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Abstract:

This report treats hydrogen diffusion in the first wall

of a fusion machine (INTOR, reactor, etc.), taking the
thermal load into account. Analytical approximation

formulae are given for the concentration and flux

density of hydrogen diffusing through a plane metal slab.

The re-emission flux, particularly during the dwell time(s)
of machine operation, is also described with anaiytical
formulae. The analytical formulae are compared with numerical

calculations for steel as first wall material.
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1. Introduction

Hydrogen diffusion through metal walls is a serious problem for
DT fusion experiments with respect to both the tritium inventory
and the tritium loss and has therefore often been investigated
(see, for example, Ref./1/). Most reports on the subject essenti-
ally consist of numerical calculations using computer programms
(DIFFUSE, PERI, Refs./11, /12/). These, however, do not readily
show the influence of the parameters, e.g. the material constants,
on the curves and/or data obtained. What is needed are analytical
solutions of the diffusion problems involved in order to allow
direct study of the influence of the various parameters. Exact
solutions, however, only exist for special cases (sec. 2). This
report uses these special solutions to construct analytical appro-
ximation solutions which are also valid for fusion-relevant condi-
tions.

The treatment is concerned with the temperature variation
(sec. 3) and hydrogen diffusion (sec. 4) in a plane slab with
one side subjected simultaneously to hydrogen bombardment and
a thermal load while the other side is cooled. The hydrogen bom-
bardment and thermal load are periodically switched on and off to
simulate the conditions on the first wall and on the divertor or
limiter plates during the burn and dwell times of a fusion machine
(e.g. INTOR or reactor). Some of the implanted hydrogen recombines
on the surface of the slab to the coolant. This leads to nonlinear
boundary conditions containing the recombination coefficient.

The calculations do not take into account the implantation
profile of the hydrogen, this being admissible for most fusion-
relevant conditions (low ion energy of approx. 10 to 1000 eV and
high wall temperature of approx. 700 to 1200°K) .

Hydrogen traps on the slab are also neglected. This leads to
under-estimation of the hydrogen inventory (see eq.(4.29)) . By
contrast, the diffusion behaviour in the steady state and hence
the tritium losses after longer time of operation are scarcely

affected by the traps




3: The functions erfc and eri

The functions erfc and eri feature here wherever the spatial
dependence of the temperature or H concentration are being in-
vestigated. Their properties needed later are therefore set out
in this section.

These functions are defined by

2 4 -u2
erfc(V) = 1 - -—-Sdu e (2.1a)
Y o
\')
and eri(V) = 1 - Y Jdu erfc(u) b)
)
which can be rearranged to give
_v°
eri(V) = ¢ ' -y"V erfc(V) , (2.2)

The notation erfec stands for error junctionlgomplement, i.e.
erfe + erf = 1

where erf denotes the GAUSSIAN error function;

eri stands for error function‘iptegrated.

Both functions are solutions of one-dimensional diffusion
problems where a quantity (H-atoms, heat, temperature etc.)
diffuses into a region O £ x £, In this context a "problem"
is defined by the

diffusion equation

boundary condition at x=0 ("left")

boundary condition at x=a ("right")
and initial condition at t=0
where x and t denote space and time and a is a value >0 at
which boundary condition '"right" should be valid; required is
the solution in the intervall O £ x £ a for all times t 2 O.

In the examples of this section a is assumed to be infinite,

mn

while in secs. 3 and 4 a is finite.



One of these diffusion problems can be described as follows:
Let the region O € x € o9 be characterized by a diffusion constant
D. At the time t £ O let the density of the guantity be C=0.
At time t=0 the density C at x=0 is abruptly raised from the
initial value O to C. and then kept constant for all times.

L
The problem is defined by

Mass conservation %% s g% (2.3a)
s a¢C )
FICK s law F:—Da—x b
Boundary cond.''right" C'x+m= 0 c)
Boundary cond."left" c|x=0 = Cp d)
Initial cond. Cly_g =0 e)
The solution is C = CL erfe( ﬁ) f)
2
_\/.D X
F=izr & e@[‘(ﬁ) ] g)
with H = 2\{1) t h)
FIG.2=-1
C/CL C versus x for two different

t-values acc. to eq.(2.3)




If flux constancy at the left boundary x=0 is reqired, the
problem is changes, hence other function symbols are used. The
use of T indicates that this problem will be used in sec.3 to cal-
culate the temperature of the slab material. The problem is

3T 3Q
5t 5 "3y (2.4%a)
- -yt b
ez D ax )
|I-)m= 8 c)
Q|x=o = QL d)
T[t=0 =0 e)
2\t
T = —-Y-: eri (X £)
o R e
Q = QL erfec e 8)
2 “U t
FIG.2-2
C versus x for two different
nl t-values acc. to eq.(2.4)
T_V
70,




1.0 T
\ e_vz
erfc(v)\\
_eri(V) \
\\\
0.6 N
AN €
N \\ N
U 4 Y N
: N \\\\\¥ N
N \
\ '-..___..‘
0
0 0.2 0.4 0.6 0.8 1.0 s 1.4
0.0 1.000E 00 1.000E Q0 1.000E 00 The normalized solutions
0.1 9.S00E-01 8.875E-01 8.327£-01 .
002 9.6G8E-01 7.773E-01 6.852E-01 ) -
0.3 9.139E-01 6.714E-01 5.569E-01 eri(V), erfc(V) end e
Oc4 B.521E-01 5.716E~01 4.469E-01 A
0.5 7T.7EEE-01 4.795E-01 3.539E-01 Definition:
O0ub 6.977E-01 3.,961601 2.7€4E-01 v 5
Cel 6.126E-01 3.222E-01 2.129€-01 ) =
0.8 5.2723E-01 2.57SE-01 1.616E~01 erfe(V) = 1 - =fdu e
0-9 ’0.4’!9E-01 2.031&"01 ICZOQE-OI i o
10 3.67SE-01 1.57T3E-01 8.907€-02
lo1 2.582E-01 1.19BE-01 6.463E-02 . @
1e2 24369E-01 8.S69E=02 4e€17E-02 eri(V) = e -YT V erfc(V)
le4 1.40SE-01  4.771E-02 2.246E-02
1e5 1.054E-01 3.38SE-02 1.528E-02
le6 ToT30E-02 2.365E-02 1.023E-02
1e7 5.556E-02 1.621E-02 6.734E-03
1.8 3.916-02 1.091E-02 4.3S8E-03
1.9 2.7056-02 7.2106-03 2.773£-03
Z.0 1.832E-02 4.678E-03 1.734E-03
21 1.216E-02 2.S79E-03 1.C65E-03
2.2 T.907E-03 1.863E-03 6.431E-04
2.3 5.042E-03 1.143E-03 3.815E-04
2.4 3.151E+03 6.8856-04 2.223E-04
2.5 1.93CE-03 4.0706-04 1.272E-04
2.6 1.15SE-03 2.360E-04 T.150E-05
2.7 6.827E-04 1.343E-04 3.946E-05
2.8 3.937E-04 T7.501E-05 2.13SE-05
2.5 2.226E-04 4.110E-05 1.138E-05
3.0 1.234E-04 2.20SE-05 5.947E~06




3. Temperature

The thermal conduction of the slab material (generally steel)
is practically independent of the hydrogen concentration in the
slab. Theflmperature can therefore be calculated independently
of the H concentration. The following equations are used for

calculating the temperature:

E‘; - - é.g (301&)
¥}t T X
AT b)
Q = -0 a—;{
» c)
T‘x:a Ex TR
8 _Jo during dwell times )
1x=0 Q " burn "
L
o e)
T‘t:o 3 TR

where Q is the temperature‘flux, which in the case of steel
differs from the heat flux &, by a constant factor, see eq.(5.2).
The diffusion problem (3.1) contains the following parameters,
typical values, oriented on INTOR or reactor studies, are given

in parentheses (see §5):

Slab thickness a ( 1 cem) (3.2a)

Temperature conductivity U (0.04 cm®/sec) b)

Coolant temperature T, ( 600°K) c)

Temperature flux demnsity @ (3.2 degree %23) d)

Burn time t (1-2 min) e)
burn

Dwell time t (4-10 sec) f)
dwell

FIG.3-1 shows Q x=0 Versus t for the first two burn-dwell periods

and the time scales used here.

Q
'1L|t . .
' 1. burn period 2. burn period
" !7///////////////////////// A
0 thurn tourn * taweu
F | -1
0 tawell
| >t




Characteristic time and temperature constants

From the parameters given in table (3.2) we form the
"temperature diffusion time"

= a%/ll ( 25 sec ) (3.3a)

and the

"steady-state temperature difference"

To=aq /U 80° ), (3.3Db)

tST characterizes the time needed to attain virtually steady-
state conditions;
TD is the temperature difference between the two sides x=0

and x=a in the steady state.

Analytical approximation for the 1st burn time

For times very short relative to the temperature diffusion time
(tQ(tST) the temperature T only differs significantly from the
coolant temperature TR' when x¢a. It is therefore almost imma-

terial whether T=TR is postulated at x=a or at x=w as boundary

condition "right". We therefore use eq.(2.4) to get

T = + temp(x,t) (3.4)

with /
temp(x,t) _ \/ x/a for
D ST

For very long times we get the steady-state solution

temp(x,t) _

D

-t
1
R

for tMten | (3.50)

The temperature is thus known for very long and very short times.
For intervening medium times we rely on numerical calculations.
The results of theses can be interpolated with the approximation

formula

temp(x,t) _ 2

T 03

eri(._’ia.— — eri(é-_xé_—)
_t. G "t/ts'r 2 \‘t/tsm (3<5)
tST 1+ erfc(VEEE?E)




the values being at most 6% too small, see eq.(6.1). Eq.(3.5)
contains both the short-time case (3.5a) and the steady-state
case (3.5b) as special cases. This is seen for small t in eq.
(3.5), where the second term in both the numerator and denomi-

nator vanishes. For large t the argument

¥ o o . Xa

2\U t  2yt/tg,

of the functions erfc and eri is very small, so that the expan-

sions erfc(V) 1 - £ \') (3.6a)

'S
yrv b)

are valid. Substitution of eq.(3.6a) in O-order and eq.(3.6b)

eri(V)

in 1-order approximation in eq.(3.5) yields the steady-state
solution (3.5b).
Eq.(3.5) is not the only formula of this kind. For the spe-
cial case x=0 the formula
temp (0, t) =\/ A -
) Yo.485 (tgn/t) + 1 i

is much more exact (approx.i1%) and will be used almost exclusi-

vely in sec.4 to treat processes in the vicinity of the irradia-
ted surface x=0. Eq.(3.7) also contains the short-time case
(3.5a) and the steady-state solution (3.5b) as special cases:

temp(O t) _ \/o 485 \/ ton \f_»/ for t«tST

. for t))tST

Eqs.(3.5) and (3.7) are formulated to include only the dimension-
less quantities x/a, temp/TD and t/tsT ; apart from theses three

quantitites there are no other parameters in egs.(3.5)-(3.7)
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Arbitrary times, superposition

Having given the solution for the 1st burn time in eq.(3.5)-(3.7),
we now describe how to obtain from it the solution for arbitrary
times (1st dwell time, 2nd burn time, etc.). First we write down

the result, explaining it later; it holds that

18t burn time: T = TR + temp(x,t) s.(3.4)
1st dwell time: T=Tp + temp(x,t) (3.8a)
- temp(x,t~tburn)
2nd burn time: T = TR + temp(x,t) (3.8b)
- temp(x,t—tburn)
+ temp(x,t-t -t )
ate. with burn “dwell
tb = length of burn time
urn
— " n "
tdwell = dwell .

Each line of eq.(3.8) solves the differential eq.(3.1%a+b) for

the boundary condition Q|x=0 = 4 Q - except at the times

t=tburn; tburn+tdwe11 etc, at which the flux jumps. The differen-
tial eq.(3.1a+b) is linear, therefore the sum of several solutions
is also a solution. Each term temp(x,t—to) produces at x=0 the
flux QL. During the dwell times there are as many temp terms with
positive sign as with negative sign, whose contributions to the
flux at x=0 cancel out, so that boundary condition (3.1d) is ful-

filled.

In the following figures (3-2 and 3-3) we represent the dimen-
sionless temperature variation
T-T

T as a function of -E and EE-

D ST -
so the figures are independent of the choice of the parameters
a! U! TR' QL! tsT! TD 2




FIG.3-2

T versus t with x as parameter

for constant temperature diffusion coefficient U

calculated acc.to eq.(3.5) for tburn/tST = 3

and t / = 0-5 ']

dwell tST

The normalization factors are tST aa/fU

and
Ty =2aQ /U,
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L, Hydrogen concentration

A Basic equations

In this section the concentration of the hydrogen diffusing through

the metal slab is treated. The equations and data required are taken
from Ref./1/; these are
ocC AF (4
P e o o .1a)
Mass conservation law 3t 3%
y C
FICK's law F=-D g; b)
- )
Boundary cond."right" F‘x=a =Ky C Ix:a ¢
B " " F' =F - ILL Cal d)
oundary cond.'"left x=0 implant x=0
0 at dwell times
Firlant = e)
— FL at burn times
Initial cond. )
Cleeo = ©s x
where C = C(x,t) = number of H-atoms per cm3 in the metal slab at
distance x from the irradiated side of the slab
at time t; termed"H concentration;
F = F(x,t) = flux density of H atoms in atoms/(sec cma)
termed"flux" for short;
Fim daiE = flux density of implanted H-atoms,
P see eq.(5.3b);
D = D(x,t) = H diffusion coefficient;
K = KL(t) = recombination coefficient at x=0;
KR = recombination coefficient at x=a.

Diffusion and recombination coefficients are functions of the

temperature acc.to Ref./1/:
D=0D, exp( - ED/T)

K =K exp( - EK/TL)

Kp = K exp( - EK/TR)

1]

(4.1g)
h)

i)




- 134=

TR is the temperature of the coolant; TR and hence KR are regarded
as constants;

T, is the temperature of the irradiated side (x=0) of the slab and
depends on time because the slab is heated during the burn times
and cooled during the dwell times. According to eq.(3.7) and

(3.8a) it holds that

A Y

_ t during N
=T+ T %[__ 5 3 1st burn time S
0.485 tST + t
T =T, + T k _ SuE SR
L R D 3 3 3 16t dwell time
V&;.485 top + ¢

tburn

t_
30.485 th + (t‘tburn)3

TL=TL(t) is thus a function of time onmnly.

T = T(x,t) is the temperature inside the slab and can be taken from
eq. (3.5-8). The diffusion problem (4.1) contains the

constant parameters a, Do’ ED’ EK’ FL’ Ko, TD‘ TR' tburn’ tdwell’ tST P

To avoid increasing the number of parameters further, the cooled (x=a)

and irradiated (x=0) surfaces are assumed to have the same parameters:
Ko|x=0 = Kolx:a 2 Ko gte..

This, however, is of no consequence for the solutions given in this re-

port because the cooled side with a and K, does not occur in egs. (4.5)

to (4.24), and in the steady-state case (eq.(4.25)-(4.3p)) we neglect

the time dependence of the temperature. The steady-state problem thus

contains KIl and KR as constant parameters independent of one another.
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Typical values for the constant parameters are acc.to sec 5:

a = 1cm plate thickness (4.2a)

Do = 0.085 cme/sec b)
Ej = 2000°K for steel c)
E, = 6000°K d)

16 2
F, = 1.5 10 = atoms/(sec cm®) for INTOR e)
K _.{1.6 10-16 cmh/(atom sec) " clean surfaces £)
°© 11.6 1070 w " dirty "

S 80° w INTOR g)
Ty = 600°K " NET or reactor h)
tST = 25 sec i)
tourn = 60 sec k)
tiwell = ' 8C 1)

Ko thus depends on the purity of the metal surface.

For T=680°K (INTOR, irradiated side of the slab)

the coefficients have the following values:

D=2 1076 cn’/sec (4e2m)
-20 4
K = 2 10 cm /(atom sec) for clean surfaces &3
2 1072 " " dirty "
KR = 0% K.L . P)
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For the sake of clarity we introduce the following parameters
characteristic of problem (4.1), with typical values given in pa-

rentheses:

"release time"

£ = =2 0.01 sec for clean surfaces) (k.3a)
A" FLKL 4 min " dirty "

"particle diffusion time"

2

teg =-25 ( 5 days ) (4.3b)

"concentration limit"

FL 1018 cnr3for clean surfaces
CL = K— 20 (4.3(‘-)
L 10 " " o dirty "

"penetration depth'" of C variation due to dwell time

Hiwerr = 2 YD taye11 (k.3d)

[

We only treat cases in which t is very large relative to all other

SC
characteristic times and assume everywhere in this report that

Hdwell (S (4.4)
We give approximation formulae for
the 1st burn time (eqs. (4.5-8) and (4,18-22))
an arbitrary dwell time (" (4.9-17) " (L4.23-24))
the 2nd burn time (v (4.15))
the steady-state solution without ( " (4.29-31))
and with SORET effect. (" (4.32-36))

Here (egs.(4.5-17)) we discuss in detail the case, where the coeffi-
cients D and KL are constant because the approximation formulae ob-
tained for this case are also important for temperature-dependent
coefficients. The derivation of the approximation formulae presented
in the following and their inaccuracy etc. are discussed in detail
in sec.6. The attribute "approximated" is usually omitted since all

equations from eq.(4.5) to eq.(4.3h) are approximations:




- 16 -

B Constant coefficients D and KL

1st burn time

For extremely short times immediately after the first switching on
there is not yet any significant H concentration, so that the boun-
dary condition (4.1d) on the irradiated side of the slab x=0 can be

approximated by

FIX:O = FL . (1‘(".5&)

Problem (4.1) is then identical with problem (2.4). The solution is

%]-;, = %V¢ eri(-;i-c) for t&t, (k.5b)
F X
— = erfc(3) c)
FL H
ith
W T =‘it1‘./1'.‘A d)
d =
i H=2yD¢t , e)

Solution (4.5) is only valid as long as time t is small relative to

the release time t The latter can attain the order of magnitude of

the burn time, if ihe metal surfaces are dirty.

For finite times (t},tA) the flux F at x=0 cannot remain constant,
as stated in eq.(4.5c), but decreases with time. This is because more
and more of the constant flux FL of the implanted particles is re-
emitted with growing concentration C. The flux decrease can be descri-
bed in crude approximation by

) _ 1
FL x=0 ) v?_ITQ? .

From boundary condition (4,1d+e) this yields for the concentration

(4.6a)

I K : (4.6b)
= ——— .6b
ch:O \(1+’t

A much more exact formula is given in eq.(4.8); for explanation see

eq.(6.9). The function describing the spatial dependence in the equa- |

tion for C is gradually transformed with increasing time

from the function eri to the function erfec. (4.6¢)

For large times (t}}tA), about as many H-atoms are implanted as are
re-emitted. The difference between the fluxes of the implanted and

re-emitted particles becomes very small:



<
Fleo €7y
so that the boundary condition (4.1d) at x=0 is reduced to

.’

o = OV, (.70)
Problem (4.1) is then identical with problem (2.3), the solu-
tion is

% - erfc('g) for ty»t, (4.70)
L
2
F_ 1 (=
FL Eexp( & ) . 2

Solution (4.7) is valid beyond the 1st burn time up to times of
the order of the particle diffusion time tg, (see eq.(4.3b)) and
describes how the slab is gradually filled with hydrogen if H
traps are neglected, as is done in problem (4.1). We do not go
further into this because in reality a large part of the hydro-
gen in the metal is bound in traps. For very clean metal slabs
(tA:»O) solution (4.7) is already valid for short times (t«t
see FIG.4-5a and 4-5¢).

burn’

In FIG.4-1 various formulae are compared for the build-up of

the H-concentration at x=0.
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cIc, -

» T

FIG.4-1
C/CL versus T at x=0 for the 1st burn time with constant coefficients

Solid curves:

c/cL =1 s.(4.7b)
a) Long-time solution
b) quasi-exact solution C/CL =y1-1/Vy1+ b7 (4.8a)

b= 4 =091 %% b)
Dashed curves:
2

¢) Short-time solution C/CL = T—tﬁ 5.(4.5b)
d) simplification of b) : o

C/CL = ¢1 -1/yY1+ s.(4.6b)

The attribute "quasi-exact'" for eq.(4.8) denotes that eq.(4.8) correct-
ly reproduces the numerical results within the drawing accuracy (1%) .

The numerical factor 0.19 stands for 1 - 8/Rt , see eq.(6.9) .

L-l.-l.:u..a_-. ks FEPRR Ty Y e
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Dwell time

During the dwell time the boundary condition (4.1d+e) on the

irradiated side of the slab is

2
Flowg == B, © |x=o .

The negative sign means that hydrogen on the irradiated side

x=0 is re-emitted from the slab. This re-emission flux leads

to partial degassing, i.e. a decrease of the H-concentration,
near the irradiated surface of the slab. This is described by
the ansatz

g= € - C (4.9)

burn var

where cburn denotes the density profile built up at the end

of the preceeding burn time acc.to eq.(4.5-7);

cvar describes the density drop due to degassing of

the irradiated side, termed '"dwell time variation".

Ehurn The sketch shows schematically
’,

C and C versus X;
burn

C is the difference. For
var

x2H mwlmscv = 0;

dwell ar

Hdwell is thus called the

penetration depth of the dwell

0 I > X time variation, see eq.(4.3d)

0 H

d (4.9a) for t
dwell and eq.(%.9g) for t=tg .. *

To calculate Cvar for a simple case, we choose as the initial con-

dition at the beginning t=0 of the dwell time

C=2¢C = C. = const for all x. (4.9a)
burn L

For extremely short times immediately after the start of the
dwell time the H concentration has not yet significantly decreased,
so that the boundary condition on the irradiated side x=0 of the

slab can be approximated by

2
F‘x=0 = - K Cpr = - FL oo (4.9b)
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Problem (4.1) in this case has the solution

C 2 .[A s &Kt L
2w q o R eri(x) for t&t, (4.9¢)
CL 1({—- ﬁ
%} = - erfc(%) d)
L H
A
T =/t e)
~
= - . . )= f
t=t -t (s.FIG.3-1) )
A
H=2yD% g)
)
Fal
t is the time elapsed since dwell time start.
Fal ~
For t=tdwell one gets H=Hdwell' the penetration depth of the

dwell time variation C .
var
Solution (4.9) is only valid for the time immediately after
the start of the dwell time. The flux decreases with time, which

can be described in rough approximation by

F

—_—

F

(4.10a)

1
x=0 ) 1-+JZ? .

A much more exact formula is given in eq.(k.12) and explained in

eq.(6.9). With increasing time t the function describing the spa-

tial dependence is transformed from
the function eri to the function erfec. (4,10b)

A
For large times (t))tA), the concentration at x=0 will have dropped
to values small relative to CL; it then holds that

A
g_ = 1 - erfe(¥) for tHt, (4.11a)
L H
F 1 2

X
L R M b)
oo & [ i }

FIG.4-2 shows the re-emission flux versus time according to

eq.(4.10a) and the "quasi-exact" eq.(4.12) with error approx. 0.5%.
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-

g
o —
v

FIG.4-2

>

Re-emissionn flux F/FL versus % during a dwell time for T > oo

x=0

i.e. after many burn-dwell cycles.

Dashed: accoerding to eq. g_ - 1 s.(4.10a)
L|x=0 1+ Q"C’
Solid: according to eq.
F 1
= i ——] (k.12a)
FL x=0 1 + %ﬁ
% = 1 + -t b)
& A
1 + 7

Eq.(4.12) interpolates the numerical results with an accuracy of
approx. 0.5%; the factor 0.27 stands for 4/t , see eq.(6.9) .
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Limiting cases with linearized boundary conditions

In FIG.4-3 we show concentration profiles for tburn=60
C (normalized) versus x (normalized) during the 1st dwell time
for limiting cases with linearized boundary conditions

for which exact solutions exist (see eq.(6.3-6)):

a) for the extremely dirty case with £,>®; it holds that

CVTD  _\Teri(—2) -|% eri(—=5) , (4.13)
2 T, Yt'e 2yDt Ve 2yD%

b) for the extremely clean case with tA9 O;in this case we have

%— = erfe(—=_) - erfc( ‘fﬁz) (4.14)

L 2\(D ¢t 2yt .

a)

X
1T — —
20 25 VD
C/C,
=l b)
t=0.1
0.5-
,t\=l| /’f:l'
. A
: T<0.1 X
| I T T T .
0 5 10 15 20 5 VO
FIG.4-3
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2nd burn time

For the 2nd burn time we present as an example the H concen-
tration calculated for the extremely clean case tiao acc.to

the equation

aja

erfc( X / (2 Dt ) + (4.15)

- erfe( x / (2\/1) (t_tburn)) +

+erfe( x / (2D (b=t o —t, 09))

(see eq.(4.14))

c/c,

T

1.0

0.8

0.6

0.4

0.2

0 1 1 | L I | | I I
0 1 2 3 4 3 b 7 8 9 10
- —— x!Vﬁ
FIG.4-4
H-concentration C/CL versus x during the 2nd burn time
acc.tolzs.(4.15) for tburn=60 and tdwe11=4 at three different
times. t is defined by
t=t -t

burn tdwell
and stands for the time elapsed since 2nd burn time start,

see FIG.3-1
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A characteristic feature of the C-profile during the 2nd burn
time is the distinct dip at small T (£=0.1 in FIG.4-4),

which at = tiwell (t=l in FIG.l4-L4) becomes very flat

and disappears for'E>>td 11 (£=60 in FIG.k-4).

This means that towards the end of the 2nd burn time the
concentration profile is practically eqivalent to a profile

after one single burn time lasting

el

=2tburn+tdwell

tburn
with an averaged flux. For this reason it is appropriate to

make the following generalization:

ot tdwellc< tburn

the concentration profile behaves towards the end of the n-th

burn time as in the first burn time, provided it lasts

tburn = B tburn + (n-1) tdwell (k.15a)
and a reduced flux
S— 1-'burn
F. = F, —m——— (4.15b)
implant L tburn+tdwe11

is assumed instead of FL' In the extremely dirty case this can

be seen from the following:

during 1st burn time we have C=F g(t)

(see eq.(2.4)) —_

with g(t) = 2\/—35 eri( = )
r 2yD t

durina n-th burn time we have acc.to the superposition principle

5353400 ¢ = 7 &)
- g(t-t )

burn
* g(t—t-'burn"tclwell

=+.ees )

)

which can re-arranged to give

tburn

G =l +t
burn dwell

L t g(t)

for large n.
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Superposition

In the preceeding equations (4.9-14) we have written down the
re-emission flux during the 1st dwell time in the following
speclal cases:

1.) The time t elapsing since the first switching on is so long,
that the profile built up in the preceeding burn time can be
regarded as constant (see eq.(4.10a)).

2.) The irradiated surface is extremely clean (eq.(4.14))or ex-
tremely dirty (eq.(4.13)), so that the boundary conditions

are linear and solutions can be superposed.

We now look for a solution for the case where both the time t
elapsing since the first switching on and the release time tA
describing the degree of purity of the metal surface are finite.
If the solution (4.6a) for the first burn time and (4.10a) for
the dwell time are superposed, one obtains

F 1

1
FL x=0 1+ 1 +ﬁ: .

Numerical calculations now show that eq.(4.16) is a much better

(4.16)

approximation than would have been expected from the crude simpli-
fications contained in eq.(4.16). The reason for this is that
eq.(4.16) contains two errors, which more or less compensate one
another:
1.) the "substitution error' due to the substitution” = b = 1
in the quasi-exact solutions (4.8) and (4.12) and
2.) the "superposition error'" due to using the superposition prin-
ciple (3.8) for cases with non-linear boundary conditions.
For small %: the substitution error is dominant ,
and eq.(4.16) yields too large results;
for large‘% the superposition error is dominant
and eq.(4.16) yields too small results.
In many cases eq.(4.16) becomes useless, as can bee seen, when the

right-hand side of eq.(4.16) is set =0 and solved:

1
o 1 +\{=

V1 5 'r‘ourn kK
et =17 (4.16a)

T =TSt = A-T b)
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The flux F as calculated from eq.(4.16) thus becomes zero at
o)
= . In many cases eq.(4.16) yields for

R = 0.3 = 0.1 Riurn (4.16¢)

a flux about half as large as that calculated numerically.
Eq.(4.16¢) is thus regarded as the validity limit of eq.(k4.16).

The formulae for the substitution and the superposition
errors are complicated and not particularly interesting.
Instead, we calculated the re-emission flux numerically for
various values of the parameters r% and ‘Tburn and obtained

the interpolation formula

-1 $
1 ’r
.%. " durn (4.17)

2l x=0 w ~ > ~1.33/.0
LR 62/ W yen v 32 RV

The numerator gives the value of the normalized re-emission
flux immediately after the start of the dwell time.
The factor 1.3 in the denominator is -b from eq.(4.12) for’T-&O.

Eq.(4.17) has an inaccuracy of 5-10% in most practical cases and
is also valid for values of & much higher than the zero (4.16a).
Fore more details, see FIG.6-2.
Eq. (4. 17) is the re-emission flux law for the 1st dwell time.
For the n-th dwell time t has to be replaced by t acc.to
burn urn
eq.(4.15a).

FIG.L4-4d shows the re-emission flux calculating acc.to

eq.(4.16) (dashed) and eq.(4.17) (s0lid) for two different
burn times tburn' As abscissa we use V}E because this allows
straightforward representation of a rather large time interval.
The case'tbu =3 roughly corresponds to the case of INTOR with
dirty surfaces (see table k4. 20) during the 1st dwell tlme, this
case can treated with eq.(4.16) only up to about T41 or

¢ I gec in FIG.4-§d. The zero transition is located at . =2.
The case‘?bu =30 roughly corresponds to INTOR with dirty surface
during the 10.dwell time or else with a technically "clean' sur-
face during the 1st dwell time. In this case the substitution and
superposition errors cancel, so that eq.(4.16) is a good approxi-

mation.




- B

1.0

T T
0 0102 05 1 2 3 4 5 6 7 8 9

FIG.4-4d
~ e
Re-emission flux IF/FLIX:O versus T =Ttt/tAduring the 15t dwell

burn 'Rtburn/tA o o

7t =930,

=TC
Qburn t"burn A

time for the burn time lengths %

and

Dashed: acc.to eg.(4.16)

Solid: acc.to eq.(4.17).

Remark: eq.(4.17) is almost exactly valid, while
eq.(4.16) has only a limited range of validity.

The bottom left section A £1 and |F/FL"-=O.5 corresponds

to FIG.4-6d.
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C  Temperature-dependent coefficients

1st burn time

Numerical computations show that if one is content with an inaccuracy
of about 10%, the formulae derived for constant coefficients can be
adopted unchanged: for the concentration on the irradiated side it
holds acc.to eq.(4.6b) that

c|x=0 =C W (4.18a)

W= 1-..—1_. b)

V1 +T .,
The build-up of a concentration profile nevertheless looks completely
different from what we have been accustomed to for constant coeffi-
cients; compare, for example, FIG.4-1 with FIG.4-5a,b,c.

The reason for this is the time dependence of the concentration 1limit

F F
L L Eel1 1
cL =V— = — exp -----2 {——TL - -—-—TRl} (‘4.180)

due to the time dependence of the temperature TL of the irradiated
side of the slab at x=0 acc.to eq.(4.1h+k).
Eq.(4.18) states that the concentration rises at first for short times
(4 tA) acc.to eg.(4.18b), but at the same time the heating of the
irradiated side of the slab produces a decrease in concentration acc.
to eq.(4.18¢c). In some cases there exists a time

p2

R
tm.x . ?D \ftJAL ts'r (4.19)

at which the two effects compensate one another; C(t) then assumes a

maximum at t=t . For details see eq.(6.12-15).
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In FIG.4-5 to 4-10 we present examples which are based on para-
meters deduced partly from INTOR or NET studies (see sec.5, Index I)
partly from reactor studies (Index R). Both clean (subscript c¢) and
dirty (subscript d) surfaces are considered.

We define these cases with the following data:

- }+ &
cm atoms
BRES KoI__atom sec] FL l 2 c\ TD

cm se
Id 1.6 10'20 1.5 1016 80° (4.20)
I 1.6 10716 1.5 101® 80°
R, 1.6 10~2° 2.0 107® 200°
R 1.6 10~16 2.0 101® 200°

The data not contained in tab.(4.20) are presented in tab.(4.2).
INTOR is water-cooled, from which it follows that Tp=373°K.
However, in order to compare reactor with INTOR conditions
in all cases

T, = 600°K s.(4.2h)

is assumed.
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C [ ut::s ]

2.7-10"°

210" -

{4

0 20 40 oo ec)

FIG.4-5a

H-concentration C|x=0 versus t during the 1st burn time

for the reactor with clean surfaces (case R, in tab.(4.20))
acc.to eq.(4.18), which agrees with the numerical solution within
the drawing accuracy-.

The release time tA=10_35ec is so short that almost exactly

0|0 = €1 = \’FL/ K, (&.21)

is valid. The curve is a transformation of the temperature acc.to

eq.(4.18¢c). The highest possible concentration

18 atoms i

Coox _\IFL/KR = 2.7 10 3 (4.22)

cm §

i

is reached in the time interval 1072 ¢t ¢ 10_1sec, !

which cannot be resolved in this figure,




4-10

19

2:10
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| | | | |

0 10 20 30 40 50 o [sec]

FIG.L4-5b
H concentration CIx—O versus t during the 1st burn time

for the reactor with dirty surfaces (case Ry in tab. (4.20))

Dashed: acc.to eq.(4.18)
Solid: numerically calculated.

The release time tA=18 sec is about 2/3 as long as the temperature
diffusion time tST=25 sec, so that the concentration build-up acc.
to eq.(18b) and the reduction acc.to eq.(18c) roughly compensate
one another, apart from short times. Eq.(4.19) yields

t = 6 sec
max

for the location of the maximum.
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c[utoms
cm?

13.10"

110"+

510" —

| * [sec]
0 20 40 60

FIG.4-5¢

H-concentration C‘x:O versus t during the 1st burn time

for INTOR with clean surfaces (case I in tab.(4.20))

acc.to eq.(4.18), which is indistinguishable from the exact solution.

The release time is tA= T ‘10“3 sec; it holds that

C 226 = CL S-("+.2‘I)

as in the case of FIG.4-5a.
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atoms
B[==

[

510"

410" -

3402

210" -
110" 4
0 ! ! - t
1
0 20 40 60 [sec]
FIG.L4-54d

H concentration CIx—O versus t during the 1st burn time

for INTOR with dirty surfaces (case I, in tab.(4.20)).

Dashed: acc.to eq.(4.18)
Solid: numerically calculated.

The release time tA=75 sec is much longer than the temperature
diffusion time tST=25 sec . The temperature and the coefficients
are already nearly constant before the concentration build-up has
got beyond its initial stage (eq.(4.5)). FIG.4-5d corresponds

therefore to the left-hand part of FIG.4-1 for constant coefficients.
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Dwell time: re~emission flux

The re-emission fiux can be described in crude approximation by

) EI(t) ’ )

F
F - —_— .
I.L=0 Ak} V1i+x 1 +J& il

The brackets contain the right-hand side of eq.(4.16), which
describes the re-emission flux for constant coefficients KL'
and D. The boundary condition

FIx:O = - KL(%) Ca|x=0 s.(4.1d+e)

suggests proportionality to KL(%), but this is only true in rough

approximation for relatively small temperature fluctuations. We

do not go further into this but use eq.(4.23). Here we learn that

the decrease of the re-emission flux is also caused to a large ex-

tend by the decrease of the coefficient KL'

We present as an example INTOR (defined by tab.(4.20)) with
clean (FIG.4-6c) and dirty (FIG.4-6d4) surfaces. The reactor exam-
ples are essentially derived from the INTOR examples by multiply-
ing the flux by 7.

The time scale in FIG.4-6 is distorted: the abscissa is pro-
portional to iﬁ-to show the behaviour for small t.

In the clean case (FIG.4-6c) the error due to the substitution
b= =1 is dominant, so that eq.(4.23) yields too large results;
in the dirty case (FIG.4-6d) the superposition error (see page 25)
is dominant, so that eq.(4.23) yields too small results.

The case INTOR dirty is already at the limit of applicability of
eq.(4.23). The zero for F as calculated acc.to eq.(4.23) or (4.16)
is at T~ 10 sec, see FIG.4-kd.

In the reactor case Rd in tab.(4.20) the superposition and
substitution errors compensate one another to a certaim extend,
but then the factor KL(%)/KL(O) from eq.(4.23) is too small,
especially towards the end of the dwell time. Eq.(4.23) there-
fore also yields too small results.

LN




- BE
atoms
e =]
cm Sec
16
1510 -
16
1-10
15
510
t
C
0 0.1 0.5 1 2 3 4 o
FIG.4-6c
A
Re-emission fluxlle_O versus t for the 1st dwell time
for INTOR with clean surfaces; data see tab.(4.20)+(4.2).
Dashed: calculated acc.to eqg.(4.23)
Solid: numerically calculated.
K = {23 10720 cml*/(atom sec) at dwell time start
L 1_4 10‘20 " 1] n " end;
eq.(4.23) yields too large values owing to the substitution” = 1

(see page 25 and 21)
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15
410 -

210"

0 | | | |
0 0.1 0.5 1 2 3 4

FIG.4-6d
Re-emission flux'le_o versus t for the 1st dwell time
for INTOR with dirty surfaces; data see tab. (4.20)+(4.2).

—
——

Dashed: calculated acc.to eq.(4.23)
Solid: numerically calculated.

Eq.(4.23) yields too small values owing to the superposition error
(see page 25) which is dominant in this example.

The flux at t=0 is barely half as large as in the clean case Ic’
because the term deriving from the burn time

0.6 in case I

has to be substracted from 1 acc.to eq.(4.23)
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Dwell time variation

at the end of the 1st burn time
burn

The concentration C
and Cc=2¢C - C at the end of the 1st dwell time
burn var

are calculated acc.to the following equations:

tburn+td ell )
P TR + TD » +
3 3 3
J%'“85 tsr * Cpurnttawern’
tdwell
- 3 = — (4.24%a),s. (4.1k)
\/6'485 ter * Yawera
K, =K exp(- B /T) = R, e (4.24b) 5. (4.1h)
D = D exp(— ED/(TR+TD)] = D(0) c),s.(4.1g)
D
. e s d),s.(4.3a)
AT FK
H oom = 2\D £, e e),s.(2.3h)
Hiwe11l = 2JD tawell £f),8.(4,3d)
Tburn ='ktbum/tA g),s.(4.5d)

4 t Vg

dwell = dwell tA

F o s
¢ ~V—1‘——— \/1 o =t
B |K, (0) .

L 1 +Tburn

X
cburn = CB erfe (H }
burn

I AL T T E
1+ \/waell V * Tourn® Tawell
C.. =M=
D Y K (type11)
cvar = (CB - CD) erif == ) = "dwell time variation!
dwell
C

burn Cvar

o

h)
i),s.(4.6Db)
j),s.(4.70)
k),s.(4.23)
1),s.(4.1d+e)

m),s.(4.9¢)

n),s.(4.9)
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Eq.(4.24) connects the formulae for the behaviour of the solution

at x=0 with the space functions

erfc for the burn component and

eri for the dwell component.

We present as examples INTOR with clean (FIG.4-7c) and dirty (FIG.4-74d)
surfaces. The corresponding reactor examples are derived from these by
multiplying the concentration by 1.4 in the dirty case and 1.1 in the

clean case. The poor agreement in the dirty case is essentially due to

the superposition error (page 25) .
atoms
e
cm

?

17
8-10

610" -

17
410

210" -

X
0 T T T [em]
0 0.01 0.02 0.03 0.04 0.05

FIG ] Ll'—?C

Concentration C versus x at the start and the end of the 1st dwell
time for INTOR with clean surfaces (case Ic in tab.(4.20))

Dashed: acc.to eq.(4.24)

Solid: numerically calculated
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atoms
==
T

[

5.10" -
410"
310"~

4

240

10 =
X
0 ™ [cm)
0 0.03 0.06
FIG.4-74d

Concentration C versus x at the start end the end of the 1st dwell
time for INTOR with dirty surfaces (case I, in table 4. 20)

Dashed: acc.to eq.(4.24)
Solid: numerically calculated.

For x> 0 the superposition error (page 25) is dominant.

The discrepancy at x%0.03 arises from the choice of erfc as space
function in eq.(4.2kJ) for Cburn’ which in this case (tA>-t
tA=8O sec ; t

burn’
% =60 sec) is not justified,
urn




The steady-state problem

The diffusion problem (4.1) has no steady-state solution. Even for
very long times t the alternation of burn and dwell times causes
the concentration near the irradiated side x=0 of the slab to vary

with time. However, for conditions

tdwel].<( tburn
>
and X Hdwell
and t » tSC

the solution as calculated from problem (4.1) can be approximated
by the steady-state solution of the diffusion problem (4.25) with

t

burn

Fimplant - Fimplant = ey tburn+tdwell (4.25e)
and - <

T = TR + TD("I - -5_) (4'25]0

ith . tburn
" Ty = Tp % +t (4.26)

burn dwell

instead of eq.(4.1e) and (4.1k) respectively with all other equations
being left unchanged: one thus has eq.(4.25a) = eq.(4.1a) etc..
Eq.(4.25k)is the mass conservation law; furthermore, due to U=const

eq.(4.26) is the energy conservation law, see eq.(3.3b) and {5.2).

The steady-state solution is treated in eq.(4.27). Beforehand,

however, let us view the parameters Fimplant' Fimplant’ FL’ TD’ TD
in FIG-LI'—S ]




= Jf] =

A (4.1¢)

r' -4--1--1--1- oD aa»

implant

(4.25¢)

burn
0 t
FIG.4-8a
The flux F, of the implanted particles versus t
implant
Solid: acc.to eq.(k4.1e)
Dashed: ac.to eq.(k4.25e).
[T -TR] X=0
A (4.25Kk)

dwell

FIG.4-8b

The temperature of the irradiated side of the slab
T versus t (schematic)

Solid: acc.to eq.(4.1k)

Dashed: acc.to eq.(4.25k),
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General solution

From the continuity equation %%
it follows
from 3/t = O that F

The permeation rate F is the flux
perm

in the slab to the coolant; s.FIG.4-8¢

FIG.4-8¢

Particle flux
balance in the
steady-state
case

Fimplant

_
Re-emission

Taking into account the SORET
from FICK's law

o
Q

= e s.(4.1a)
= perm = const,
density of H atoms diffusing
i
perm ! “perm
1
= P>
]
wall})coolant
1

effect (Ref./1/,eq.(4)) we have

1

s = - L"o b
¥x 2 @= Fperm D (4.25p)
instead of eq.(4.1b)
with < ¥/ 9 x )
S = - aE.p 2 (4.27a)
L}
, %
Defining R=_—§8dx (k.27p)
o
x
and G=f %-e_R ax*® c)
o
the solution satisfying C|x=0 = C, d)
/14/ c = ei(C - @) e)
is acc.to Ref./1 = ° perm .

c,F,s,D,T,R,G are functions of x;

ts.
a, ESOR’ Co, Fperm are constants
i ined th
The integration constants Co and Fperm are determined from e
boundary conditions
2
- K 18 (k.28a)
Fperm Fimplant KL o
2R -
a
< = b)
and Foorn = KR © [co Fpemea]
. o c)
with E R| _.
= Gl d)
a x=a *

For more details s.eq.(6.17).




Special cases
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In the most simple case we have

D
|x=a

R

The solution is C

. F
; perm
| _
| Introducing CL
and A
we have c
o

Sample application:

= const
=0 1

resp. ED =0

Ko > D/(Coa)
= 0 n E = 0 (]

x
- co(1- ;)

=C° D/a ]

= VFimplant /KL

n D/’(ZaKLEi)
= Ei[y1+A2 = A]

In the following we treat simplificated cases which are characterized

by dimensionless constants. The formulae are derived in §6.

(4,29a)
b)

c)

d)

e)

f)

g)

INTOR as defined in tab.(4.20)+(4.2):

D= 1.5 10_6 cmz/sec
| a = 1: cm
] -
1 K, = 1.3 10 24
20 %
CL = 1.1 10°° atoms/cm "
A= 5 ’10_3 for dirty surfaces;
similar, A= 51077 " clean T
If A X 1
we have C0 fo CL
and szl JF
2 ~perm’ implant °

e

cm%/(atom sec) for dirty surfaces

" "

(4.291)

(4.3%0a)
b)

c)




<. bl =

In the following example (4.31) we take into account finite
values of K . Therefore clx:a/co has a value h >0 =

Assuming D = const resp. Ej=0 (4.31a)
- " . b
and R=0 Esor 0 )
X
yields C = Co [1 - 3(1_1")] c)
D
- 2 (1- a
Fperm B (1-h) )

with
1.2 1
h.::“1>+-np - =P e)

D
P = D
KRCOa .

Sample application: INTOR as defined in tab.(4.20)+(4.2):

D= 1.5 10_6 cma/sec
a= 1.0 cm
-2k 4 :
Kp = 0.7 10 “"cm /(atom sec) for dirty surfaces
Co = 1.1 1020 atoms/cm3 " It 4
p =0.02 for dirty surfaces (4.31g)
h =0.14 " " "
similar p =0.0002 for clean surfaces
h =0.014 ] " " .
From eq.(4.29g) we have A KR
qe i — = = (4.31h)
P 2KL .
C FIG.4-84d
N C versus x in case (4.31)
with C. , Cp , C  + h
indicated schematically
=~ ~—
-~ -
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SORET-effect
Assuming D = const resp.E; =0 (4k.32a)
and CI y =0 b)
X=a
x S x
yields for B|é1 C = 00(1-'3})(1+'E'; ) c)
D S a'
Fperm - co a' (1+ 2 a ) d)
with §=58, T /T° o)
SOR TM
To=T +2T )
M~ R 2D f
a
a' = 1 8)

s.eq.(6.20).

The dimensionless SORET constant § is approximately the space average

of 8 (s.eq.(4.27a)) with o - T, + ?D(p, _:) . 5.(4.251)

h is the relative height of the C profile at x=a

(see FIG.4-84): Clx:a

h = (4.321)
c'x:o L

Sample application:
steel slabs in INTOR as defined in tab.(4.20)+(4.2)+(5.4&4 ):

o
For steel one has ESOR = —800o
" INTOR " " TD = 80
and TH = 6400K
It follows that S = - 0.16 ; (4.323)

the SORET-effect thus causes C(x) to drop about 4-8% as compared
with case (4.31) without SORET effect.
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Temperature-dependent diffusion coefficient D

If the diffusion coefficient depends on temperature:

D= DO exp(— ED/T) 5-(1"018)
— X
T =T + TD(‘l- E) s.(4.25K)

we have two '"new" parameters ED/ T, and T, [TR .
However, if Ep/Tp £ 15, s.(6.25)

the problem can be described in good approximation by

a set of equations (4.33) containing only one new parameter

E.T.
B = "D'z_D (k.33a)
TR .
B is the characteristic constant describing phenomena induced

by the temperature dependence of the diffusion coefficient D.

Assuming ESOR =0 (4.33b)
~ X B(x
yields c= 0[1 - ;(1-.11) exp(é(-a -))] C)
and ~C =, a)
perm o a
wi th D=0 exp(- Ej/T) e)
T
o D
Prlpt 530,28 £)
1.2 1
h —\/p + 3P 3P g)
D
= h)
P
o o

For more details s.eq.(6.21-25).

|
1§
!
1
E
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Permeation rates and hydrogen inventory

The total hydrogen inventory of the slab can be conceived as
composed of hydrogen caught in traps and hydrogen diffusing

in the direction of the coolant:

i1 (4.34a)

Teotar = Ttrap * laier

In this report we can only say something about the component

Idiff‘ which can be defined by

a
Tgsgr = {dx c(x) . (4.34b)
In the steady-state examples here (s.FIG.4-9) one has
5 E. 0.65 for INTOR
—4LIf (4.34¢)
a CL 0.75 " reactor
but Itrap may be several times as large as Idiff if the slab

has been exposed to the irradiation for a lengthy period, so
that a large number of traps is present.

In tab.(4.35) the permeation rate FPerm and CL are listed
for the examples INTOR and reactor with dirty and clean surfaces
as defined in tab.(4.20)+(4.2). The specification of grammes/(m2
day) only applies to ordinary hydrogen; for tritium this value
has to be multiplied by 3. With water cooling (TR=3?3°K) the
permeation rates are about 100 times as small as in tab.(4.35).
Idiff need not be specified since the numerical value of CL is
also a measure of I, .. owing to a=1 (see eq.(4.2a)).

—— Fperm S, CL
atoms ] [grammes} [atoms]

z
case cmzsec mzday cm3 tab.(4.%5)
I, 1.0°10%™ © 0id4 8.1 10"

12 17
I 1.1 10 0.0016 8.1 10
¢ 14 19
Rd 1.9 10 0.27 8.9 10
R, 2.2 1012 0.0032 8.9 107

The data in grammes/(mzday) only apply to the isotope H1;
for tritium the values in the 2nd column should be multiplied

by 3; see sec.6, page 76,
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Concentration profiles in the steady-state

If the diffusion coefficient D depends on the temperature
and/or the SORET effect is taken into account,

the concentration profile C(x) is no longer linear in X,
as can be seen from eq.(4.32c) and eqg.(4.33b).

Fortunately the combination

R T Bix _ 5
e a4,

of eq.(4.32¢c) and (4.33b) gives a good fit for our examples.

aja

In the following figures (FIG.4-9;4-10;4-11) numerically
calculated C-profiles are compared with C calculated
acc.to eq.(4.36) for our examples from tab. (4.20)+(4.2)+(5.4)
INTOR and reactor with dirty or clean surfaces without or
inclusive SORET effect. It is found that eq.(4.36) fits the
numerical results fairly well, s.FIG4-9 and 4-10.

In the case of positive ESOR and strong temperature dependen-
ce ED of the diffusion coefficient it is possible that hydrogen
runs against grad C driven by grad T, s.FIG.4-11.

(4.36)
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A9 ~—_
c S
S =3 R
Co Id : d
i DN
c
045"
0 t
x
0 03 >z 1
FIG.4-9

C/CO versus x/a in the steady-state for the examples from tab.(4.20)

Ic = INTOR with clean surfaces
— " " 3 1"
Id . dirty
Rc = reactor " clean B
Rd = " " di rty " ;

The SORET effect is neglected: ESOR = 0.

Solid: numerically
Dashed: acc.to eq.(4.36),




Q
-

0.5 -

0 0.5 >

ol

FIG.4-10
C/Go versus x/a in the steady-state for the examples

Id = INTOR with dirty surfaces; ESOR =0 ;
Rd = reactor " L i " H
0
—- " 1 " I
Ids = INTOR ! ESOR = -800
Rds = reactor " u " " 0

Solid: numerically
Dashed: acc.to eq.(4.36).
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FIG.4-11

-

L
(V2]
J
wl %
S

C/Co versus x/a in the steady-state for the reactor with

dirty surfaces;

Rd without SORET effect;

. o
Rp with positive ESOR = 20007 ;

Solid: numerically
Dasghed: acc.to eq.(4.36)
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Appendix
5. On the origin of the parameters

In this section we describe how the numerical values of the material

parameters U, QL' FL’ ED’ EK' ESOR' Do' Ko were obtained.
We start with the heat conduction data.

Temperature conductivity U

Let U be the temperature conductivity in cmz/sec

A " heat v W/(cm degree)
c " gpecific heat cal/(gr degree)
§ " mass density gr/cm3 .

Acc.to Ref./3/ one then obtains

tad = ~2 - ~3
A = 0.127 + 9.63 102 T - 7.8 102 F - 3.3 10" T
~l 3
¢ =0.107 + 6.03 1070 T - bk 108 F 4 1.4 100" T
9 =7.98 - 2.96 107" T
with T = T-273 = temperature in degrees Celsius .
It follows that
0.035 cmzfsec for T=0°C
U= 0.24 -?20- -4 o.ok0 " n 400 (5.1)
0.045 n " 800°¢
where 14Jd
0.24 = 1 cal .

U is thus constant in good approximation in the temperature range

of interest.

Temperature flux

The heat flux a for INTOR is taken from Ref./7/; on page 43,
Table II-13, it is stated:

surface heat flux from plasma = 11.6 W/cma.

1]

This yields q = 0.24 & /C ¢ ¢ )
0.24 11.6 /(7.9 0.11)

3.2 degrees cm/sec (5.2)

for the temperature flux.
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Flux density FL of the implanted atoms

According to Ref./7/, Table II-13, page 43, the INTOR plasma emits
1.3 1023 atoms per sec during burn periods.

The surface area of the 1st wall is 380 .

It follows that the flux density of the incident particles (H-atoms)
during burn periods is

25
S = 1:3 1077 atoms _ 5 1576 atoms (5.3a)
incident 2 2
380 m~ sec cm sec

Some of the incident particles are reflected and the rest are implan-
ted:

Fimprang = 3 = By Bisosaent,

We recall the definition of F, as the flux density of the implanted

L
H atoms during burn periods, see eq.(4.7e). It follows that

F,=(1-R,) F (5.3b)

L N incident
As an example of determining the particle reflection coeffieient RN
we use the computer simulation computations Ref./13/,FIG.2.5 for
the case where nickel is bombarded with deuterium. Acc.to W. ECK-
STEIN the values obtained for Fe or steel are about the same as

for Ni. The results are approximatively

0.7 for E= 10 eV
0.5 " 100 "

Ry(B) =4 03 1000 " oo
0.1 " 10000 "

where E is the energy of the incident H atoms in eV.

In this report we choose arbitrarily

RN = 0.5 (5.3d)
since the bombarding particles for INTOR are expected to have about
100 eV ; from which it follows that

16 atoms

F; = 1.5 10 e (5.3e)
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Diffusion and recombination coefficients

The data for the H diffusion and recombination are taken from Refs./1/
X
and /8/. First we express the quantities Ep, E. and Q from Ref./1/,

Table 1-1, in units of temperature: 2
Ref./1/ this paper
E, = 0.61 eV Ej = 7000° (5.4)
E_=0.091eV  Ej-Ey = 1000°
- @¥ = 0.065eV Eson® -800°

In addition, Ref./1/,Table 1=1 contains the diffusion coefficient
Do = 0.085 cmz/sec.

To determine the recombination coefficient Ko we use Fig.1-1 from
REF./1/, which is jdentical with FIG.5-1 of this report. This figure
presents limiting curves labelled "THEORY" which characterize a very

clean and a very dirty surface. They can be desribed by the equations

1.6 10~16 exp(-6000/T) cmh/(atom sec)
1.6 10~2° exp(-6000/T) "

Kclean

Kdirty

from which we have taken

K = 1.6 10-16 cmq/(atom sec) for clean surfaces
° \1.6 10—20 " " dirty " (5:5)

The parameter o used in Ref./1/ is proportional to the parameter KO
used in this report. In addition we compared WAELBROECK 's series of

measurements with the exponential law

U D b
Kwaelb = 10 exp(-8860/T) cm /(atom sec)

In sec.4 we only used Kcl&an and Kdirty'

Finally, in FIG.5-2 we plotted for the particle diffusion coefficient
the exponential law (4.1g) used here into fig.1? from Ref./8/, which

contains experimental data.
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-19
10 T 1 ] 1 i T 1 T 1
"N\ STAINLESS STEEL
1] RN
10 e L THEORY .
\\KC|EGF\ —_———aa = 05
- i = -
jo AILFeE0, - O 2t 4l=5-10~%|4
\\
. @ 0. .
10 22| \\ =
.- \
— \. .D "- \‘
n -23 = \ v —
10 : ! N\
s \®e@ f X
& } 0 \\
8 10_24 - \ .'. -
5 °*’ O
~3 .\. A\
E 107®F  ExpT. O\ ° VNS
= O Waelbroeck \'{
~ 107%6L @ Braun } 0'-.. .
O Ali - Khan N\ N ' KWOElb
10727 ® Myers LY ' o
: e
A Kerst \\
10-28 A Wilson Kdirty I\ )
V' Wienhold (Clausing) \.\
]0_29 1' Blusﬁes I(CIFUSing)I 1 1 | 1 L1
‘1.0 2.0 3.0
1000/ T (K)
FIG.5-1
Reproduction of Ref./1/, Fig.1-1 with Kclean’ Kdirty
And Kwaelb
Fig. 5-1




= B =

* 900 500 300 200 190 5? 201°C
! | | |
log D
-4
#J;‘;g ‘ _____________
-6 3 J—Eq\‘ﬂ
A
. ‘\':_
A
e G
A
_8 5
s o
@ g o
D(T)nach
Gl.(4.1g)
10 g : \ o
]
L]
=12
-14
1 2 3 1000 _
T-K

FIG.5-2
Reproduction of Ref./8/,Fig.17
with D(T) for some types of steel and acc.to eq.(4.1g)
D 4135 4 L4z0a SS
A 20 CrNiMo 10 o 326 (%+¥) SS
® ¥ 5SS in general

Fig.5-2
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Appendix

6. Remarks on the formulae

Re. eq.(3.5-7) temperature

=
——

The numerator of eq.(3.5)

t : X 2a - X
numerator = 2 QLJ’K—U erJ_(2 \(U_t) - 'E:I‘i(‘2 = t) (6.1)

solves the differential eq.(3.71a+b) exactly for T = numerator,

but yields at x=0 the boundary condition

le=0 = Q [‘l + erfc{v_;‘_t)l (6.2)
instead of

Ug=0 = % , 5. (3.1d)
Eq.(3.5) is formed by dividing the right-hand side of

eq.(6.1) by the right-hand side of eq.(6.2). Consequently, T satisfies
the boundary condition le:O = QL exactly, but the differential eq.
(3.1a+b) only approximately; comparison with numerical calculations shows
that T acc.to eq.(3.5) can turn out to be up to 6% too small.

In FIG.6-1 eq.(3.5) is compared with the quasi-exact solution (3.7)

for the temperature at the irradiated side x=0 of the slab.




-\ucc. lofd3.5)
0.8 -
acc. to (3.7)
0.6
0.4 -
0.24
t
0 T T T e
0 1 2 3 af
FIG.6-1
The normalized temperature temp/TD versus t/tST at x=0
Dashed:
acc.to 2 - x/a
eri - eri| ——
temp(x t) r Jt/t (2 Jt/ts;)
™p V—- 1 + erfc(Vt /t)
5.(3.5)
Solid:
acc.to

temp(o t) _

r—_'__—'—_ﬁ
30 485 (tST/t)
B«{35:7)
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Re. eq.(4.13-15) Extreme limiting cases

Exact analytical solutions relevant to our problem (4.1) (H diffusion)
only exist for the following boundary conditions:

"Right": 0 (6.3c)

Clxéaf

"Left": C‘x—O or F| _, piecewise constant .

The solutions for these cases are obtained bv superposing the solutions

given in sec.2 in the same fashion as im eq.(3.8).

At times not too long (t('tSC) no significant concentration will yet
have formed at x=a, so that boundary condition (4.1c) can be replaced
by (6.3¢c) in good approximation. This applies not only to the extreme
limiting cases but also to all solutions with t<tg, (s. eq.(L.3b).
Consequently, the parameters a and K do not appear in eq.(4.5) till

(4,24) inclusive.

The extreme limiting cases are obtained for parameters for which

the boundary condition at x=0 can be put in the form

i 0 during dwell times
F = (6.34)
Ian ( Fy, during burn times
8 | 0 during dwell times
cl. A = (6.4d)
=0 CL during burn times

For nomenclature:

Problem (6.3) is defined by replacing in problem (4.1)

(4.1¢) by (6.3¢) and (4.1d) by (6.3d) ;

problem (6.4) is defined by replacing in problem (4.1)

(4,1¢) by (6.3¢) and (4.1d) by (6.4d) ;

with all other eqs. being unchanged: one thus has (6.4a) = (4.1a)

etc..
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The extremely dirty limiting case

This case is defined by boundary condition (6.3d) (s.page 59)

and can be achieved in two ways:

Either the recombination coefficient is made to vanish:

k=0

which is why this case is called '"extremely dirty",

Or the H concentration C %0, as is the case immediately after
the start of the 1st burn period, even with finite values
of the recombination coefficient, which is why this case

is called "short time case" (s.eq.(4.5)).

In eq.(6.5) we give the solution for the 2nd burn period.

2 F

C =

po 1, [orte v (2_%;) + f(m)]

with
t - thurn

@l oD
"

t - tourn ~ Yaweld o

!

Reproduction of FIG.3-1:

V"_DL \ °’1(2\;;—t)‘\ﬁ “i(;r%—?;)*ﬁ eﬂ(‘;_'_"ﬁ?,g) (6.52)

b)

the time scales used in this report: t ,
% - - tyurn
and T =ttty
1. burn period 2. burn period
0 !’/////////////////////////4 ir///////////////////////////1 ot
0 1:hurn thurn 'tdwell
- | —1
0 tawen
>t

-
0
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The extremely clean limiting case

This case is defined by boundary condition (6.4d) (s.page 59),

which is obtained from eg.(4.1d) by setting K; > @ or

le:O =0,
This is approximately achieved if
~r N

Bt Bty the110 thurn

is satisfied, i.e.

for very large values of KL’ hence the name "extremely clean'',
and/or for large t t t which is why this case is also named
"long time case'.

The solution for the 2nd burn period is analog to eq.(6.5)

-

x X
= X i erfec __’____-=) + erfc( f—_)]
i ierf" [2@7} 2y % 2 Y0¥

(6.6)




- 62 =

Re. eq.(4.5) - (4.12) Analogies between

1st burn period and nth dwell period for constant coefficients

Here we compare the concentration build-up during the 1st burn
period with the drop during the n-th dwell period, making n large

enough to set

cx)|4_0 = Cp (6.7a)

0 b)

F(x)\%=0

at the start t=0 of the n-th dwell period. Let the coefficients
D and KL be finite constants. We are interested here only in

C and F at x=0 and introduce the dimensionless quantities

1

and £ %— (6.8)
e L x=0 e

Cc =
o

Q

LIx=0

Because of the quadratic boundary condition (4.1d) there is no exact
analytical solution; we thus have to describe numerical results with
arbitrary approximation formulae. The arbitrariness in the choice of
approximation formulae is, however, severely restricted by the requi-
rement that the approximation formulae have to contain the extreme
limiting cases short time (eq.(4.5) and (4,9¢)) and

long time (eqg.(4.7) and (4.11)) as special cases.

If the flux is written in the form

1/ V1+bx for the 1st burn time
fo = = (6.9h)
1/(1+BYRA " " n-th dwell "
it follows from numerical results that
=1 - 0.19/Yi+ for the 1st burn time (6.9k)

o o

1+ 0.27/§/1+% "o n-th dwell "

In tab.(6.9) it is shown why the factors 0.19 and 0.27 have to occur
in the short-time case. Both are small relative to 1, and so every-
where in sec.lt except in eq.(4.8) and (4.12) we use the approxima-
tion b =B 4 (8.(6.93)).
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Explanation 1st burn period n-th dwell period
Initial condition e = 0 e =
Short-time solution > =5 =
. }+n "i'. = - = -
acc.to (4.5b)+(4.9¢) c, ,RV-'E c 1 = T
Substitution of the
short-time solution >
into the bound.cond. fo = 1-c f = - N
" o
yields f = 1- =7 £ o= 14 27
o T i
This is interpreted
as a power series 1 =
expansion of f = ———= f = —
° 1+ 8+ N
Y1+ & 1+ 2%
since these functions
also give within fac-
tors of the order 1
acc.to (4.7)+(4.11) " j
the long-time solution f = _— f = -« —
° yr S
This is interpreted 1 1
as an expansion of fo = f = -.
Ve VTR
The exact solution 1 1
is fo e — f = - —
Y1+ b 1+'b}’t
where in the 8 Py L
short-time case b =g = 1-0.19 b = i 1+40. 27
4]
and in the A
long-time case b =1 b =1,
For arbitrary times
we have from numeri- -
5 0.
cal results approx. b=1- 8:15 b =1 +r6 Z?A
Vst 1+

( 6.9a)

b)

c)

e)

f)

g)

h)

i)

3)

k)
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Re. eq.(4.16-(4.17) Superposition

iz
——

We look for an approximation formula for the re-emission flux during
the 1st dwell period for the case where the length of the preceding

burn period t, is finite. If ¢ this formula can also

dwell<Ktburn’

bur
LA
be used for arbitrary dwell times by replacing tburn with tburn from
eq.(k.15a) .
F
The re-emission flux F ‘ - fo s.(6.8)
Lix=0
Pt A~
depends on the parameters ~ ='r:t/tA s.(k.9e)
- &
and burn tburn/tA

Acc.to eq.(4.8a) the concentration during the 1st burn period is

s.(4.8a)

C 1
e =C =\ /=
L1x=0 1+ b~x

We use this value for c, as initial condition and modify the right-
hand column of tab.(6.9) for the dwell period as follows:

Explanation 15t dwell time

initial condition gh =l 1

; NP

Short-time solution c

i
—
|
l
|ro
—
)

Substitution in the

bound.cond.at x=0 f = - 02

o o

b~ 1
yields fo='1+'r—tv'° T N
: V1+ b7
This equation is inter-
preted as an expansion of fo . '1ﬁ 1 (6.10a)
1-+bVZ y1+ b
with % -
X=0 —ﬁ = 1-2?




A
Substituting b=5>b=1

into eq.(6.10a) yields eq.(4.16).
For A £ 0.001 Q'Surn this substitution causes the re-emission

flux to be about 10% too high ("substitution error", s.FIG.4-6c).

A
For A2 0.142
burn

pretation of the short-time solution

eq.(6.10a) is no longer the correct inter-

£= -1 +\/ 1 +1%\E (s.page 64)
V 1+ b

One can interpret this e.g. as an expansion of

_1+._.1_
f = V1+ b%

R/

This goes much too slowly 0 for large A , but was useful for

(6.10b)

Y1+ bt

obtaining
_1 + 1
¢
%; - V1 + bEEé
Ll x=0 ) e N\ 8. (4.17)
+ 1. V'r R/ ~1.33/.0.9
1 DN TR/ & B2 103940
from numerical results.
For -t 1 and 7T20.1n
burn burn
we have in crude approximation
Fa
1.04 ~ ~E
= 0. T R
£, =0 043 - (6.10¢c)

with A
E=1.06 + 0.031 1n % .
burn

For very large values of ® eq.(6.10¢c) is a better approximation
than eq.(4.17) «
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Tburn
! '
/
2 9420
1
/
/
I
1.9 3140
0.09
/N 7
7
>
fourd : ___.jggi;tZ?%EE::?' .
V" 942
0.03
314
0.03 94
0.5-
31.
g.
0.09 93
0.
0.3 A
0 T I T T T T T T T T T T T > 1

10-¢ 107! 1 102 10* 108 108 100

FIG.6-2
To test the interpolation formula (4.17)

. A _F calculated acc.to eq. (4.17)
the quotient 9 = F numerically calculated

_~
is plotted as a function of T and ‘T
burn
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Re. eq.(4.19) Maximum of C(t) -

0

First we give an approximation for the time dependence of C:

Cp, =VFL/KL s.(4.3c)

i

=VFL/ % exP:gEK/TL] 5. (4.1h)
1 2 t

= FL/Ko ®XP |3 EK/(TR R~ D t_ST )J 5.(3.5a)
F,] PN

=YEL/ K, ez B /Tp] (0 - RYR) (6.11)

The last two lines contain the short-time expansion (3.5a) for

the temperature and, consequently, are only valid if t(tST :

t

P T t

the parameter A = 0.3 D—EK A4 (6.12)
72 )
R ST

essentially describes the decrease of the H concentration on the
irradiated side of the slab due to the rising temperature.

Apart from constant factors, it follows from eqs.(6.11) and (4.6b)

that e (6.13)

(1-ﬁﬁ) 1 -

2
Vier
and de _ 1 1\ 4 4 A
de _ 2, _
L V JT+7 V4+¢{ 3T ['“T 'ﬂﬁ},

It holds approximately (approx. 20% inaccuracy) that

1]

(1+2) (YA - 1) " (6%
= ~
so that from gTi = 0
we have ft:%— (6'45)
=
t R :
and hence max - ETp A“ST > 5.(4A49)

The inaccuracy is about 20%-50%. Eq.(4.19) is no longer valid,
if tA}, tST y because thereis then mostly no maximum, as in the
case of, for example, INTOR with dirty surfaces, s.FIG..4-5d.
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Re. eq.(4.27) Steady-state, general solution

Comparison of our formulae with those of Ref./14/

This paper Ref./14/
9C S _ 1 1 =
3x "2’ " " "perm D yi+fy=g
R F - SN
C..e(Cc> permG) y=e (Tl+8ge dx)
q X X
R=-§8dx F=Jfadx
o o

Re.eq.(4.28) C_and F from boundary conditions
et O perm

Eq.(4.28) arises from eq.(4.1c+d) with Fimplant = Fimplant

and F
perm °*

Eq.(4.28) is a 4th order algebraic system and very difficult

to solve exactly. However, in most practical cases it holds that

<«
Fperm Fimplant ' (6.16)
Thus we have
from eq.(4.28a) C % \[Fimplant /ILL (6.16a)
_ZRa. C
Defining F = & = P (6.17a)
P XK G, G
yields o
2 2"
from eq.(4.28b) Fpem = FP -VFP - (co/Ga) . b)

If condition (6.16) is not valid, eq.(6.16a)-(6.17b) can be used as

1st step of an iteration. The next step is the more accurate calcu-

% =ﬁ‘implant - Fperm.}/ K., (6.17¢c)

which arises from rearranging eq.(4.28a).

lation of Co from
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Re. eq. (4-29) c

]
o

X=a

This case is approximatively realized for very large values of KR

i.e. clean surfaces. From eq.(6.17b+3) we have

= ¢+ C_/Gq (6.18a)

In this case eq.(®-28) is only a 2nd order algebraic equation

= — 2
co/Ga= Fimplant Bl A

which can be exactly solved to give

Y D e
oo [A o e /R, G

Defining Cy = qumplant/KL s.(4.29f)
and A = L e (6.18¢c)
2G, K s,
— i —
yields C, = CI'[Y1+A2 —.A] , 5. (4.29h)

Eq.(6.18) holds also if SORET

effect and temperature dependence of D is taken into account.

Now let us furthermore assume: D = const
and R = 0.
X .
. ax" sR _ x

In this case we have G = { D e = D

a
In eq.(6.16-18) is G, = ‘x=a = 3 i (6.19a)
Inserting eq.(6.19a)
. . D
into eq.(6.18a) yields Fperm =C, = 5. (4.29e)
Inserting eq.(6.19a)

D
into eq.(6.18¢c) yields A = — s.(4.29g)
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Re. eq.(4.31) Finite KR

From D = const s.(4.31a)
and R=20 b)
it follows that G=+x/Do s.(6.19a)
C
Inserting this into F_ = L 5 + . s.(6.17a)
P 2x .Gy @
R > a
= Dip
yields Fp = Co = .E + 1]
with p = B s.(4.31f)
KRC a .
o
Inserting this N >
into B s -VFP - (¢ /@)  (6.17p)
: D
e Fperm - co a'
i ' - B
and 1.2 1
h = VP + LP = "2P .
From the -
general solution C = Co - Fpermlﬁ s.(4.27¢)
we have c=2¢C b-ﬁﬂ
o a
c=c L- i‘(q_h)] 5. (4.31¢)
o a
and from this h = Clx=0 = relative height at x=a,
o
x=a

The equations given here on p.70 are part of the iteration (6.17),
because Co is not exactly known. However, in most practical cases

~one may forgot this taking E; for Co .
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Re. eq.(4.32) SORET effect

In order to get an estimate easy to handle we replace

the x-dependent 8 =-aE AT/2x 5.(4.27a)
SOR T2
by the
. = /2
constant average value § = Eqop TD/TM . s.(4.32e)

From the general solution
it follows that

5 4
1 v\ =X
R:ESde=S~£ S.(’-F.E?b)
o
X .
G = Tefax'a 21 - eR] 5. (4.27¢)
SD
o
R
C=ce (Co— FpermG) s5.(4.27e)
R a a
= (co'~ Fperm é_i) * Fperm 3D
[
From the boundary condition
CIx:a' =0 5. (L4.32Db)
we have o = C D S — (6.20a)
BeE % 1 - exp(-8 2
=,/X a
|- e[5E- 2]
C=c, — b)
1 - exp (-8 E') i
Expanding yields
C=C [1- x—,][’! g2 X +..] s5.(4.32¢)
o a 2 a
Q@ ot
= C D—'[1+§—£+..] d)
perm o a 2 a .

Note that C/C_ acc.to the exact solution (6.20) is €1 ;
the case C/Co > 1 with hydrogen running against grad C driven
by grad T (s.FIG.4-11) can only occur if the diffusion coeffi-

cient D depends on the temperature .




= o

Numerical calculations show that G as calculated from page 71

becomes too small due to replacing S by S ; the relative error

i bout - - =
15 abou {STD/TM Sé"

Ea4 (6.20c)
TD/TM 8§21, .

Furthermore, the expansions (4.32¢c+d) induce an error about s/3 :
the applicability of eq.(4.32) is therefore limited by

T
'nfl_) i 0.3 ES_"I . (6.204)
M

Sample application:
steel slabs in the reactor as defined in tab. (4.2)+(4.20)+(5.4):

ety

for steel one has ESOR = 800o

for the reactor one has TD = 200

o

and TM = 700

It follows that 8] = 0.3
E 5% - 10% .

From this it can be expected that eq.(4.32) is a good approxima-
tion; s.FIQ.4-10 '
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Re. eq.(4.33) Temperature-dependence of D

TR
Neglecting the SORET effect R = ESOR =0
we have c(x) = = s. (4.27b+e)

% Fperm S D(x )

X

o~ Fperm DX . (6.21)

c(x)

[}
Q

% is defined by

D(x) o

n
in the following we estimate x from numerical results.

In the case D =D, exp(-E /T) s.(4.1g)
= X
with T=T + TD[ - E] 5. (4.25%)

we have approximatively

Ao 1 220
x"x[1'2+0.2E1 (6 )
(7. +T.. -T) E_ x
with E = = = > L b)

T a '

In FIG.6-3 we test the applicability of the approximation (6.2%)

by representing

{ x‘ numerically calculated

o = (6.22¢)
&y with X from eq.(6.2723)

"

o
"2

as a function of the two dimensionless parameters

3]
|

=T x/[(TR+T )a (6-220\)

Ay = B /(T4T) €)
The deviation q-1 is a measure of the relative error.

It is found that the numerical results are almost exactly (<1%)
reproduced for our examples INTOR and reactor with clean or dirty
surfaces. There are, however, other examples for which approxima-
tion (6.241 ) is not very applicable or not at all, e.g. ADEBO

and z20.7




| | I T
0 0.2 0.4 0.6 0.8
FIG.6-3

To test the approximation (6.22)

X dx~

th i =
e quotient ‘2 D(x') numerically calculated

%
D(%) with X from eq.(6.2%0 )

is plotted as a function of the parameters
z = TDx/'L(TR+TD) a]

Ap = ED/(TR+TD).

and

The examples INTOR and reactor are located at 5 10

7z £ 0.3

NN
P
IN

and O
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If we know how to calculate x from x,

we also can calculate the solution with the
boundary condition

clxzo = Co
CI =Ch
X=a o
from eq.(6.21): one has
X D(a)
C=c¢c |1-301-n) (6.23a)
D(%)
A _
with ‘; = a["l- m] b)
and B = ET. /T2 c)
DD R °
=¢c LBp® d)
perm o a
1-h w
= CO B DO exp[— ED/T(a)] e)
with (3 = Ty + T/ (2 + 0.28), £)

However, in general the calculation of D(X) is a tedious matter;

therefore we look for simplifications.

Neglecting E in eq.(6.22a): X = g
and assuming small lemperature gradient ?D((TR
N
we can approximate ,D_(__a) 2~ exp [_g(’_r‘ _1)] (6.24)
D(% = .

Numerical calculations show that

the range of validity of eq.(6.24) is approximatively
ED/TR <15 and TD/TR__(_ 1 (6.25)
E,/Tp £ 20 and T /T 40.2,

For our examples INTOR and reactor with steel slabs eq.(6.24)
is a good approximation. Inserting eq.(6.24) into eq.(6.23a)
yields eq.(4.33c). Furthermore, T(2) from (6.23f) = T from (
(4 .33fF).
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Example for eq.(4.33c)

Permeation rates for INTOR with dirty surfaces

"INTOR" is defined in this report

acc.to tab.(4.20) by the data FL = 1.5 '1016 atoms/(cmasec)
T, = 80°
e = 600°K;
"Dirty" is defined by K = 1.6 10—20cm4/(atom sec);
in addition, one has ac.to (4.2) a=1cm
Do = 0.085 cma/sec
E; = 7000°K
E, = 6000°K
From this we get
the averaged temperature T = 640°K
and D = Do exp(-ED/-i‘) = 1.5 10-6I+cmi/sec
K =K exp(-EK/ TL) = 2.4 10"%Yen '/ (atom sec)
Ky = K exp(-Eg/ Tp) = 7.3 10722 n
I - 5 _ 19 3
c, = VFL/ K = 7.9 10 7 atoms/cm
p:D/(K-RCLB.) = 0.026
hx\p = 0.16
F =C 2 (1-h) = 1.0 10‘”+ atoms/(cmasec)
perm o a

= 0.14 gramm/ (n°day)

in the case of 1 atom 1.67 10_2L|'gramm "




Comparison with Ref./6/

Reference /6/ presets formulae and examples for the steady-

state problem, which are compared here in tabular form with

the formulae used in this report

ref/6/ this paper
? : ac
F, = - D'?% (1) Fperm -7 T ox
X dz T ax’
n(0) -u(0) = ¥ § praz 2) C-Cx) = Foornd Gz
\{FO (3) L
2(0) = {x(o) 2 L =\x,
F F
\fd Y _\|/-perm
n(d) = ) (&) c(a) = Ky
F F d a .
i dz dx
11{(()0) _\IK:Ed) = Fl\i D(T(z (5) cI,_C("t) = Fperm‘i D(x*)
‘g . z/d
d 1 a .
dz _ a% dx _ a
3 5@y = ¢ § ey (6) {269 = 5
F 1 3 -1
o 1 d D(2)
Fi =Y K(0) E[g D(T(g))} (7) perm & cL a
F D{0) &
= —— R
Fy =vxooﬁ chm) R perm = °L "a
1 =2 w
¢ D(T(0)) ~
R=[gd§mn] ©®) O]
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7. Outline of numerical calculation

Here we outline the numerical calculation of the H concentration J
and flux near the irradiated side x=0 of the slab during the 1st i'
burn and dwell periods. The method described only deals with dis-

tances x from the irradiated side that are small relative to the

slab wide a. We therefore neglect the spatial dependence of the
temperature and take only its time dependence into account.
We start with the 1st burn time. The long-time solution

x
C = CL erfe( i) #: (7 )
is also valid for time-dependent diffusion coefficient D, 4 f

It
H=2\§dt'D(t") (7.1)
[o]

is used instead of eq.(4.5e) as profile depth. With time-depen-
dent t, the short-time solution (4.5) also remains at least qua-
litatively correct. Both in the long-time and in the short-time

solution x only appears in the combination

we therefore use V instead of x as independent variable. This
gives the symbol 3C/3t a different meaning to that in problem
(4.1) because V depends on time via H. It holds that

3¢ 3¢ 2C 3V

3t|x=const = 3t|V=const © oV 3t (7.3a)
with ) __2VD b)
ot H2 .
Now to the boundary conditions:
the boundary condition at x=0 is left unchanged.
In order to write down the boundary condition "right"
we introduce a parameter
Viex = 2013 (7.4a)
so that erfc(V__ ) and eri(V__ ) & 1. b)
max max
From this we have clV:V =0 c)
max
. Z // 2
in good approximation if t € tg, (uvmax) . d)
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We use eq.(7.4c) as boundary condition '"right" instead of (k.1c),
which is justified if (4.7d) is valid. t_., is the particle diffu-
sion time introduced in eq.(4.3Db).

sC

For our examples (steel) we have tgo X a few days s.(4.3b)

and from this t £ a few hours s.(4.7d)
as the range of applicability for the program described in this

section.

Furthermore, the initial condition ought not to be defined at
t=0 but should be set at a somewhat later time

1olog t = 1Olog tA - KFINE (7.5)

begin

with tA = release time s.(4.3a)

and KFINE = 2 or 3
as a further accuracy parameter. For the initial distribution we
use the short-time solution (4.5), which at time tbegin is still
a good approximation solution.

Substituting eq.(7.1-5) in problem (4.1) yields

aC 1 oF

$$°- E.[?VF + = (7.6a)
D 9C

F=-% v b)
clvzvmnx = 0 c)
F = F = 02| d)

[veo = FL - X5 |v-0

2.1t x
Cl _ = Z\(= F. eri(s) e)

t_tbegin YE B L .

The rest of the equations of problem (4.1) remains unchanged.
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To form a difference scheme for problem (7.6), we divide the
V interval (O;Vmax) into sub-intervals of equal length AV,
Acc.to RICHMYER MORTON's stability criterion this yields a

time step 2

At =2, (BAV) /D (7.72)
with z,€ 0.5, b)
Our program contains altogether the four accuracy parameters
vmax , KFINE , AV and 22 .

At inoreases roughly in proportion to the time t. The time
mesh points are thus approximately equidistant on the log t
axis. For example, the number of t mesh points in the inter-
val (10—3;1) is the same as in the interval (1;103). From
this we can see that the use of V instead of x is well adap-

ted to the abrupt change of burn and dwell times.

During the 1st dwell period we have to solve the problem

W __a MF
S [?VF + bV] (7.8a)
D aC
F=-—-ﬁﬁ b)
clV:Vmax = Cburn c)
2
F‘vzo = = KL |v=o d)
A
Cin_ _ B é_-i wip 3E
lt_tbegin = Cburn =5 FL eri( é) e)

where Cb denotes the profile built up during the preceding
urn .
burn period; for t, H see eq.(4.9f+g).
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List of all symbols used in this report

A Capital letters

—_—
S A T Y e e e R R L ST

Symbol remarks
1
. ~ o

A eq. (4.29g) steady state: A% Fperm/Fimplant
~
A eq.(6.12) C-decrease due to rising temperature
Ap eq.(6.22e)
B eq.(4.33a) steady state: temperature dependence
C eq.(4.1) H concentration (atoms/cm3)
C, eq. (4.27d) steady-state: C_ = Clx:O
Courn eq.(4.9) dwell time: H concentration built up

at the end of the preceding burn time
Cr, eq. (4.3¢) C =\{FL/KL
G, eq-(h.291)  Cp =\F o . /K (steady-state)
O & eq. (4.9) dwell time variation: C__ = C-C_
D eq.(4.1) particle diffusion coefficient
Do eq.(4.1g)
E eq.(6.22b) steady state: temperature dependence
~
E eq.(6.10¢) exponent in a superposition formula
Ej eq.(4.1g) temperature dependence of diffusion
Eo eq.(4.1h) o " " recombination

o
Eqor eq. (5.4) SORET constant: Eg,p= 800" for steel
F eq.(4.1) hydrogen flux in the slab
F, (L.1e) flux of the implanted H-atoms
implant
Fimplant (4.25e) time average of Fimplant
Fincident (5.3a) flux of the incident H-atoms
F (4.1e) Fimplant during burn times
FP eq.(6.17a)
Fperm eq. (4.27) permeation rate
G eq.(4.27) steady state: G =J(e_R/D) dx
. eq. (4.28) G =G| _,
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Symbol remarks
H eq.(k.5e) profile depth during 1st burn period
A
H eq.(4.9g) outgassing " " 16t dwell "
Hyvell eq.(4.3d) penetration depth of dwell time variation
Ic tab.(4.20)  INTOR with clean surfaces
B ENTOR With‘girty "
Tisee - (Ba34) inventory of H diffusing towards coolant
Itrap eq. (4.34) " " caught in traps
I eq. (4.34 -
total ©a-(4.34) Liotal = Taier * Tirap
. eq. (4.1h)
KFINE eq.(7.5) accuracy parameter
K eq.(4.1h) recombination coefficient "Left" at x=0
KR eq.(4.11) " i "Right" " x=a
K FIG.5-1 b " for clean surfaces
clean
" " " " 3 "
Kdirty dirty
K M N " measured by WAELBROECK
waelb
Q eq.(3.1) temperature flux
Q eq.(3.1d) Q, = Q|x=0 during burn times
R eq. (4.27) SORET term in the steady-state general solu-
tion
Ra eq.(4.28) Ra = R'x:a
R, tab.(4.20) Reactor with clean surfaces
Rd it Reactor " dirty t
Ry eq.(5.3) particle reflection coefficient
S eq.(4.27a)  SORET term in FICK's law
S eq.(4.32e) space average of S
T eq.(3.1) temperature
T eq.(4.33f) steady state: T = 7(¥) from eq.(6.23f)
T, eq.(3.3b) maximal temperature difference towards the end of
— a burn time
T, eq. (4.26) time average of T;(t) prop. o
T, eq. (4.1k) temperature "Left" at x=0
T eq.(3.2¢) coolant temperature "Right" at x=a
U eq.(3.2b) temperature conductivity
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Symbol remarks

v eq.(7.2) V = x/H

vmax eq.(7.4) bound.cond. C‘V:V =0
max

W eq.(4.18a)

22 eq.(7.7w) aseuracy parameter

B Small letters

Symbol remarks

a eq.(3.1) slab thickness

a' eq. (4.32g) zero of C(x)

g eq.(6.23b) steady-state

b eq.(4.8) 15t burn time: quasi-exact correction
D eq.(4.12) 1st dwell " LU "

c eq.(5.1) specific heat

c, eq.(6.8) c/cL‘x=0

erfc eq.(2.1a) error function complement

eri eq.(2.2) error function integrated

£, eq.(6.8) F/Fle;o

h eq.(4.31e) steady state: h = Clx:a/clx=0

P eq.(k.311) steady state: h & VET

q FIG.6-3 steady state

a FIG.6-2 superposition

&L : q eq.(5.2) heat flux

- eq.(3.1) time elapsed since 1st switching on
t eq.(4.9f) " " " 1st dwell time start
?? FIG.3-1 " i " 2nd burn L "
t, eq. (4.3a) release time D/FLKL

1-'begin g (7:5)

tburn FIG.3-1 burn time length

% iwell

dwell " "
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Symbol remarks

toox eq.(4.19) time when C|x=0 (t) reaches its maximum

teg eq.(4.3b)  particle diffusion time a° /D

top eq.(3.3a) temperature " TR

pYs eq.(3.1) distance from the irradiated side of the
slab

A

% eq. (6.22) steady-state

z eq.(6.224d) " "

C Greek symbols

Symbol remarks
At eq.(7.7a) time step
AV eq.(7.7b) V-step

E page 72 error induced by replacing S by 5
A eq.(5.1) heat conductivity

9 eq.(5.1) mass density

T eq.(4.5d) dimensionless time 11t/tA

2 eq. (4.9e) " "o R/t

1" "
S eq.(4.16Db) ot orn ! A
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