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RESISTIVE SPECTRUM OF CONFIGURATIONS
WITHOUT MAGNETIC SHEAR

Abstract

The problem of determining the normal modes of a slightly
resistive, incompressible plasma slab with unidirectional fields
is reduced to quadratures. The eigenfrequencies are on a system
of curves in the stable part of the complex plane which are in-
dependent of the resistivity n. For finite wave number the dis-
tance from the tip of the ideal Alfven continuum of the nearest
eigenvalue is 0 (n'/®). The first correction to this is
0(1/{ 1n n| ), which thus only becomes small for unrealistically
small values of n. Including this logarithmic correction yields
quantitative agreement with numerical computations.

1. INTRODUCTION

The frequency spectrum of the linearized motion of a plas-
ma is perhaps one of the most useful tools in a variety of appli-
cations such as stability, wave propagation and heating. In the
present article we derive the influence of small resistivity on
the Alfvéen continua of ideal magnetohydrodynamics. Most previous
investigations of this problem (for instance refs. [ 1-4[) fo-
cused on unstable, resistive modes whose eigenfrequencies emerge
from the origin owing to the presence of "singular surfaces'.
More recently, various authors [5—@1 have attempted to investi-
gate the entire resistive spectrum numerically. Since introdu-
cing resistivity into the ideal equations is a singular pertur-
bation which increases the order and therefore yields new eigen-—
values, such numerical integrations are limited not only to not
too large values of the mode numbers, but also to not too small
values of the resistivity. It is therefore desirable to develop
an analytical asymptotic theory which closes these gaps. We do
this for the case that the ideal continuum does not contain the
origin (there are no singular surfaces). Even though we only con-
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sider the simplest possible case, viz. the incompressible motion

about a static, plane slab equilibrium, we believe that our re-
sults are representative.

2. BASIC EQUATIONS
The equations of resistive, incompressible magnetohydrodyna-

mics,+when lingarized about g static equilibrium subject to
VP + B x curl B = 0 and div B = 0, are

D leat + Vp + Bxcurl B + b X curl B = 0,

aﬁ/at + 1 curl curl B = eudl (: x ﬁ)

(1)

I
o
-

div u = 0, div b = 0.

Here p and b are the perturbations of the equilibrium pressure P
and magnetic field B, u is the flow velocity, and p and n (both
assumed to be constants) are the mass density and resistivity.

We impose the boundary conditions pertainipg to a perfectly con-
ducting rigid wall, u = 0,b = 0, and curl_ b = 0 (the subscripts
n and t denote normal”and taggential componénts). Since resistive
diffusion is ignored, the system (1) is only meaningful for small
n. Thus, terms 0(n®) with o 2 1 will be neglected.

Considering a sHab equilibrium, characterized by 3/3y = 3/3z
= 0,B,=0, and P + —B? = const, we Fourier decompose the system
(}) by putting Fhe.pertgrbations proporgional to exp(0t+ikyyiikzz).
With the abbreviations k = (0, k_, kz),n = (1,0,0), F = k ¥+ B,
and A = d%/dx? - k? we then writd thé system (1) as

oo u + p'n + i k p + (B b)' + ik B + b - B' neb-iFb =0, (2a)
ob - ntb + Bneu +Bnu-iuF+iBkeu = 0, (2b)
neu +ik-eu-=o0, (2¢)
ne+b +ik-b=0, (2d)

where primes denote derivatives with respect to x.

->

For k = 0 the system (2) is uninteresting because it yields
o v 0(n). It is thus agsumed that k $ 0. Dotting eqs. (2a) and
(2b) with n, k, and kxn, we then obtain

> -
po n U+ p' + (Bb)' -iFn -

o'y
1]

0, (3a)

=+ ->

e
pok+u+ik®p+ik?®B+B-Fnb-1iFikb=0, (3b)



po (kxn) »u-(kxn)e+B nb-1i F(ﬁxg) .= 0, (3c)
oneb-nAneb-iFnewu=0, (4a)
ckb-nakd+ (Fad)=o0, (4b)
T
o (kxn) + b -n 4 (kxn) - b +[IEXK)'E ;°3]
- i F(kxn)+ u + i(kxn) « B keu = 0. (4c)

High £h§ aig gf eqs. (2¢), (24), (Bb? ?nd (3¢) the q?antities
keu, keb, (kxn) ¢ u, and p can be eliminated algebraically.

Then eq. (4b) is omitted because it is a consequence of eq. (4a),
and we are left with the system

po Au - FA b + F'"b = 0, (5a)
cb-nAb+Fu-=0, (5b)
o’pa-nopda+F2a+G'(Fb-u) =0, (5¢)
S > > P S e >
where u = - 1 n*u, b = n*b, a = i(kxn)+b, and G = (kxn) - B.
The boundary conditions are u = 0, b = o, and a' = 0 at x = 0

and x = L.

In what follows it is assumed that there are no singular
surfaces, i.e. that F(x) vanishes nowhere. If there is no mag-
netic shear (i.e. if B is unidirectional), F is either identi-
cally zero or it has no zeroes at all. For F = 0, however, the
system (5) is again uninteresting because o = 0(n).

The system (5) yields two families of eigenvalues o: The
first is governed by the sub-system (5a), (5b), thus having
eigenfunctions u(x)#0, b(x)%0; the function a(x) is determined
afterwards by the inhomogeneous equation (5c¢). The second fami-
ly is governed by eq. (5¢) with u(x)=0 and b(x)=0, thus having
eigenfunctions a(x).

Introducing dimensionless variables by x = L X, k2=E2/L2,
F=FF, o=F p-1/2 G, and n = L?F p~1/2{ (F 1is a characteris-
tic value of FJ and omitting the baPs, we havé the fourth-order
eigenvalue problem

. -1
[MAF AF+ (d/dx) Dd/dx-KkD] F b =0 (6a)

with boundary conditions

b=0,b"=0 atx=0, x =1 (6b)
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and the second-order eigenvalue problem

nha+Da=0 (7a)
with boundary conditions

a' =0atx=0, x=1, (7b)

where D = - o - F?/o .

3. LIMITING CASES

The problems (6) and (7) can be completely solved in the
following two limiting cases: 1. n = 0 (ideal limit), 2. F(x)=1
(homogeneous magnetic field).

In the ideal case (n = 0), the zeroes of D(x) are singular
points of eq. (6a). Correspondingly, the ranges of the functions

o(x) = + i F(x) (8)

form continuous spectra (the Alfvén continua). Discrete eigen-
values do not exist. In contrast, the resistive spectrum is al-
ways purely discrete because eqs. (6a), (7a) have no singular
points if n $ 0.

If F =1, eqs. (6), (7) have constant coefficients and are
readily solved by

a CoS R WX ; = 05 1y 2, 3y wwe

b

sin‘g T, n= Ly 25 35 aan

The eigenvalues o of both problems satisfy the dispersion re-
lation
2

c2+4nog K2+1=0 , K®=n?%n1%+K (9)
n n

They are located on the left half of the un1t circle or on the
negative real axis, depending on whether nk? is smaller or great-
er than 2. For n + « they accumulate at both ¢ = 0 and o = = e,
Each eigenvalue approaches the ideal continuum (now shrunk to the
points ¢ = * i) as n approaches zero. Nevertheless, the whole sys-—
tem of curves (semi-circle plus negative real axis) is fllled with
eigenvalues for arbitrarily small values of n because nk? attains
arbitrarily large values.

Obviously, the two limits n + 0 and F' » 0 are not inter-
changeable. If we first let n »- 0 and then F' -+ 0, the spectrum
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consists of the points ¢ = #i. On the other hand, if we first
let F' + 0 and then n -+ 0, the spectrum densely fills the entire
negative real axis and the semicircle.

Note that if there is no shear then for the homogeneous field
one has G' = 0. The interaction term in eq. (5¢) thus vanishes
and for every solution o_ of the dispersion relation (9) there
are two eigenfunctions, @.g. either a £0,b=0o0raz0,b%0.
In contrast, in the non-homogeneous case F' # 0, G' # 0, which
will be treated in the next section, the eigenvalues of problems
(6) and (7) coincide only asymptotically for n -+ 0.

4. SMALL RESISTIVITY AND ARBITRARY PROFILE

In this section we restrict attention to eigenvalues o which
are at a distance 0(1) from the ideal continuum, so that D(x)
= 0(1) throughout (the boundary layer case Re o -+ 0 since n + 0
will be treated separately). Equation (6a) then has two types
of solutions: Either b(x) varies on the equilibrium scale so that
the first term can be neglected; or b(x) varies fast compared
with F(x) so that multiplication by F(x) can be interchanged with
differentiation. In either case eq. (6a) reduces to

d d

2 _a_ g _ 2 b -
(n A + p D = k“D) T 0. (10)

Multiplying eq. (10) by the complex conjugate of b/F and inte-

grating with respect to x, we obtain (<...> = | ...dx)
b 2 b 2 b 2 b 1 2 b 2
02<|(?) [ +k2|_F_l >+ 0 n<|a Fl >+<F2E|(}') | +k2|_PT|:[>=0.(11)
Analogously, problem (7) yields
2 2 2 2
o%<|a| > + on <|a'| + k2|a| > + <F*|a] > = 0. (12)

Conditions (11) and (12) imply that the spectrum is restricted
to the negative real axis and to the semi-annulus
2 |0]2 < Fmaxz’ Re ¢ < 0., In particular, they imply stabi-

F ™
1%Ey.

For the rest of this section it is assumed that nk? <<1
(for instance k® = 0(1)). Then in eq. (7) and in the first term
of eq. (10) k? can be neglected. Let b. (i=1,..,4) be four inde-
pendent solutions of 'eq. (10) and let B3, by satisfy the ideal
equation (i.e. eq. (10) with n = 0), thus varying on the equili-
brium scale. The remaining two solutions by, bz can then be
chosen as b = f y d x, where y satisfies

ny'"+Dy=0. (13)
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Then in the dispersion relation
bl”(o) bzl'f(o) bsl‘l'(o) bqll(o)
b1"(1) b2||(1) b3"(1) bg"(1)

by (0) b, (0) b3 (0) b, (0)

by (1) b2(1)  Db3(1)  by(1)

the terms b;", b," are large compared with the other terms, so
that its dominant part is

b1"(0) b,"(0)| [b3(0) by(0)]

b (1) b2 [bs(1) by(n)| O (14)

The second factor on the l.h.s. of eq. (14) does not vanish be-
cause the ideal spectrum contains no discrete eigenvalues. Hence,
the first factor must be zero,

vi (0) 32 (1) = g 1) vz KO = 0,

Thus, the eigenvalues are determined from eq. (13) with the
boundary conditions y' = 0. Since this problem is identical to
problem (7), the eigenvalues of eqs. (5 a, b) and (5c) coincide
asymptotically for n + O.

5. MONOTONIC PROFILE

If the pressure profile P(x) is monotonic, B(x) and F(x) are
monotonic too, and the ideal continua (8) are simply covered as
x varies from zero to unity. For definiteness, let F and F' be
positive and restrict attention to the upper half-plane Im ¢>0
(the spectrum is symmetric to the real axis).

A new independent variable z is introduced by [j@l

z = n_lla (%; i a)zla s

X 1/2 (15)
a (x,0) = [ dx [ x0)] ,

xO(U)

where the complex a - plane is cut along the positive imaginary
axis, so that |arg z| £ 2m/3 and x_ solves the equation

o =i F(x). With w = v¥z' y as a new dependent variable, eq. (13)
becomes

2 -4 /3 2/3
—gsz—-zw=—n2/3(—§-) i ", (16)
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where § = [zaz/a)tl‘l/z‘ The function Y (x) has no singularities
near the interval 0 £ x £ 1. Hence, the r.h.s. of eq. (16) can
be neglected for n + 0 and the equation reduces to the Airy
equation

d?w

Frr i 0. (17)

Since y(x) varies fast compared with z(x), the boundary condition
isdw /dz =0, and the dispersion relation is

e (2) P(21) - $B(z) $2 () -

TP (18)

where w;, Wz is any pair of independent Airy functions, and
z, = z(av),av(o) = a(v,o0),v = 0,1.

There are three particular Airy functions, denoted by
A, (i =0, +, -). A is defined by [11,12]

; T exp (2mi/3) 3

L
A (z) = 1lim =— f dt exp (- =— + z t). (19)
9 M exp (-2wi/3) 3

The functions A, and A_ are obtained from Ao by rotation:
At(z) = exp (¥ 2mi/3) A0 (z exp (7 2mi/3)). (20)
The three Airy functions satisfy the identity
A (z) + A (2) + A (2) =0 (21)

They are entire functions, i.e. they only have singularities at
infinity. A (z) is real and oscillatory along the ray arg z = -7
(its "StokeS line"). It has infinitely many zeroes there, but
none alsewhere. Correspondingly, A,  has the Stokes line

arg z = T ﬂ/3 For large lzl there are the asymptotic represen-
tations
8 L. Ly 3/2
AD * (4m) / z / exp (- %§z / ),- m< arg z < 7
= o ~1/2 -1/u 2 342 ™ 5
A, * -i(4m) / z / exp (?;z ),- F<arg z < ?g- (22)
—_ - 1/4 3/2
A = i(4m) MR B exp (%%z / )s— 2%—-<arg z < %%

At its Stokes line, each of the A. can be obtained from the
other two functions by using eq.(21). The asymptotic represen-
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tation of A, is thus discontinuous at its Stokes line even though
Ai itself is analytical.

Obviously one has o (o) ~ 0(1) unless the eigenvalue o(n)
moves to a zero of o (of as n =+ 0. It will turn out that the lat-
ter only happens in “the boundary layer case Re o + 0. Since it
holds that z ~ 0(n=*/%), the asymptotic representations (22) may
be used in the dispersion relation (18). Since these representa-
tions are different in the three sectors of the complex plane and
on the three Stokes lines, one has to distinguish various cases
depending on where z and z; are located. It turns out that re-
lation (18) cannot bé satisfied if the points z , z; arein dif-
ferent sectors or if one of them is on a Stokes®line while the
other is in one of the adjacent sectors. If it is taken into
account that Re (a;-a ) > 0, there are the following three
possibilities: ©

1. |arg zo| < 7/3 and |arg z,| < n/3

2. arg z, = - /3 and arg z; > n/3 (23)

3. arg g %= n/3 and arg z; = m/3
or, equivalently,

1. Im ag < © and Im a; < o,

25, o <o and Im a; > o,
3. Im LR > o and a; > oO.

The dispersion relation,therefore, has the following three
branches:

1 12 . < B

e nm, Ima =

2. &, W n/2anr , Imop 20 (24)
3. 00 =n*/2 , Ima =0

o

where n is a positive integer. In branches 2 and 3 n is limited
from above, while in branch 1 it is limited from below. The eigen-—
values of branches 2 and 3 are on two curves (see fig. 1) which
start at the two edges of the ideal continuum (solid line),



where they form angles
of /6 with the imagina-
ry axis. They meet at
the "triple point" where
both o and o, are real.
The elgenvalues of /
branch 1 (larger n) are
on a curve which starts //
at the triple point to

meet its complex conju-
gate somewhere at the
negative real axis, and
then continues along the
real axis to both sides.
For n + =« the eigenva-
lues accumulate at both
the origin and xnflnlty
accordlng to o+=- <F >/
(nmm?7?) and o+ - nn’n?.
For the case plotted in
fig. 1 (n = 107> and

F =1+ 3 x) numerical
integration of egs.

(6) is difficult because Fig. 1 Eigenvalues in upper left

n is too small. quadrant of the complex ¢ — plane.
However, we found

excellent agreement between numerical evaluation of eq. (6)
and the asymptotic formulae (24) for n = 1.25 x 107 even
for eigenvalues with small n (n 2 2).

6. BOUNDARY LAYER

The dispersion relations (24) are not valid near the ideal
continua (i.e. for nn? << 1) because z and z; are both not
large there. The exact Airy functions must be used there in-
stead of their asymptotic forms.

If it holds that o = i F(o), then it follows that X = 0,
a = 0, and arg a; » w/4. Hence arg zy * m/2, and A, (2), be1ng
eﬁponentically small for z = z;., is the appropriate e1genfunc—
tion of eq. (17). The dispersion relation (18) thus reduces
to d A+(zo)/d z = 0. Since d A, /d z has its zeroes at its
Stokes line arg z, == m/3, the eigenvalues ¢ are still on the
curve a_ < oO. Slmllarly, if it holds that o ~ i F(1), it is
found tfat arg z; = n/3, and the eigenvalues are on the curve
ay > 0.

To determine the eigenvalues quantitatively, let
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o =1iFO) +n*/3 2, 7/2 <arg A < 7 (25)

If one then expands about x = 0 it is found that

1/3 -2/3
z = =32 F'(0) A (26)

The dispersion relation dA (z )/dz = 0 now implies arg A = 27/3

+ 0 *
and A ~ 0(1). Hence, the curve o < 0 forms an angle of m/6 with
the imaginary axis, and the spacing of these eigenvalues is O(nlla).
Similarly, near the other tip of the continuum it is found that
arg A = -2w/3, where A determines ¢ through

o=1iF() + nt/3 2.

The foregoing analysis is the correct asymptotic description
for problem (7). However, for problem (6) a correction due to the
slowly varying solutions arises which turns out to be 0(1/|1n n|),
which thus only becomes small for values of n which are so small
that a numerical integration of eqs. (6) is impossible.

7. LOGARITHMIC CORRECTION

For n k? << 1 the reduced form (10) of eq. (6) reads
nb™ + FD(F ') | - k*D b = 0. (27)

Here, only the boundary layer formation near x = 0 is considered.
The ideal equation (n = 0) then has a solution which vanishes at
x = 1 and has a logarithmic singularity near x = 0. This solution
has to be matched with the boundary layer solution for eq. (27).
If one again expands about x = 0:

1/3 =1/3 2/3
g =i F o+ 2 F' A

1/3 2/3
F =FWO), F'=F(),D=z2iF 'x - n (2 F ") A,
=} o (o} o}

it is found that the boundary layer equation is of the form

d d? : d B
?E(ET+1£ )\)—d?b—o, (283)

where £ 1is a stretched variable defined by
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1/3

x=¢e&,¢e=( L )

For large & the function b must behave as b ~ y + ln € + 1n &,

where the constant vy is determined by the ideal solution.The

boundary conditions for eq. (28a) can then be written
E=0:b=d*/dg® =0 (28b)
E>o:b>1-81nkE, 6§ == 1/(y + 1In €). (28c)

Let the general solution of eq. (28a) be

b = Cyby + C1 by + Cabz + C3s.

Then by putting db./d§ =y., i = 0, 1,2 the y's satisfy the
equations = i

(d%/dg2 + i £ -2 ) y, = i, (29)

(d*/dg* + i £ = 1) y; , = O. (30)
With

z=1&=) (31)

eq. (29) becomes the inhomogeneous Airy equation

d*w/dz* - zw = 1/71, (32)
where y, = - i m w. The solution [31:[
weBi) e LJae 3t on
)

has the desired behaviour at infinity

w—;-.-.]—-.}.o(—‘lr) ’z-)-cn
mz Z

and yields
T - Ly o
bo(z) = 1ln z—i-a—+ f dt(2t-t")e 3 EE ol t E1(—Zti1, (33)

(o]

where E; is the exponential integral defined by




- P

2 dz zt =k e ¥
-Eq1 (-2zt) = f —e" = f d x = s
1 —iwt

For z + « one finds by + 1ln (-iz).

For y,(z) a solution of the Airy equation

d?y/d 22 - zy =0
has to be found which decays for A finite and & + «. The asympto-
tic representations (22) show that y; = A has the desired pro-
perty. With the choice

C,6=-8,C =0, C3=1 (34)
condition (28c) is thus satisfied. Conditions (28b) are then

C; b1(0) + 1 - 8 by (0) =0,

C, d?b,(0)/d €2 - & d®b,(0)/d €% = 0,

which finally yields the dispersion relation
d?b d?b d?by, _ o
SEJO —5;2— by #:[ Ti;z}- =0, z = Az (35)

The complex roots A of eq. (35) were computed numerically with
expression (33) for b, and

d*b, _ d _Z
'Ez—z——dz A+,b1(z)— IdzA+

i

for by. The result, shown in fig. 2 for the lowest eigenvalue, is
compared with direct numerical solution of problem (6). The solid
line is the evaluation of the analytic theory. The points X are
obtained by applying a matrix eigenvalue solver to 200 Fourier-
coefficients. It is seen that the latter method breaks down for

a 6-value lower than 0.3, while for 8§ > 0.5 there is no boundary
layer, corresponding to the fact that the branches 2 and 3 of
relations (24) disappear. For § + 0, one gets A — L (-1 + V3
In this limit the eigenvalue curve forms an angle é% m/6 with

the imaginary axis, which was the result of sec. 6. Note, however,
that the limit 6 -+ 0 is reached extremely slowly as n = 0. For
instance, for F ' = .5, vy = 1, an n-value of 5 x 10=" yields

6 = 0.112 while®n = 10710 yields & = 0.0454.
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8. THE BALLOONING CASE

Again considering monotonic profiles, let us suppose that k?
is so large that nk2 = 0(1) and assume that

Re o ~ 0(1), (36)

so that b rapidly oscillates everywhere. Then in eq. (6a) the
functions D, F may be interchanged with differentiation, yield-
ing

nAy+Dy=0, (37a)
where y = A b satisfies the boundary condition

x=0,1:y =0. (37b)
From

o <|y|?> + on <|y'|® + K|y|®> + <F?|y|%> = O (38)
it is concluded that for complex eigenvalues o it holds that

2

_ n > 2 _ 1 2
Re ¢ = - > ( <35 + k%) < 7 N k* , (39)

which justifies the assumption (36). Although the boundary con-
ditions y' = 0 for eq. (13) are different from conditions (37b),
asymptotically there is no difference in the dispersion rela-
tion, i.e. the derivatives in eq. (18) can be omitted without
changing the asymptotic spectrum. This also means that problems
(7) and (37) yield the same spectra.

Replacing D by D = n k? the formulae of sec. 5 can be used
to solve problem (37) for the case of a monotonic profile. With

1/2
d x (D - n k?) , v=20,1

R
<
]
W —c<

o

the spectrum is again described by eqs. (24). Relation (39)shows
that the branches 2 and 3 move away from the tips of the contin-
uum. The computation of the end points of these branches has to

be done with exact Airy functions, as in sec. 6. However, an esti-
mate of the position of these end points is found by putting

a , o equal to zero, because the number n in formulae (24) is

an independent parameter. Thus, g, - 0 implies x. - 0, or

o2 + o n k? + FO2 =0 (40)

and




’—*

._14..

1

31=V-?I fdeF—F. (41)
0

0

Formula (41) shows that Im o > o implies Im a3 > o. The other
end point, defined by a3 = o yields the condition

o2+ onk?+ F2=0, Fp=F(x1).

Correspondingly, the formula

I

fy ™ ¥ %% f d x /F,°-F~
0

shows that Im ¢ > o implies Im oy > 0. For nk? = 2 F the first
end point reaches the real axis, and for nk? = 2 Fl,othis happens
for the second end point, so that for nk? 2 2 F; all eigenvalues

are real. This latter result can also be derived directly from eq.
(38).

9. CONCLUSION

The spectral problem of a plasma slab with a monotonic pro-
file without shear has been reduced to quadratures, yielding a
complete qualitative description of the entire spectrum. In parti-
cular, it has been shown in this geometry that shearless equili-
bria (without magnetic nulls) are resistively stable, and that
the damping of the Alfvéen modes is 0(1) as n + 0. This supports
the conjecture [jé} that ideally stable equilibria without magne-
tic shear (and without magnetic nulls) remain resistively stable,
and it may have an impact on the theory of Alfvéen wave heating.
In addition to the results in [541 (see also the announcement in
[ji]), the boundary layer modes (Re ¢ » 0) as well as the balloo-
ning modes (k? + =) have been discussed, the main result being
that the ideal spectrum is not approximated by the resistive
spectrum and that the leading-order asymptotics is insufficient
for obtaining the spectrum quantitatively.

The present analysis has been generalized to non-monotonic
profiles. Here, an additional branch appears which emerges at an
angle of m/4 with the imaginary axis from the point o = i F(&),
where F'(g) = 0. This will be published elsewhere.
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FIGURE CAPTIONS

Fig. 1 Eigenvalues in upper left quadrant of the
complex ¢ - plane

Fig. 2 Lowest Eigenvalue A(8) for k? = 0, F = 1 + x
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