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Abstract

A semi-implicit method for solving the full compressible
MHD equations in three dimensions is presented. The method
is unconditionally stable with respect to the fast com-
pressional modes. The time step is instead limited by the
slower shear Alfven motion. The computing time required
for one time step is essentially the same as for explicit
methods. Linear stability limits are derived and verified

by three-dimensional tests on linear waves in slab geometry.




I. Introduction

The major application of three-dimensional magnetohydrodynamic
(MHD) simulation is the study of toroidal or linear plasma con-
finement devices, e.g. tokamaks, stellarators, reversed-field
pinches, and tandem mirrors. MHD codes are extensively used for
analyzing three-dimensional equilibrium configurations for
stellarators and for studving the plasma evolution leading to
disruptions in tokamaks. Due to the high cost of these devices
and due to the structural damage caused by hard disruptions,
numerical simulation plays an important role in both analysis
and design studies. MHD simulation methods have been extensively
reviewed by Brackbill /1/ and by Schnack and Killeen /2/.

The aforementioned devices are all characterized by a long

scale length in the toroidal direction (axial for mirrors) and

a much shorter scale length in the perpendicular direction.

These different scale lengths lead to a separation of time

scales with fast compressional waves occurring on a very rapid
time scale and shear Alfven, sound, and resistive modes evolving
on much slower time scales. Conventional explicit numerical
schemes are forced to use very small time steps due to a Courant-
Friedrichs-Lewy (CFL) condition imposed by the fast compressional

modes.

One method to avoid the fast time scale restriction is to make
analytic simplifications in the MHD equations by applying an ex-
pansion in the inverse aspect ratio /3,4/. These equations have
been implemented numerically by a number of authors in the study
of tokamak disruptions /5 - 8/. Such "reduced" equations elimi-
nate the fast time scale; however, in order to properly include
effects of finite pressure and toroidal geometry they often re-
quire retaining terms as high as third or fourth order in the
expansion narameter /9,10/. Some experiments have a relatively
small aspect ratio, such as JET /11/ with R/a = 2.4, so that
inverse aspect ratio expansion does not provide a good repre-

sentation.




Another approach to eliminate the fast time scale is given by
the assumption of incompressibility /1,12/. While this elimi-
nates the fast compressional modes it also has the undesirable
effect of eiiminating sound waves. This assumption leads to
incorrect growth rates of unstable modes /13/ and for resistive
instabilities it can change the stability threshold. The ana-
lysis for resistive ballooning modes reveals that compressibi-

lity stabilizes the slow resistive ballooning modes /14,15/.

In principle it is possible to eliminate the CFL restriction

by using an implicit time advance. Advancing the resistive term
implicitly does not pose great difficulties, but advancing the
full equations implicitly in three dimensions would require the

solution of very large matrix systems at every time step.

One technique to make implicit methods less cumbersome is the
alternating direction implicit (ADI) method. Such a scheme has
been applied to the three-dimensional MHD equations by Finan

and Killeen/16/. However, this method still requires the solu-

tion of large block matrix equations in the time advance.

We conclude that it is necessary to solve the MHD equations for
finite compressibility and aspect ratio without analytic approx-
imation. The numerical scheme should be tailored to allow
reasonable time steps on the shear Alfven time scale and should
have the virtue of being simple to implement. For this purpose
we propose here a semi-implicit method, which is aimed toward
the eventual simulation of disruptions in toroidal confinement
systems. Semi-implicit methods have been used previously in
conventional fluid dynamics /17,18/, however their application
to three-dimensional MHD is new. Our method is unconditionally
stable with respect to the fast compressional modes, therefore
our time step restrictions are no more severe than in the in-
compressible case or for the reduced equations. The method also
has the virtue of not requiring the solution of any large block

matrix systems in either Cartesian or cylindrical coordinates.



Only one simple tridiagonal matrix equation must be solved.
The method is presented here together with a linear stabili-
ty analysis. Using a three-dimensional code in slab geometry,
unconditional stability with respect to the fast modes is
demonstrated. Resistivity is not included in these simula-
tions because the treatment of resistivity is independent

of the method for eliminating the fast compressional time step
restriction. In Section II of this paper the model is defined
and the semi-implicit method for the three-dimensional MHD
equations is described. In Section III we discuss the linear
stability properties of the method. In Section IV the results
of numerical tests are presented. Finally in Section V we
present conclusions and discuss the application of the method

to resistive instabilities in adapted toroidal coordinates.




II. Model
The compressible MHD equations in single fluid theory have
the form:
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where‘a denotes Epe mass density, P the plasma pressure, E the
magnetic field, V the flow velocity, and‘? the resistivity of
the plasma. We are interested in problems in which wave propa-
gation occurs most rapidly across one plane. For simplicity,
Cartesian coordinates are considered here where scale lengths
in the z-direction are much longer than in the x and y-directions.
The fastest time scale will be due to the fast compressional
waves in the x-y plane. We do not make any assumptions about
aspect ratio or compressibility. In what follows we present a
semi-implicit algorithm which has the advantage of having no
fast time scale restriction on the time step, but solves the

full MHD equations without any additional approximations.

To illustrate the semi-implicit method consider a one-dimensional
linear problem with 3/9z = /3y = 0,'3 = Bzg, and.g N ng.
Assume that the plasma is cold and that the density is constant
(f3= 1, P = 0). Finally, neglect resistivity and linearize

Egs. 1 and 2 with VX = Vl(x) and BZ = B0 + B, (x). This gives a
simple set of equations which contains only fast compressional

waves:
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This set can be written easily as the second order wave equa-

tion:
¥V - g2 S,
ST L Y

We now consider the following discretization of Eq. 7 in time:

v -V +A<=( ) B} (a4 (;:,z)h 5 (8)

where (bV'/ét)n can be determined from Eq. 5. This is an expli-

cit time advance and consequently leads to methods which have

CFL time step restrictions on the fast modes. To make this method

unconditionally stable we would like to move the term
2(At)2(ézv‘/3x2)n to time step n + 1, so that the method be-

comes implicit. In a general nonlinear problem the new field

pl L is not known, so instead we subtract a similar term from

each side giving a semi-implicit version of Eg. 8:

+1\

V- A (At\( )h-V At( )ﬂ {A{)( A()(bxl)n (9)

where AO is a constant. The subtraction of these new terms in
Eq. 9 can have the same effect as making the fast modes impli-
cit, even though AO may be very different from B,- In fact,
the method will be unconditionally stable, as for an implicit

method, provided A022> BO2 (see Section III). The new terms




make the treatment of the fast compressional modes only first
order accurate in time, regardless of the order of accuracy
of the method prior to their inclusion. This method has similarities

to semi-implicit methods used in fluid dynamics /17,18/.

We follow the same procedure in three dimensions as in the
one-dimensional case. First the fast compressional modes in
the x-y plane are found. For this purpose we linearize Egs.

1 - 4, differentiate Eq. 1 with respect to time, substitute,

- -
and finally, retaining only compressional modes (k 4 B), have:

3 (paV,)
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= (B°2+ K?,)V(V‘Vi) (10)

The perpendicular components of modes like those in Eg. 10 have
the fastest time scale. Hence it is desirable to treat them
semi-implicitly as in the 1d example. In three dimensions our
method uses a predictor-corrector scheme that assumes the

following form:

- - e - - N
(VY= (p0)"+ 68t F(p, VB, P) an
g*'——- —éh'l- 24t VX(V"X En) (12)
P - o8t V- (pV)" (13)

3

P¥=p"- 64t (?"-VP +‘0’PnV'-\7") (14)

n4 =
Vi v:.,. %.E.F_E(FJVJB)P)‘ (15)




‘én+l="8‘n+ %1; th(gnfl_bvv\)x-éﬁ-] (17)
N+t n 3 = n4l =n - (18)
P - st g [t (v V]

(19)

P2 b ae (ML) 7Pt Y. (9707

-
F, the force, is the right hand side of Eq. 1. © is a parameter

which may be chosen to be from 0.5 to 1.0. ia refers to the
velocity in the x-y plane. AO is again a constant which must be
sufficiently large for the method to be unconditionally stable
with respect to the fast modes. The magnetic field is always
advanced after the velocity advance, so that it requires no
special treatment. The advanced velocities may then be used

in a Crank-Nicolson-type advance, as in Eq. 17. The pressure
and density are also handled in this manner. If © is chosen

to be 0.5 the method is second order accurate in time, with
the exception of the fast compressional modes which remain
first order accurate due to the semi-implicit terms. However,
in practice we normally choose © > 0.5 for reasons to be dis-
cussed in Sections III and IV.

Because the method is intended to eventually be used in cylindri-
cal and adapted toroidal coordinates, we assume periodicity in

y and z. In X we have conducting walls at x = 0 and x = 1. We
represent quantities as a double Fourier series in y and z,

o T

A 1 Q’T Ql
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In X we use standard, centered, second order finite differences.
This spatial representation leads to a large simplification in
the time advance. Advancing Egs. 11 - 19 is straightforward,
except for Eq. 16. The semi-implicit term in Eq. 16 couples

the VX and VY equations:
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However, because the semi-implicit term in Eq. 21 contains no
x-derivatives of Vy' after Fourier transforming, Eg. 21 can be

written as:

Q\;‘“:T+ ['*(Ae.;zAz(m)][ Yn (ﬂ"m)A (M) ( n“"vx)] .
7

This expression is then substituted back into Eq. 20 with the

result:
TS ]Mn“ n, 6K A
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after finite differencing
This equation can be solved easily, since/the left hand side is

n + 1
is sub-

a simple tridiagonal matrix. Then the result for V
stituted back into Eq. 22 to get Vy i 1. Therefore, the full set,
Egs. 11 - 19, is advanced in time without requiring the solution
of any large block matrix systems. We note that this also holds
for cylindrical coordinates. Hence, a single time step requires
essentially the same amount of computing time as an ordinary ex-
plicit advance, yet with the advantage that much larger time

steps are allowed.



Iil. Stabilitwy
We will now demonstrate the linear stability properties of
the method by analyzing a two-dimensional case with /3y = 0

> A
and B, = B, z. With pressure set to zero and unit density,

after linearization, Egs. 11 - 19 become
¥ _ N 3 ,N
B, =By, + B, At a—-zvx (24)
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Now substitute Egs. 24 and 25 into Eq. 26. For simplicity,
here we will assume periodicity in the x-direction as well as
in the z-direction. After Fourier transforming in x and z we

have
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In Egs. 29 - 31 N is defined as N = (2% n/L) A t, where n is
the mode number in the z direction. We also define K as

K =2(At/A x) sin (k, Ax/2). It is now suitable to write

Egs. 29 - 31 in the form Un S Aﬁn, where A is the ampli-

A A
fication matrix and UT = (Vx, BXT’ Bz1).After some algebra,

A is found to be
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where Y = 1 + AOZKZ.

If all eigenvalues of the matrix A are
on or inside the unit circle, then no exponentially growing
solutions exist and this is sufficient for numerical stabili-
ty. We define the quantity o< as o<« = (K2 + Nz)Boz. The
eigenvalues of matrix A are now computed from Eq. 32, which

after some algebra are eventually expressed as

= [kt oo gmia] o

in addition to the trivial eigenvalue, W= 1. If © < 0.5, the

method is unconditionally unstable. For 0.5 €6 < 1.0 we have
stability as long as the discriminate in Eq. 33 is not posi-

tive, i.e. whenever
~Y(A+AZK) + 55 (1+26 (K24 N?) B, = O (34)

In order to have unconditional stability with respect to the
fast compressional modes the method must remain stable as
K900 . From Egq. 34, it can be seen that this will be true71f
the condition

2 { el 2
Ao > T Bio (l-l-ZG) (35)

is satisfied. Then the stability of the method will be insured
with Eq. 34 by satisfying the additional condition:

N’B,: < 16/ (1+26)* (36)



and if Eq. 34 is satisfied
Notice first that if © = 0.5/ then all roots lie on the unit

circle. Therefore, even though the scheme may be stable, any
excitation of the fast modes will persist as undamped noise,
even for very large time steps. Additionally, if there is fi-
nite flow in the equilibrium, © = 0.5 should not be used for
prediction of the advective terms, since without additional
care such a method is unconditionally unstable. Therefore in
practice we choose 6 2 0.5. If 0.5 <6 %£1.0, and if AO sa-
tisfies Eq. 35, where B202 represents the largest value of Bzz,
then only the relatively unrestrictive condition on the shear
Alfven modes, Eq. 36, must be satisfied for stability. When
there is finite pressure, B202 is replaced by B202 + ¥ PO in
Egq. 35.

For many problems the equilibrium field will have components
in both the y and z directions (poloidal and toroidal directions

in a torus). In the general case B, 2 in Eq. 35 should instead

be the square of the amplitude of ghe total magnetic field at
its maximum, rather than just the z-component. The analysis

for the case with an equilibrium Byo is similar to that for the
case with Bzo‘ In practice, for the general three-dimensional
case we find the method to be stable as long as the time step

and A remain within the following constraints:
2 | 2 2 3 2
Ao > e (Bzo*eyo +‘6P° (l+ 29) (37)

and
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The first constraint, Eq. 37, is the requirement for unconditio-
nal stability with respect to the fast modes and the second con-
dition, Eg. 38, is a standard CFL-like condition imposed by the
shear Alfven modes.Note that Egs. 37 and 38 do not contain any

terms involving the grid spacing in the x-direction, so that an
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arbitrarily fine grid may be used in x without affecting the

time step. Therefore the method satisfies our original goal of

allowing reasonable time steps on the shear Alfven time scale, ;

unrestricted by the fast compressional modes.

IV. Numerical Tests

We have tested the linear stability properties of the method
in a three-dimensional code using slab geometry. We assume the
density to be constant, P:T, and neglect the advective terms.
While the inclusion of these terms is necessary for a general
nonlinear code, they do not affect the linear stability of the

method. We initialize a uniform equilibrium magnetic field

and then perturb the velocity, exciting waves. These tests
have produced results consistent with the stability limits

discussed in Section III.

Consider a case with BZO = 1.0 and Byo = 0.2. We apply the fol-
lowing three-dimensional perturbation, where 8 is the pertur-

bation amplitude:

v, = (046/2%) §sin (y+ 0.22) Sin (2%x)
Vy = .0 § Cos (y+0.22) Cos (297 %)

Vy = =0.28 cos (y+ 0.22) COS (2%)

This is an excitation of a shear Alfven wave with frequency
W= % - E = 0.4. We use 41 grid points in the x-direction. If
we do not use the semi-implicit method, i.e. set Ao = 0.0,

then numerical instability results if the time step exceeds the
usual CFL condition, At < (Ax/BO) = 0.025. In a realistic
toroidal problem, including resistivity, much higher spatial
resolution is required so that the CFL limit would be even more

severe.



To simulate the Alfven wave we first choose a time step of
At = 0.10, which is four times the normal CFL limit. The
numerical parameter, 8, of the predictor-corrector method
is set to 8 = 0.52 and we use AO = 0.7 for the semi-impli-
cit parameter. The kinetic energy of the wave is shown in
Fig. 1. The expected wave period of 1:= 59 is reproduced
correctly. In Fig. 2 we show the result of a simulation
with.‘At = 0.4. Some damping of the wave kinetic energy is
apparent after many oscillations, due to the predictor-cor-
rector method. We can further increase the time step as
long as it remains below the stability limit of Egq. 36. For
this case the limit on the time step is At < 4.9. In Fig. 3
we show the wave kinetic energy as a function of time when
At =2.0. The wave is heavily damped. Clearly, at this
point the time step is so large that the shear Alfven wave
is no longer accurately represented. However, the method

continues to be stable.

As a second example we consider a case with an equilibrium
field purely in the z-direction, BZO = 1.0. We set the pres-
sure initially to PO = 0.3 and‘x = 5/3. Then three modes are
excited: a fast compressional wave with Vx = 81 sin (2% x),; a
shear Alfven wave with VY = 82 cos (0.2 z), and a sound wave
with vV, =§ 3 cos (0.2 z). We set © = 0.52 and A, = 0.8 and
again use 41 radial grid points. At first we choose a very
small time step, At = 0.01. Figure 4 shows the kinetic energy
perpendicular to B as a function of time for this case. The
fast compressional wave is apparent with the proper frequency,

CJ1 = 7.695 (¥ = 0.8165) . The decrease in energy is due to the be-

ginning of a shear Alfven oscillation. We next use an increased time
step of At = 0.3. The perpendicular kinetic energy is again shown
in Fig. 5. A rapid oscillation can be seen at the beginning due to

excitation of the fast compressional mode. However, the fast mode is




quickly damped, leaving only the shear Alfven wave with the
proper frequency of 602 = 0.2. In Fig. 6 the parallel kinetic
energy is shown and the oscillation here is due to the sound
wave with the correct frequency, 0J3: KPO kz = 0.1414., Fi-
gure 7 displays the time evolution of the perpendicular diver-
gence of the velocity, lv'vll . It shows clearly that the os-
cillatory compressional motion damps rapidly with large time
steps. Again we emphasize that no incompressibility constraints
have been enforced. The predictor-corrector method, for 62> 0.5,
damps any oscillatory motion when the time step is so large

that this motion is not accurately resolved.

As discussed in Section III, if © is set to © = 0.50, then any
excited waves will persist undamped. We have repeated the case
shown in Figs. 5 - 7 with 6 = 0.50. The result is shown in

Fig. 8. The additional noise superposed on the shear Alfven
oscillation is due to the undamped excitation of the fast modes.
However, these rapid oscillations are not properly resolved
with such large time steps so their excitation appears as

noise. Figure 9 shows IV-vil for this case, indicating, in con-
trast with Fig. 7, that no damping of the compressional motion

occurs. Therefore we again recommend keeping © above 0.5.

Our numerical tests in three dimensions have verified our pre-
vious stability calculations. We generally find the algorithm
to be numerically stable as long as the conditions of Egs. 37

and 38 are satisfied.




V. Conclusions

We have developed a semi-implicit method for solving the full
compressible MHD equations in three dimensions. The method is
unconditionally stable with respect to the fast compressional
modes. The time step is constrained only by the time scale of
the shear Alfven modes. The method does not require the solu-
tion of any large block matrix systems; therefore, the compu-
tation time required for one time step is essentially the same
as for an explicit time step. The method has been tested on
linear waves in three dimensions and our stability limits have
been verified.

Time steps that are much larger than fast compressional oscil-
lation periods are permitted. However, for problems in which
the dynamics of the fast modes are thought to play an important
role, the details of the fast compressional motion can be fully

recovered by reducing the time step.

The semi-implicit method will be applied in the future to the
study of resistive instabilities in toroidal confinement de-
vices. The addition of resistivity to our method is straight-
forward. The method is intended to be implemented ultimately

in adapted toroidal coordinates. As is the case with the re-
duced equations/6/, such nonorthogonal coordinates will require
more difficult matrix solutions in the velocity computation
than the simple tridiagonal solutions used in Cartesian or
cylindrical coordinates. Nevertheless, the semi-implicit
method should make full MHD simulations as economical as pre-

vious methods for reduced or incompressible models.
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Figure Captions

Fig. 1: Kinetic energy of a shear Alfven wave due to a
three-dimensional perturbation, with W= 0.4 and
At = 0.1. The semi-implicit method properly si-
mulates the wave even though the time step is

four times the usual explicit CFL limit.

Fig. 2: Kinetic energy of the wave of Fig. 1, except with
At = 0.4,

Fig. 3: Kinetic energy of the wave of Fig. 1 with At = 2.0.
The time step is now too large to accurately repre-
sent the shear Alfven wave. At such a large time
step the wave is damped, however, the method is
still stable.

Fig. 4: Plasma kinetic energy perpendicular to the equili-
brium magnetic field. A fast compressional wave, a
shear Alfven wave, and a sound wave have been exci-
ted. ® = 0.52 and At = 0.01. The rapid oscillation
here is due to a fast compressional wave with
(W= 7.695 and the slow decrease in kinetic energy

is due to the beginning of a shear Alfven wave with

Gl="0. 2,

Fig. 5: Perpendicular kinetic energy for the case of Fig. 4,
but with At = 0.3. The rapid oscillations at the
beginning are due to the fast mode and have been effec-

tively damped after one shear Alfven period.

Fig. 6: Parallel kinetic energy for the case of Fig. 3. The

oscillation is due to the sound wave with W= 0.1414.




Fig.

Fig.

Fig.

7:

8:

9:

-
Variation of \V-V_LI as a function of time for the
case of Fig. 5. The fast compressional oscillations

are clearly damped on the shear Alfven time scale.

Perpendicular kinetic energy for the case of Fig. 5,
except with 6 = 0.50. The noise superposed on the
shear Alfven wave is due to the undamped fast waves
which are now inaccurately resolved by the large

time step.

Variation of \Vovll for the case of Fig. 8. The
compressional motion is now undamped because 6 has
been reduced to & = 0.50 from © = 0.52 in Fig. 7.
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