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Abstract:

One-dimensional, stochastic, dynamical systems are well studied with
respect to their stability properties. Less is known for the higher
dimensional case. This paper derives sufficient and necessary criteria
for the asymptotic divergence of the entropy (runaway) and sufficient
ones for the moments of n-dimensional, stochastic, dynamical systems.
The crucial implication is the incompressibility of their flow defined
by the equations of motion in configuration space. Two possible

extensions to compressible flow systems are outlined.




Stochastic Runaway of Dynamical Systems

Introduction

In order to explain what is meant by stochastic runaway, let
us consider a canonical system which is stirred up by some

kind of external stochastic driving forces. One then expects
in the average an input of energy into the system, i.e. the

total energy content of the system will "run away".

We shall confirm this or similar behaviour for a rather general
class of so-called dynamical systems. There will be no need
for a Hamiltonian nor for the notation of energy, which may
be replaced by the entropy. All that is required is
incompressibility of the internal dynamic flow.

1)

A dynamical system belonging to this class is described by

an n-dimensional vector
wils) = (1 (s), rr , %a (5)) ()

s can often be the time t but in some applications can also
represent a space variable. In the following, s is always called

time. The time evolution of u is given by

~s




A (s) = g (2t (s), 2 (s5))els
The m-dimensional vector

a-(s) = (V3 (5), . Yan (5)

is some stochastic process and serves to make the flow field

b(u, v) in u - space time-dependent in a stochastic way. b
~ ap N ~ -~

is assumed to be divergence-free in u - space:

;D—--b(fb(.’b“')z 1'-_*0

2t A A 7]
J %

Equation (2) therefore describes an incompressible flow in

U - space. (Throughout the paper the summation convention is
applied).

For _\:’(s) we choose an Ornstein-Uhlenbeck process defined by

2)

its stochastic differential equation

d‘bgv(y) - QJ'[%-)a(s +A;’k/y—)a/w;; ()

i =1,°*,m; summation over k from 1 to m.
Wk(s) are Wiener processes defined by
9/4423'( (,5‘) = ffx(f)o/-f
with

Csn (5 f (500 = et 3(5-5).

2

3)




The brackets denote averages. A generalised telegraph process
(Poisson process) for v is also considered (see Appendix). Since
our results can be established for both of these rather different
cases, we believe them to be valid even in more general cases
such as are treated in connection with, for instance, stochastic

curve integrals by Gichman and Skorohod

The class of systems we are investigating therefore belongs to

the class of stochastic differential equations

AX(s) = é[ﬂ){, s)As + Fu [:\:}5)/&@ (s). @
where k and g, are nonstochastic functions of x and s .
In our case we have

X = (2, ) 9)

~JS

and there is assumed to be no influence of u on the time evo-
o

lution of v.
-~/

There exist a number of investigations of the asymptotic behaviour
of the solutions :(J(s) of equation (8) that are based on the corre-

sponding Fokker-Planck equation:

If - (10)
S= L. f =0

The so-called L-harmonics h defined by

L4 =0 (1)



are then of special interest. In fact, in the one-dimensional

case (x(s) = x(s)) they provide a complete classification con-
s

cerning the boundedness of x(s) (see Gichman and Skorohod 2)

16) 17) 18),

chapter 2 part Il. Compare also L. Arnold et al.

For more than one dimension some general results are available
for the dwelling time of any given path within a finite volume,

3)

especially through a certain relation to potential theory

Using so-called L-superharmonics (thuperg 0), Gichman and
Skorohod 2) were able to study the asymptotic trend of the
moments. For more than one dimension sufficient conditions for

their boundedness were obtained which, however, can easily be

shown to be far from necessary.

For arbitrary dimensions ergodic theory is also used which deals

with the existence of time averages of measurable functions Z(x)
~

of the form 4 9 va
b L f/(x(:))df
vE T ~
> 00

for nearly all starting points x(s = 0) and with their probability
A

distribution. In this case the existence of a stationary measure,

i.e. normalized and invariant to the flow, is necessary. One

may then consider the above average as a Fejer mean for the

(12)




function ,f(icu) and draw conclusions on the behaviour of 5(5)
for growing s except for intervals of s of a relatively small
measure. This therefore somewhat restricted asymptotics may
nevertheless be useful in physical applications as stated by
Sulem and Frisch in treating the reflection of light by a

6) 7) 8) 9)

random medium :

Liapunov techniques might also be expected to be useful, but,
as Kushner points out ]), "it is not clear what the appropriate

theorems are for such cases nor is it understood how to find

(even in relatively simple cases) useful Liapunov functions".

In the present paper the following is done:
1) proof of an H theorem for systems described by eq. (2)

in u, v space on the assumption of stationary v processes
~ v -~

2) derivation of necessary and sufficient conditions for the

divergence of H

3) proof of the divergence of any moment of u when H is

divergent

4) explanation of the peculiar role of incompressibility and
sketch of two ways of possibly achieving also results for

compressible systems ,

In the course of the proof certain Dirichlet forms are introduced.




The possibility to consider them as a metric of function spaces
offers far-reaching connections with other topics M 12) 13 14 ]5).
The third point, of course, does not necessary imply that H

diverges when there exist divergent moments. It would there-

fore be of interest to know what additional information could

be extracted from the fact of diverging entropy.




2.

Stirring forces derived from an Ornstein-Uhlenbeck process

2.1 Description by a Fokker=Planck equation

We discuss here the system (2) with v(s) given by egs. (5)
to (7), whereas the discontinuous generalised telegraph or
Poisson process is left to the Appendix. v(s) is assumed to

be in its stationary state.

One question we are interested in is whether

u = /,q1‘°+ con 4+l
will assume larger and larger values in a statistical sense such
that the average value of u or of some power of it increases
infinitely as s goes to infinity, which we shall establish as a

consequence of stochastic runaway .

In order to get an answer to this question, we describe the
statistical properties of u and v by a probability density
As A

P(s: u, v) with

— NS

P lsa ) d e d e
- (14)

dmuzé(uql-'dunﬁ pe”’l)’:dd{l‘-,. .dt)'%

In the case of the Ornstein-Uhlenbeck process P is a solution

of a Fokker-Planck equation




W = — (32.- (2) + 2 Dk (’V”)"—;) (16)

where W is the Fokker-Planck operator corresponding to

egs. (5) to (7) with

ST Aq'p(’l{)AE/% (1) (17

d )
iy = ‘At 3 50, D‘;e (18)

From this it follows that Dik(-\:) is positive semi-definite; it is

restricted here to being positive definite.

Integration of eq.(15)over u yields an equation for

V(S""i')"—'_fp(s:gc/z{)d"u (19)
namely

AV . wv =o (20)
55

We are interested in the stationary L—distributions, i.e. QV/JS = 0.
Such distributions are possible only if certain"Einstein relations"

between . and Dy hold. These are obtained by writing

Viy) = e_—/—"(?a') 1)
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with B(v) real and

~Alv) =

all v space
~

From WV = 0 we find

_ 3v)
(JL' = -Z’Dz‘}aj_:v_ )é =§E}_4t'lee (23)
R R
with a certain antisymmetric G
24
41';@ [,V'U’) = — Apy' (/K) e
For (25)
A )
Yo = Fi ~ 5o A
A
ﬁqk g :Dm - 2a% (26)
we obtain the Einstein relation
A 9
A
7 = 7 Do 55 @)

with
i (29)

is a distribution function for which

W Po = (30)
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holds. In general, however, it does not solve the whole Fokker-
Planck equation (15). P_ can be a solution of this equation only

if a solution U(u) of the equation

J\?( 92(@)

]

/(L\’()%-)- 9% = @ (31
exists with
n
’Légzﬂ)- f%(%)a( e = 1 (32)

all u-space.
-~

The expressions (31) and (32) impose a condition on li(u,v). Since
this condition will play an important role later, we will illustrate
it here by a 2-dimensional example for v = (u], u2). Because of
eq. (4) we can express it as

b, (%, %)= ai(u 1); ﬁl(g,%)z_%)(ss)

A ) v

Inserting this in eq. (30), we obtain

oy dU) _ gy AU _ o

U, O Uy Jleq J tey

(34)

from which a representation of ?L in terms of an assumed existing

U(u)

"]l'(?{f)qf s ?(Z((?é), 47’:‘) (35)
follows and therefore

JU
p = 24 24 b =% S
2. dU
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Thus b1/b2 is a function of u only, which of course imposes
a restriction. An example of b not satisfying eq. (36) is the

stochastic oscillator:

2
O‘L‘;;_ + c.)zf’z,g(s)) U, = O (37)
z
dis o uy by A eetanh
5

= i (&)1(’1!‘) oc,,"+u2") (39)
12 N

This contradicts eqs. (34) and (35). Of similar structure is the
one-dimensional wave propagation in a stochastic medium.
Related to the fact that a function of the form Po does not
solve eq. (15) if B(,‘i’:) does not allow the expression (31)
and (32) to have solutions is an H-theorem for eq. (15) which

will be helpful in discussing the question of stochastic runaway

and which we shall prove in the next section.

2.2 Proof of an H-theorem

H is defined as

He [PluP dud™ “0

and we want to prove an H-theorem for solutions of (15) for which
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IP dnu = V(’}(f)

holds, where V(v) is defined in eq. (29)

Solutions satisfying eq. (41) initially do this for all s.

That an H-theorem is of interest in our context becomes clear
from an auxiliary theorem which we shall prove first before
turning to the H-theorem itself. The auxiliary theorem states

that for any real of > O
m
fu“?d"ud Vo0  for Ho—oo

For the proof we assume the contrary, namely

H-—-}-oc and E‘Puuo{hudm’v— —?‘C<="’

In order to find out whether this is possible we determine the

maximum of -H under the constraints (41) and
n m

The maximizing P is

~Au”

max ~ _.3(4.0( a
je A u

with A being determined by eq. (44). The integral appearing

in eq. (45) exists for all positive non-vanishing . With qux

(41)

(42)

(43)

(44)




14

we obtain

("H)méx = —IV(E{')’&“ V(QJ)Q(MIU'
% n

— A
+,gwf€_ oA (46)

4 " m

.,.?mfru Poax X uwol v
This expression represents not merely a relative but an absolute
maximum as can be shown by familiar methods of statistical

. 19)

mechanics (compare e.g. Zubarev )s
It is finite for finite C. Hence it contradicts the first of the two
assumptions (43) and therefore proves theorem (42).

Let us now turn to the proof of the H-theorem.

With eq. (15) we have

o = WP P oA A )

We shall show that %SH— < 0, where the equality sign holds only
for solutions of eq. (15) of the form P0 (as defined in eq. (28))
which, however, might not exist. Partial integrations in eq. (47)

yield

Since a’(v) does not depend on u, we obtain with eq. (41)
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‘)1.' " 4 2P IP 1
=j\/(y)5%do—zfp é—;—v—dpu.a(

Only the second term depends on the special solution P. The
maximum value of dH/ds is thus given by the minimum value of
the second term under the constraints (41) and P 2 0. Indeed
this term has a lower bound, since it is always positive because

of Dik being a positive definite matrix.

In order to guarantee P 2 0, we express P by

P - B

where @ = @(u, v) is a real function of y and v. This yields

[

- [viw Hea - 2 (9, 22 2 4

Rt M

Using eqgs. (24) till (29), we can also write this as a difference of

two Dirichlet forms

R v g

zjiv NV AV, J 3O Db 4™ A"

'R a/u- 9’1}"
We now represent @ by
62 % sl

with 60 (v) and Uy(u) forming complete sets of real orthonormal
~J ~F

functions:

(49)

(50)

(51)

(52)

(53
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Sy ) fp 2 4™ = O

Ju, () Uy ()eln = o

The set Uy(u) can be chosen arbitrarily. But the ﬁp‘i are taken as the

set of eigenfunctions of the Hermitian eigenvalue problem

v = 1 s———
~ vy 7 J Vi
The eigenvalues E. have a lower bound because of the properties

of Dik' One eigenfunction, say Cfo , is given by

%z\[V with E_ = 0,

The eigenfunction to the lowest eigenvalue of a Hermitian eigen-
value problem is characterized by having no zeros. It holds
further that the lowest eigenvalue is simple. % has the property
of not vanishing except for l,\:,l —> oo . Thus Eo = 0 is the
lowest eigenvalue and there is no other eigenfunction besides Cfo

to this eigenvalue.

(54)

(55)

(56)

(58)
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The series (53) is restricted by the condition (41), which yields
% % ; Cﬁv Cp CFq [?)ﬁ,(l&') = l/(’l{’] (59)

Inserting eq. (53) in eq. (52), we obtain

AH 2V IV L C ‘gf‘r _ﬁdu-
os -2‘(2@ QU ed S,D 2 ?VC ’ %

JV AV "
= Qg('Dq'n 29_,{,1 av o (60)

"Z 2 C.Ty CP?( EP CgTP —f/\ Cpcr‘fpo(':’)

114

Because of eq. (59) the last term in eq. (60) containing /\

exactly compensates the first term and therefore
2.
oH 2 > c.y E
— = - ™
A s % 5 T 9 1)
The coefficients qu satisfy the condition

2
2.2 Cg» = 1 (62)
zr ¥
as follows from eq. (59).

Equation (61) proves our H-theorem, i.e., dH/ds< 0 except for

Ey™ 0 for g 2 1. |If this latter is true, we have dH/ds = 0 and

q
g =V 3 cor Usla) 5

which corresponds to a distribution function P of the form Po

(eq. (28)).




2.3
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Conditions for stochastic runaway

In case @ corresponds to a solution of the Fokker-Planck
equation (15), the coefficients c 3 become functions of the

variable s:

Cqn = Cqr (7

(64)
and therefore
oflH _ _ 2 ¢t o(s) F
oL w22 2 Co 1 9

g2
If Eo = 0 is a discrete eigenvalue and if b (k’,’.\\') does not
satisfy the conditions expressed by (31) and (32), the r.h.s.
of eq. (65) is negative and not infinitesimally small, except
possibly for an initial s = 5 where all the qu(so)’ gz 1,
could, of course, be chosen zero. Under such conditions

there is thus stochastic runaway.

Whether Eo = 0 is a discrete eigenvalue or not depends on
the Ornstein=-Uhlenbeck process. But there is obviously a
large class of such processes for which at least the lowest
eigenvalue is discrete. A simple example is
0D 2
:D/Z‘Q = -DJQ'Q , ;)-_’[7 =0, /3 = (66)

In this case we find from eq. (57)

N =D(r'~m) (©7)
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and eq. (56) becomes
2
2

ALYy

1

_._ng_(fi +D(g-2-""f'-)‘ﬂr -‘-E?fcf? (8)

This is the Schroedinger equation of an m-dimensional oscillator

of frequency 1 with energy eigenvalues FZLD- *E + ; =g% —T-

q 2

from which it follows that

I

E 2D-9 (69)

1

Let us now also discuss the situation where 13‘(2‘, x) satisfies the
conditions (31) and (32). To this end we first analyse the
meaning of these conditions. They yield surfaces U('t.l) = const
in u-space to which the vectorsﬁ(i,x) are tangential for all
V. "Particles" possessing "velocities" E(ﬁ,x) in u-space thus
cannot cross such surfaces and this holds for all values of'\vl' :
The V- dependence of b can only lead to a stochastic motion

within such surfaces.

The surfaces U(I:J) = const which are possible are restricted by
JU(’L‘J‘)dn U< oo with U(:J’)> 0. This can always be realised
if the surfaces form nested, closed surfaces in some parts of
u~-space. But surfaces can also extend, for example, needle-

L

like to infinity, so that the volume between two such surfaces
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is finite.

If b(u,v) is such that surfaces of this kind exist, then all

“particles" initially in areas surrounded by such surfaces cannot

leave these areas. If in an initial distribution function

5
Pls=oyr,e) + L (s=01,%)

]

Pls=0ix,2)

P2 describes such particles and P] those outside such surfaces,
then P2(s: R’,x) and the corresponding coefficients c(zl(s) in

eq. (53) develop independently of P1 and c;]))J

in such a way

(2) ; :
that all qu (s) with 9 2 1 approach zero as sp <0 . This
means that the "density" of "particles" becomes constant on each
surface U(u) = const.

n

If the surfaces U(u) = const. are closed, u = , u} stays finite
" L

for these "particles" for s a2 , too. If the surfaces extend

to infinity, infinitely large values of u are also realized, but

for suitably shaped U(u) the function H(s) stays finite and the
~

probability of stochastic runaway converges to zero.

In the event that more than one function U(u) describing different
~

surfaces exists, the possible "motions of the particles" are accord-

ingly restricted.

(70)
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2,4 The role of incompressibility

If incompressibility is absent, there are two ways out
of the problem:
- a suitable nonlinear transformation

- the introduction of an additional variable.

Both methods have their merits. As an example of the former
case let us consider the propagation of waves of fixed frequency
in a medium with time independent but in space randomly
varying refraction index. In this problem, x will play the role
of "time" s. Writing the wave amplitude
X X
ey~ S el
T 7] 0
N~ @ (71)

with n(x) and K'(x) real we obtain from the wave equation

/q,“ + Ry = 0O (72)

o B 2 €T
n' = 2nk w's Runy ke (73)
With n = Uys K=, this would not result in an incompressible
flow. With '-'rL =u K=, the flow field is, however,

divergence-free (Frisch and Sulemé)).These authors show

"nearly" convergence of the reflection coefficient for a half-
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space towards 1 in the sense of Fejer as mentioned in the
introduction. They overcome the non-normalizability of the
stationary solutions of the above continuity equation by some

ergodic reasoning. Our method would yield e.g.

€ e e 74

The second possibility - the introduction of an artificial

variable - is obvious: Define (Uo' bo) by

h
bp == U, e>..__-—--lﬂ'1 73)
dal DU

Any divergence of moments we obtain would then apply to
this extended system and must hence be projected into the
original subsystem (u] o un). If the right-hand sum in

the above formula is denoted by 7, , we obtain explicitly

s
i 'or% (L(,r*- ’ ']»(r\,)ﬂ,-"'

U, = C e (76)
Assume A to be strictly positive, we may then also conclude
from the divergence of
2 2 7‘
Caly + (et + e+ (P ew 77)
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that

uld+ o Luly »eos (78)

diverges in the subspace of interest, Applied to the problem
of stochastic wave propagation, we obtain from K> 0 (and

hence ‘XP 0) the additional relation
Zmy + (k) =0 79

For the reflection coefficient R = @ + L@ given by 9

< (h=1)— K

A (m+ 1) — K

(80)

R =

eq. (79) implies:

TR = <) e D77

—_——

R+

Since R is restricted to lRl £ 1 we expect the probability
distribution of R to be sharply peaked around Q:: 1, 8= ™,

the point of total reflection.
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Summary

An H-theorem is derived for n-dimensional, incompressible, dynamical
systems driven by external stationary stochastic forces. On this basis
sufficient and necessary criteria for the asymptotic divergence of
entropy (runaway) are obtained. These criteria represent at the same
time sufficient ones for the divergence of moments. The stochastic
forces considered are mappings of general Ornstein-Uhlenbeck processes
as a continuous example and of telegraph processes as a discret one.
It is believed that extension to more general stationary Markovian
processes should be possible. The assumed incompressibility seems to
be unavoidable as regards the present method of using an H-theorem.,
Sometimes one can nonlinearly transform a compressible system into
an incompressible one, as, for instance, in the case of wave propa-
gation in a random medium, and thus still obtain interesting results.
Another way to generate incompressibility is to add an auxiliary
dimension, which allows conclusions to be drawn for a semi-mono-

tonically shrinking flow.
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AEEendix

The generalised telegraph process

Markovian processes can be split essentially into continuous diffusion
processes, which we have already treated in the text, and into
those with discrete jumps. In order to deal with the latter, let us
assume the stirring forces v to jump with a certain probability "per
second", There is no restriction if we confine ourselves to just one
component of v . Let us denote the transition probabilities from
v=a, fov= Y by Sii . We then obtain for the joint probabilities

Vi the following equation:

av, . _ A1)
-;{——; =—-§Z'§;"j (V-; l/t)) ) 5;‘3'"-8‘1_?(7-

As a consequence the equidistribution is the only stationary solution for a

finite number of states N, i.e.,

Vo - /N
'

A

(A.2)

remains constant in time.

This equation, however, does not yet imply the time-evolution of

our system variables u. In the discontinuous case, our previous
-~
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b (u,v) may be represented as afinite set of vectors
~n

~ v

}f’; (/A’/J‘J': ‘%{/5)4'4:) (A.3)

and the corresponding equation for the simultaneous joint

probability of u and v = a. is

o
3

o

|
-l'.
e
3

2h_ yoipop) e
f

&

¢
e

g

with the marginal distributions
h
fﬁ (s:m)d = V. (A.5)

as solutions of the above equation (A.1).

With

A
o q
Polsiwe) = U () V; (A.6)

A
where Vi is the stationary solution (A.2), the right-hand side

collision term in (A.4) vanishes. - Hence, in a way similar to
that in the Ornstein-Uhlenbeck process, this ansatz can be
made a solution of (A.4) if a simultaneous solution of the
equation
byl 2 W)= o ”.7)

for all i can be found, which is a normalised measure:
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u(%)a O wand ju A = 4 (A.8)

The examples egs. (35) and (71) are also consistent with this
requirement as they were with the Ornstein-Uhlenbeck case. -
Furthermore, we realise that the proof of the H-theorem, with

H defined by
He 2 [P P o "9
1

can be taken over from Sec.2.2quite literally without any change.

This remark also applies for the runaway conditions, and so we
may conclude that the results should also hold in the more gene-

ral case of a mixture of stationary continuous and discrete Markovian

stirring forces, at least if they are independent of each other.
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