SYMBOLS:
how these parameters are functionally -
interrelated, and (c) to give numerical Unless otherwise Specified,_all parameters
estimates of the magnitudes of these in this technical note are expressed in MKS
parameters as they pertain to the specific units or decimal fractions thereof. The
types of MCP photomultiplief tubes and computer symbolism, e.g. "1.0E5", is used
MCP image tubes manufactured by ITT. : instead of the powers of ten designation,
_ - e.g. "1.0 x 10°". The special symbol "=#*"
INTRODUCTION: is used to designate the approximate numerical
magnitude of a parameter as it pertains to
The microchannel plate (MCP) is the 18 mm diameter type of MCP now being manu-
essentially a glass disc or wafer factured by ITT and used in the F4126, F4128
penetrated by a large number of holes and F4129 series of MCP photomultiplier tubes,
or channels of uniform microscopic and in the F4111, F4747, F4748, F4758, F4785
diameter. (See Fig. 1) By applying and F4786 series of MCP image intensifier tubes.
a potertial difference between faces (MCP devices are also available with 25 mm and
of this disc and thus between the ends 40 mm active diameter MCPs.)
of each channel, an electron-accelerating
electric field is established within CAUTIONARY NOTE:
each channel. Upon excitation by
bombarding input electrons, the resulting The presently available information on
emitted secondary electrons are caused MCPs, both experimental and theoretical, does
to cascade down each channel causing not permit an accurate estimate to be made of
repetitive secondary emission ampli- all performance characteristics. The functional
fication as they encounter the channel relationships and numerical data presented in
walls. The net result is substantial this technical note must, therefore, be
electron image amplification between considered to be approximate only and not as
the input and output of the MCP over a specification on MCP device behavior. In
a distance typically less than 1 mm. addition, the numerical values of many MCP
A semiconducting layer is formed on the parameters can be expected to vary considerably
inner channel walls to supply the required from sample to sample.

amplified secondary electrons while
maintaining the proper internal electric
field in each channel.

ELECTRO-OPTICAL PRODUCTS DIVISION ITT

Tube and Sensor Laboratories, Fort Wayne, Indiana 46803




1.0 MCP GEOMETRY 1.6

AICROCHANKEL PLATE
CASCADING
SEcc}uD,} RY CLrerReNS

Fig. 1

The geometric parameters associated
with the size, shape and distribution of
the channels in an MCP can be described
as follows:

1.1 Channel Diameter, D
=% 12.5 um 1.8

NOTE: The special symbol, "=%",
indicates a typical approximate
numerical value of a parameter
as it pertains to present ITT
MCP devices using 18 mm diameter
MCPs.

1.2 Channel Length, L

= effective electron-multiplying
length of each MCP channel

=% 0.5 mm

NOTE: The effective length, L,
is less than the total physical
length because of end-spoiling.
(See 1.4)

1.9

1.3 Length-to-Diameter ("L-over-D")
Ratio, «

= channel aspect ratio

= ratio of channel length-to-
channel diameter

= L/D =* 40
1.4 End-Spoiling Ratio, h 1.10
= relative insertion distance, in
channel diameters, of the conduc-
tive electrode on the face of the
MCP (See Fig. 1)
=* 1.5 diameters (typical value)
1.5 Bias Cut Angle, 0
= angle between the axis of the

channels and the normal to the face
of the MCP (See Fig. 1)

=% 50

MCP Plate Thickness, L, (See Fig. 1)
= (L + hD)cos® (=L)

=% 0.51 mm

Center-to-Center Channel Spacing, Dec
=% 15 um

NOTE: The channels are arranged in

a hexagonal closed packed structure.
(See Fig. 2)

Open Area Ratio, Y

o

= ratio of channel area to MCP web
face area

= (7203)(D/Dec)® =* 0.63

NOTE: This is the geometrical, or
optical open area ratio for the MCP.
The effective electron open area ratio,
Y., (see 4.15) may be greater or less
tﬁan Y, depending on the contribution
to the output current from secondary
electrons generated at the web areas,
losses of electrons entering the
channels, etc.

MCP Active Diameter, Dy

= diameter of the effective electron-
multiplying area of the MCP (See Fig. 1)

=% 18 mm :

NOTE: The physical diameter of an MCP
is greater than D, to provide a border
area (with or witﬂout channels) for
mounting the MCP. MCPs with larger

active diameters (e.g. 25 mm and 40 mm)
are also available.

MCP Active Area, Ap
= 7DR%/4 =* 2.5 cm? (See 1.9)
Channel Packing Density, pp

= number of channels per unit surface
arca of the MCP

= 2/ YD .2 = 1.15/D.2 =* 5.1ES channels/cn’

NOTE: The "computer'" designation, e.g.
"5,.1E5" is used in this technical note
instead of the _power law designation,
e.g. "5.1 x 105",

ey ke e 2
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International Telephone and
Telegraph Corporation

e F
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MICROCHANNEL PLATE PHOTOMULTIPLIER TUBE mmm&nm

Telephone 219-423-4341

TEST REPORT SUMMARY

DATE R-7-§¢

Fe126 WINDOW MATERIAL  Cuar F2 MCP TYPE /Ermwm V plate
AL NO. < 1§40 (r PHOTOCATHODE TYPE 74 -/ ANODE TYPE  piate
USABLE APERTURE /2 /-»m CONFIGURATION _ 0 44c= o
LEAD CONNECTIONS 1 PHOTOCATHODE Black wire SE5" ooo 4'3/
L&t phc a3 2 MCP INPUT Red wire
3 MCP OUTPUT Orange wire
4 WELD RING Metal flange
5 ANODE(S) LT
PHOTOCATHODE SENSITIVITY LUMINOUS /G0 A/ Tm
#%ak  RADIANT S e mA/W at sz m /9.5%90 6F |
OPERATING VOLTAGES FOR jc® ELECTRON GAIN (dc)
PHOTOCATHODE TO MCP INPUT (V Exe) v
MCP INPUT TO MCP OUTPUT (V. /760 v
MCP OUTPUT TO ANODE (V) 3co v
DC DARK CURRENT (I ) 5§ P2 A
MCP STRIP CURRENT (I) 3. 2 yA
PULSE HEIGHT DISTRIBUTION AT _7J4 ELECTRON GAIN (dc)
DISTRIBUTION PEAK AT e ]
FULL WIDTH AT HALF MAXIMUM ey
PEAK TO VALLEY RATIO il
DARK COUNT RATE " COUNTS/SEC AT~ — 9%
Vo OFF COUNT RATE " COUNTS/SEC
MAXIMUM OPERATING VOLTAGES TESTED
iy o
a0
V:‘:" ‘ oo R
COMMENTS

NOTES: SEE CORRESPONDING TUBE DATA SHEET FOR GENERAL INFORMATION. DO NOT EXCEED
MAXIMUM OPERATING VOLTAGES TESTED WITHOUT CONSULTING WITH ITT/EOPD.
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WAVELENGTH, IN MICRONS {

The standard luminous sensitivity is the response of the photocathode
(in microamperes per lumen) to a tungsten lamp operating at 2870°K. The
various numbered sensitivities are the response of the photocathode

when Corning filters (filter numbers are four digits; dashed, three
digit numbers in parentheses are a color specification number) of half
stock thickness are interposed between the 2870°K lamp and the photo-
cathode. Plotted above are the transmittance, in percent, of the
filters, and the spectral distribution, in relative units, of 2870°K
tungsten. Also shown are the photopic eye response and the transmission

of a Wratten #12 filter.

ITTIL E-32b (6/66)




SWOHLSONY

000°2i 000’11 000¢ 0009 000§

frere 1 17 T "
R 8 _|
: T BREE
L. 1 |
m IS5%g
e C T W H
s P E o
. e l..‘lﬂl i “ M n-
BEEESE N
I g 1 =
EAREEE =PS
et =
e .
£
=
— r
Z »
== z
°
o o e e e w
R €
Eem=—=x v
- — m
= EEET y ®
SR s >
= 9 3
= .
= 8
_ 6
seuE SEE 01
& pE-T
sudwn| /o 2l NILLVUM g +.u&_ EEEH =
suswn)/od (#9-2) o0g£02
o2
suewn|/od (29-2) @Iv2

6

susun /od (95-1) 052 S==cEmERERmaEEREl ~SENRERESFSSRsGRASARARNEERS="oaacRREEty . cns PN

A

suown|/od o7 *SNONINM

suswn) /od (ec-S) €IS

ov

os

09

04
oe

06
001

ALIAILISN3S

QD\W%\Q ‘ON ‘0§ QN\}U\ 3dAL
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MCP INPUT MCP OUTPUT
/;-—WELD RING
a—ANODE
PHOTOCATHODE

' d
Vpk -|- vmep -|-Vun : Tanige)

ke

PS4 P82 PS

VOLTAGE DISTRIBUTION
FOR GAIN AND PULSE
HEIGHT DISTRIBUTION TEST

MCAj
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