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IPP III/91 DIGITAL ANALYSIS OF MHD FLUCTUATIONS IN
ASDEX TOKAMAKS

L. Khadra

Abstract

Basic time series analysis techniques are used to investigate MHD
fluctuations in ASDEX. In particular, Auto- and cross-—-power spectra
are utilized to determine amplitude, frequency, and mode number of the
magnetic field fluctuations and soft-X-ray signals. Moreover, time
dependent spectra programs are used to follow the frequency evolution

of various MHD-modes with time. (Some experimental results are presented.)




A. Introduction

With the introduction of the fast Fourier transform (FFT), the computer
time required for Fouriert transform calculations was so sharply reduced
that power and cross-spectra could be efficiently estimated from direct
Fourier transform of time history records. The fast Fourier transform is
merely an algorithm for computing the discrete Fourier transform (DFT) of
a data series at all of the Fourier frequencies using relatively few

arithmetic operations,

Computations of auto and corss-power spectra using FFT algorithm have been
discussed extensively in reference /1/. Time series analysis, as applied to
plasma fluctuations, has been discussed in detail in references /2,3/. The
basic procedure as outlined in reference /2/ is to pass the time series
through a window to reduce the effects of finite data length, to compute
the FFT of the data, and then to compute auto and cross—-power spectra. The

spectra are then smoothed to reduce the statistical errors of the estimate.

The objective of these notes is to utilize basic time series analysis to
analyze MHD fluctuations in the ASDEX tokamak. Section B will provide a
brief review of some basic principles for the computation of auto, cross-
power spectra, and coherency spectra. In section C we discuss the principle
of digital complex demodulation procedure and how to use it to compute time
dependent spectra. Section D presents some experimental results and des-

criptions of the output of FORTRAN programs.

B. Power-Spectra and Waves Identifications

For a real sampled time data function f(t ) the discrete Fourier transform

i
(DFT) is defined as
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where fk = k.Af and ti = 1.At. The sampled time series consists of N
discrete data points spaced At sec apart. In the frequency domain the
transformed timed series consists of N discrete values spaced Af Hz apart.
The quantity Af is called the elementary bandwidth and is related to At
by the formula

1 1 _ fs (3)

where T is the duration of the "raw" time series in sec, and f 1is the

s
sampling frequency.

For a sampled data from a time record f(t) which is stationmary, an estimate

of a true power spectrum is defined as /1/
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where k = 1,2,..., N/2M. To reduce the random error of the estimate, a
smoothing operation indicated in eq. (4) is introduced. This smoothing

operation is carried out by averaging over M ad jacent spectral components.




Another way of smoothing the estimate is to average over an ensemble of
estimates. For the programs used to analyze ASDEX data the first smoothing

operation indicated in eq. (4) has been used.

To reduce the effect of leakage, which is a direct consequence of estimat-
ing a Fourrier transform of a finite data length, Hanning window has been

used in the computation of power spectra programs.

The cross—power spectrum of two sampled time functions, which are stationary

and measured at two different spatial points can be computed as

M-1
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where * denotes conjugate complex.
Since the cross—-power spectrum is in general a complex quantity, it can be

expressed as
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where PlZ(f) is the cross amplitude spectrum and where Blz(f) is the

phase spectrum given by

ﬁlz(f) = Bz(f)- Gl(f) (7)

As equation (7) indicates, the phase shift undergone by each spectral
component is expressed in terms of the phase difference between the phase
of Fl(f) and the phase of Fz(f). It is this property which enables us to

determine the wave number of each of several modes present in the plasma.

Another important quantity which is of practical importance in analyzing

plasma data is the squared coherency spectrum defined as
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The coherency spectrum measures the statistical correlation between two

measured time series on a spectral basis. For further details of the

phase and coherency spectrum we refer to reference /3/.

C. Digital Complex Demodulation and Time Dependent Spectra

Digital Complex Demodulation

Digital complex demodulation, the digital equivalent of heterodyning, is

a digital method by which one can obtain the time traces of amplitude and
phase modulation of a carrier wave with a center frequency W, /4/. In the
following we outline the key ideas with the aid of Fig. 1. In Fig. 1, ¢
(x,t) denotes the signal measured at point x. Without any loss of general-
ity we can set x = o. To illustrate the philosophy of the approach we
assume that ¢(t) is an amplitude and phase modulated wave described by the
following equation:

o(t) a(t) cos [mOt + p(t)] (9)

a(t)

{exp[imot + ip(t)] + exp [—imot - ip(t) ]}

where a(t), p(t) and wO denote the amplitude modulation, phase modulation,

and carrier frequency, respectively. Following Fig. 1, we multiply Eq. (9)

by an exponential term 2exp(-iwdt), where md is the demodulation frequency,
to obtain

2¢(t)exp(—iwdt) = a(t) {exp[i(mo—md)t + ip(t)] (10)
+ exp[—i(mo + md)t - ip(t)]}

If we let wd = mo and run the result into a digital lowpass filter, with

a cut—off frequency less than Zmo, we get the complex demodulate c(t),



c(t) = a(t)exp[ip(t)] (11)

Actually, the results of carrying out these operations in the computer
are expressed in terms of c (t) and c¢ (t), i.e., the real and imaginary
T i
parts of c(t), respectively. Consequently, the instantaneous amplitude and

phase modulation are found by computing

1/2
a(t) = [c2(t) + ()] 4 (12)
, & (6
p(t) = tan- =
c (t)
r

Time Dependent Spectra

The basic assumption of classical time series analysis is that the time
series under study is stationary. That is, the statistical properties of

the time series are invariant with translations in time.

In practice, however, the assumption of stationarity is often violated

and the classical approach to spectral analysis will lead to artificially
broadenend features in the spectrum. One such situation is the magnetic
field fluctuations in tokamaks. These fluctuations exhibits marked changes,
in amplitude and frequency, with time. The nonstationary character of such
time series requires the study of the energy distribution in the time

frequency plane.

Time dependent spectra can be computed in one of two ways. The first way is
based upon the computation of short time spectra. That is, the time series
understudy is subdivided into a number of small records and it is assumed
that each record is stationary. Each subrecord is then multiplied by an
appropriate window and then FFT-algorithm is applied on each subrecord.
Although an analysis of this type can produce useful qualitative features,
care must be taken in interpreting the quantitative feature of the plot.
Dividing up the time series into smaller records results in poor spectral
resolution, and since there is no averaging a large random error results

/1/. The second way is to use the principle of digital complex demodu-




ation procedures. Since complex demodulation uses a digital filter to re-
cover the complex demodulate, a form of averaging will be introduced.
Another advantage in using complex demodulate is that we do not need to
subdivide the time series into smaller records, hence, better spectral
resolution is obtained. We note, however, that the procedure of complex
demodulation requires longer computational time. Our computational
procedure /5/ is performed by complex demodulating a certain number of
frequencies between zero frequency and the Nyquist frequency. For each
demodulate one decimates at a rate of one point in an interval given by the
inverse of the filter bandwidth f , This reduces the computational cost by

p
the factor 2 fN/f , where fN is the Nyquist frequency.
P

D. Experimental Results

Program FFTASD

This program is used to compute auto-power spectra, Cross—power spectrum,

and coherency spectrum of two different time series. Frequency averaging
procedures, as outlined in the previous pages, are used to smooth the
estimates. Program FFTASD requires the following INPUTS: shot and diagnostics
numbers, name of the two time series, starting time of the time series in sec,

and number of data points to be transformed.

Figure 2 demonstrates an example of the output of this program as applied to
the magnetic field fluctuations. The two time series are obtained from two
magnetic probes placed A6 = 14.60 apart. The signals are band-passed with
passband f = 100 Hz - 40 KHz and digitize with a sampling interval

At = 25 usgc. Each time series consists of 1024 data points. The spectra

are smoothed over 5 adjacent spectral components. This leads to a frequency

resolution of
Af = M/NAt = 0.195 KHz.

As it is apparent in Figure 2 the auto power spectra of the two channels
ASWNW and A7WNW demonstrate a coherent peak at about 18 kHz. At this fre-

)
quency the phase spectrum has a value of about 30 - Thus, the mode number
can be determined as

. T
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At the bottom of Figure 2 the squared coherency spectrum is plotted. The
coherency, which measures the statistical correlation between two time
series, shows a high degree of coherency ( 2 0.95) at the frequency

18 kHz. This is expected since the two probes measure the same physical

quantity.

The broadenend feature of the peak at 18 kHz is due to the nonstationary
character of the magnetic field fluctuations. To investigate the evolution

of frequency with time a time dependent spectrum is needed.

Another interesting feature of the phase spectrum is its indication of the
direction of propagation. As demonstrated in Figures 3a and 3b the phase

spectrum shows a change in sign for the mode present at 19 kHz.

Figure 4 demonstrates the power spectra of one soft-X-ray array. The array
consists of 20 detectors. The viewing geometry of the soft-X-ray array is
shown in Fig. 5. The signals are band-passed with passband 100 Hz - 60 kHz,
and digitized with a sampling interval of 10 usec.

The spectra of the detectors show a well-defined peak at 27.450 kHz. This
peak can be seen by all detectors. The mode number, as determined from the
phase spectrum, is m = 1. As the viewing of the detectors becomes closer

to the center two more coherent peaks at 16.67 and 44.12 kHz can be seen.
Since the frquency matching condition is satisfied, i.e. 16.67 + 27.45 = 44.12,
the quesion arises of whether the waves present at the frequencies 16.67,
27.45, and 44.12 KHz are nonlinearly coupled. In order to answer this
question we need to apply bispectral analysis techniques on the soft-X-ray
signals. Bispectral analysis technique, which has been developed in reference
/6/, enables us to discriminate between spontaneously excited modes and

those which are coupled by nonlinear wave—-wave-interactions by examining

the phase coherency between them.




PROGRAM PHKAN

This program computes the phase shifts of a certain mode for all soft-X-ray
detectors and with reference to an arbitrary detector. This programm requires
the following INPUTS: shotnumber, starting time of the soft-X-ray signals,
the value of frequency for which the phase shift to be computed, and the
reference detector.

In Fig. 6 the phase shift of the mode present at 27.450 kHz with reference

to detector A is computed.

Program ZEITSP

This program is used to compute time dependent spectra of nonstationary time
series. The computational procedures are outlined in section C. Program ZEITSP
requires the following INPUTS: shot and diagnostic numbers, name of channel,
starting time of the time series in sec, and number of data points to be

transformed.

Figure 7 shows an example of the output of this program as applied to magnetic
field fluctuations obtained from one probe. The measured time series consists
of 4096 data points and is chopped into 32 subintervals. The frequency resolu-
tion is then given by 1/NAt = 0.312 kHz. The spectrum is plotted on a linear
axis in power to emphasize the evolution of large-amplitude modes. Figure 7
clearly demonstrates the variation of frequency which leads to broad peaks in

the smoothed spectra.

To determine time evolutions of various modes simultaneously present in plasma,
the computation of a time-dependent mode spectrum is required. Furthermore, we
note that mode analysis, as discussed in section B, was based on two probes and
the interference effect between various modes has not been taken into account.
In order to accurately determine poloidal mode hierarchy in ASDEX, the tech-
niques discussed in sections B and C should be further developed. This will

be studied in the near future.
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FIG.1 A BLOCK DIAGRAM ILLUSTRATING COMPLEX DEMODULATION.
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G.7 TIME-DEPENDENT SPECTRUM OF MAGNETIC FIELD FLUCTUARTIONS
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