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ABSTRACT

Localized resistive modes (resistive interchange and resistive
ballooning modes) are investigated for self-consistent Tokamak
equilibria which have circular cross-sections near the magnetic
axis. The second region of stability (which is stable with respect
to ideal ballooning modes at high poloidal beta Bp ) proves to

be unstable when resistive effects are taken into account as well.
In the low Bp stability region, the stability boundaries are
shifted toward lower Bp values. The magnitude of the shift depends
on the degree of localization of the perturbation around the

field line, highly localized perturbations being the most unstable
ones. For negative values of Bp (pressure increasing outward)
equilibria exist which are stable with respect to both ideal and

resistive interchange and ballooning modes.




1. INTRODUCTION

IT has already been found that a plasma which is stable accord
ing to ideal MHD can be unstable if resistivity is also taken
into account (see,for instance, FURTH et al., 1963; COPPIet al.,
1966; GLASSER et al., 1975; CHANCE et al., 1978; STRAUSS, 1981;
CORREA-RESTREPO, 1982, 1983.) One is therefore interested in
knowing how the incorporation of resistivity into the MHD equa
tions modifies the stability properties of a particular

configuration.

In this paper, we evaluate the resistive ballooning mode
criterion (which also describes ideal interchange and ballooning

modes and resistive interchange instabilities) derived earlier

(CORREA-RESTREPO, 1982, 1983) for a particular model of a tokamak,

namely for self-consistent axisymmetric equilibria whose cross-
sections are circular in the neighbourhood of the magnetic axis
(LORTZ and NUHRENBERG, 1979; ANTONSEN et al., 1982.) In this
case, it is possible to find an analytical expression for the
ballooning stability parameter A' , which essentially depends

on just the poloidal beta Bp , the shear parameter S, the safety
factor on axis q, and the ratio p/R of the radius of the
particular surface to the radius of the magnetic axis. For 9 =
1, the different stability regions of this tokamak model are

described by Bp and S alone.

An interesting result is that the second region of stability

(which is stable at high Bp according to the ideal MHD theory)




proves to be unstable when resistive effects are taken into
account as well, because then resistive ballooning and inter
change instabilities appear. The exact values of Bp at which
the equilibria become unstable with respect to resistive
interchanges depend weakly on whether one considers the stabil
izing effect of finite plasma pressure or not ( known in the
literature as the cases of finite and large G, respectively).
They are, however, always near the boundary for entering the

second ideally stable region.

In the first region of stability, below the ideal ballooning
stability limit, there are no resistive interchanges. However,
resistive ballooning modes appear owing to destabilizing, large,
positive values of the stability parameter A' . As a result,
the stability boundaries are shifted toward lower values of Bp.
The magnitude of the shift depends on the degree of localization
of the perturbation around the field line, highly localized

perturbations being the most unstable ones.

The situation is different for negative values of B_ ,
corresponding to a pressure increasing outward: here, equilibria
exist which are stable with respect to both ideal and resistive

modes.

Section 2 describes the equilibrium model. In Section 3, A'
is calculated from the ideal ballooning mode equations. In
Section 4, we study the stability with previously derived methods.

In Section 5, the effect of qqp on the stability is investigated.



The results are summarized in Section 6.
2. EQUILIBRIUM MODEL

The configurations treated here are self-consistent tokamak
equilibria with circular cross-sections in the neighbourhood of
the magnetic axis and are explained in some detail in the papers

by LORTZ and NUHRENBERG (1979) and by ANTONSEN et al. (1982).

We consider axisymmetric configurations, with a magnetic

field given by

3+ 1
B=5-V¢xVx + fV¢, (2.1)

B = -—%——5— lvxiz # f2/r2, (2.2)

47 r

where r and ¢ are coordinates of a cylindrical system r, ¢,
z (¢ therefore being the toroidal angle about the axis of

symmetry), x 1s the poloidal magnetic flux and

£ = ( Iy - 1)/ 2n (2:3)

where I is the poloidal current and I is the total current

flowing in the z-direction through a surface encircled by the




magnetic axis.

To solve the equilibrium equation

___-_+—2)X+ hﬁz(rzd—‘g-!' ftﬁ)':O, (2.4)

it is convenient to introduce coordinates p, 6 by

r =R + pcosb , z = psinf. (2.5)

Then, p , 6 are polar coordinates about r =R, z =0, which
is the magnetic axis.

Since we intend here to consider only configurations in which
the magnetic surfaces are circular in the vicinity of the magnetic
axis, the appropriate ansatz to solve equation (2.4) (LORTZ and

NUHRENBERG, 1979) is

£ = f5 + £.x * ... (2.6)
i
|
dp _ P2 2
a - P e BT (2.7)




x = = et ox @7 + x, (@0 + ... . (2.8

The expansion coefficient f1 is related to the value of the

poloidal B8 , BP , on the magnetic axis by

h
]

( Bp -1 )/anR " (2.9)

with q, the safety factor on the magnetic axis.

The first terms (in an expansion in x1/2) of the solution

of the equilibrium equation yield

o 5
p1 = - ;T—q_o R3 ’ (2.10)
ﬂfo
Xy = 5 (1 + 4B )coso. €2:11)
4q0R P

Here, the poloidal dependence of X has been chosen as cosf.

3 CALCULATION OF A'

The investigation of the stability of a configuration with




respect to resistive ballooning modes requires that A' be
known. This quantity, described in detail by CORREA-RESTREPO
(1982, 1983) must be evaluated from the asymptotic behaviour
of the ideal, marginal ballooning mode equations for large

values of the distance along the particular field line.

For a general equilibrium, A' must be calculated on any
particular field line or, in our case of axisymmetric
configurations, on any particular flux surfaca. Since we are
interested here in the neighbourhood of the magnetic axis, we

determine A' from the lowest-order solutions (in an expansion

in lX‘1/2 . p/R  of the marginal ideal ballooning mode equation
2 D 2
d {(1+2°)dF} +{— +-L+—F |, (3.1)
dz dz ASZ § & z2

which was derived on the assumption that qq = 1 to satisfy
Mercier's criterion on the axis (LORTZ and NUHRENBERG, 1979;
ANTONSEN et al., 1982. )

Here, S is the value of the shear on the magnetic axis, the

shear being defined by

s(v) = 21°R° <+, (3.2)



with q the safety factor and the dot a derivative with respect

to the volume v. Note that this definition of the shear differs

from the usual one, namely o = (dlnq/dlnp). Near the axis
one has
2
- e B
5= 5 pz . (3.3

Thus, for a parabolic g-profile, ¢ vanishes as pz near the axis,

while S remains finite.

For qq = 1, the quantities D_ and uz only depend on Bp

and S:
D_ 28 38 5 3
= = - =2 —Lz{-uzs - 488 “ - 328 7}, (3.4)
48 S 64S P P P
2
2 8 2
ue = B~ {325 - 248 ° + 368+ 9} . (3.5)
4% P P

To evaluate the resitive ballooning mode criterion, we shall
also need a relation between the coordinate =z which appears
in equation (3.1) and the coordinate y wused in the definition

of A' (CORREA-RESTREPO, 1982):



2 - (2

5 2
X £ |Vv|4/B ) y2 . (3.6)
We thus have near the magnetic axis

lz| = | 4nS y | . {3.7)

WNPN

The solutions of equation (3.1) are

F = (1+ z2 )"“/2 F

- 1(a1;b1;c1; —22) (even) (3.8)

and

F. =2z2(1+ z2 )-ujz F1(a2;b2;c2; —zz) (odd) (3.9)

(ANTONSEN et al., 1982).

Here, the F1's are hypergeometric functions and

Q= 1 +s -y (3.10)




b1=______(3+u), (3.11)
2
c, = 112 ; (3.12)
s, = SLA°8, (3.13)
2
2
b, = Joso W (3.14)
2
c, = 3/2 . (3.15)
where
: . b, 172
s === + { - - — 1} . (3.16)
2 4 452

For large values of |z| , the asymptotic behaviour of the

solutions F_ , F_ is given by

F+ ( |z]|> =) -~ a .+ |z|® + aztlz|-1-s ” (3.17)
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with

F(c1) T(a1—b1)

a,, = . (3.18)
(a,) T(c,-b,)
Iia, 1724

P(c1) F(b1—a1)
a,, = , (3.19)
F(b1) F(c1—a1)

r(c,) r(a,-b,)
a, = 2 2 2 . (3.20)
F(az) F(cz-bz)

r(e,) r(b,-a,)
a = 2 e y (3.21)
F(bz) F(cz-az)

where the T's denote the gamma function. Taking into account
equation (3.7) and the definition of A' given by CORREA-

RESTREPO (1982), we finally obtain for even and odd modes,

respectively
R | 1+2s F{“(1;28)} F{1+s;u ) P{1+S§“ J
6, = ( 5 ) , (3.22)



1

r{- {#28)y g '+55§51 } r{ Ttizggl}

2 2
o= (R > ) 1425  (3.23)
4mSp (1+2s) 1-s—u 1-s+pu
r{—T-—}l"{—-i-——}F{—z—}

4, EVALUATON OF THE RESISTIVE BALLOONING MODE CRITERION

The evaluation of the resistive ballooning mode criterion
(which also describes ideal interchange and ballooning modes
and ideal interchange instabilities) involves the solution of
a coupled system of two second-order ordinary differential
equations on each closed field line (CORREA-RESTREPO, 1982;
1983). Straightforward numerical computations are difficult
and lengthy in most practical cases, owing to the different
length scales (time scales) which appear in the equations.
However, by exploiting precisely this very aspect of the pro
blem it is possible to simplify the calculations analytically:
one is led to consider, not the full resistive ballooning mode
equations, but two coupled, averaged equations in which the
fast periodic poloidal variation has been eliminated. The stab
ility ot the configuration can then be studied by solving these
averaged equations with the appropriate boundary conditions.
Neglecting the effect of compressibility in these equations
(known in the literature as the case of large G, the quantity
G being as defined in the appendix), it is possible to obtain

a complete analytical solution and derive a dispersion relation
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A' = A(Q) for the growth rate Q. Evaluating this dispersion
relation naively leads to instability whenever A' is positive.
However, as pointed out by CORREA-RESTREPO (1982, 1983) , in
the low BP region, which is stable with respect to both ideal
ballooning and resistive interchange modes, only positive A'
values above a critical B.ri lead to results which are

rit

consistent with the restrictions of the theory. Below B i
the growth rates are so small (they are proportional to the

resistivity instead of to a fractional power of it) that they

violate previously imposed conditionms.

A critical value of A' also arises =-in a more natural way-
if one takes the effect of finite G into account. This has
been shown explicitly (CONNOR et al., 1983) for the case of a
standard tokamak (which can be obtained as a particular case
2

. - 2 : - .
of our model if we choose S I/ea o 1 DR €, 0 DR being

the resistive interchange stability parameter, which is given
explicitly in the appendix, Bp ~ 1z €, =a/R is the inverse

aspect ratio). In this case of finite G, A is the value of

crit
A' above which the real part of the (complex) growth rate
becomes positive. Here, for simplicity, we make thelcalculations
with the expression for A' derived for the case of large G. This
does not affect the general features of the results, namely that
new instabilities appear in the ideal ballooning and resistive
interchange stable regions. Also, instead of the low—Bp , ideal

MHD stability limit, new stability boundaries are found at lower

values.
BP
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In the appendix, we derive the equilibrium quantities M,

G, H, D, and the scale factor Yo » which enter the stability

R
criterion (CORREA-RESTREPO, 1982; 1983).

We first recall the ideal stability calculations. From
equations (3.16) and (3.17) one easily sees that Mercier's

stability boundaries are given by

s“ - b = 0, (4.1)

where Mercier's exponent s changes from real to complex values.
The Mercier unstable region is shown in Figs. 1 = 5
In particular, configurations with both S and Bp positive are

Mercier stable.

The ideal ballooning stability boundaries are obtained when
the coefficient of the large solutions in equation (3.17) vanishes

and A' jumps from -« to += :

1 +s -4
= -m, m=0, 1, 2... (even modes), (4.2)

|l +——o = —-m, m=0, 1, 2... (odd modes). (4.3)

The stability boundaries for the most unstable mode (m = 0,
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even) are displayed in Figs. 1 - 4.

We now study the resistive interchanges. Taking into

account the effect of compressibility (finite G), the con

dition for instability with respect to resistive inter

changes is

(4.4)

Il
(]
-
—
-
3%
.

(CORREA-RESTREPO, 1982). For G_1 0 one obtains the well

known stability boundary DR = 0. This is shown in Fig. 2.

For large values of Bp and S, the curve DR = 0 and the

upper ideal ballooning stability boundary coincide, a feature
which cannot be seen in Fig. 2. The ideally stable second
region of stability is almost completely destroyed by the
appearance of resistive interchange modes. If the stabilizing
effect of finite G is taken into account, the limit for
entering the resistive interchange unstable region is shifted
toward higher values of Bp . This, however, is a small effect,
as can be seen in Fig. 3 for the most unstable mode (v = 0) and
for different values of the inverse aspect ratio €, corresponding
to different values of G. The narrow band between the upper
ideal ballooning stability boundary and the curves D, = G_1 s
though stable with respect to ideal ballooning and resistive

interchange modes is unstable with respect to resistive

ballooning modes.
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It should be mentioned that in order to determine
the growth rates of resistive ballooning modes when DR < 0
and s > 1/2 , the simple dispersion relation A' = A(Q),
where A' 1is obtained from the ideal marginal equation as
described above, does not hold. In this case, A' cannot
be determined from the lowest—order ballooning mode equations
alone (in an expansion with respect to small resistivity and
and inertia), it being necessary to include further terms in
the inner expansion, up to terms of order 6" , n < (1 + 2s)/2,
§ being a small expansion parameter defined elsewhere

(CORREA-RESTREPO, 1982, equation (69) ). Here, we do not

treat this problem in further detail.

When s < 1/2 and Dp< 0 ( which is everywhere the
case in the low—Bp , ideally stable region in Figs. 1 - 4,

the condition for instability with respect to resistive

ballooning modes is

A > A . (4.5)
crit

with
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Q(5—23)/4
_ 4 LETNI 25 1 crit
Acrit I (COSTTJ( §'+ s ) I ( §-+ s ) 2 3 ’
(1+s=H)" - Q _.
crit
1 32 3/2
I Z( chit * 33— 28 % IDR|/chit ) 3 (1+28) 4.6)
/2 3/2 oo &
1 3
r{ Z( chit 1% 28 % IDR|/chit )}
3/2 _
Qrit |DR|/4 (4.7)

(CORREA-RESTREPO, 1982; 1983). The scale factor Yo is given

in detail in the appendix and depends on the shear S, the

: 1 . i i ; :
the aspect ratio g, , the ratio of the resistive diffusion

time to Alfvén transit time / , the mode number k2 and

Ly -
the relative radius p/a of the particular surface, which is
assumed to be located in the neighbourhood of the magnetic
axis, i. e., we assume p/a << 1. Figure 4 shows the
stability boundaries obtained with different values of these
parameters. The curves are the loci of the points A'(S,Bp) -

A and represent an stability boundary in the sense described in

crit
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detail at the beginning of this section.

In order to get an idea of the magnitude of the growth rates
of the resistive modes, we have plotted in Fig. 5 the normalized
growth rate

1/2 2
- 2mM R
y = (1 &= (4.8)

w, 41\'5{32

as a function of Bp for a fixed value of the shear ( S = 25).

In the region of negative shear and negative Bp (pressure
decreasing outward), there is a region of negative DR values

which is stable to all the modes considered here.
5. THE q, = 1 CASE

In the previous sections we have considered the somewhat
singular situation in which the safety factor on the magnetic
axis is equal to unity. When dq # 1, the quantity DR, which is
crucial for both ideal and resistive stability, behaves in a
substantially different way in the neighbourhood of the
magnetic axis. This can immediately be seen when D, is derived

R

for the case dq # 1. Then, instead of equation (A.17), one

obtains
Bp(qg - 1)
DR = DR(q0=1) I e e S (5.1)

SqOD/R




18
with DR(q0 = 1) given by equation (A.17).

If q < 1, Do diverges and is positive when one approaches
the magnetic axis. The neighbourhood of the axis is then Mercier

unstable. We do not look further into this case.

If 9y > 1, DR has a strong stabilizing effect, since it
becomes large and negative as one approaches the magnetic axis,
whose immediate neighbourhood is then stable. However, as one
proceeds from the axis outwards, this stabilizing effect is
reduced and one eventually enters an unstable region. To study
the stability in such a situation one has to include the effect

of the new terms in DR and obtains

2 2
u D Bp(qo -1) R

dz dz 1+ 22 482 82 qg 02

1, (5.2)

instead of equation (3.1). The stability of the system can be
studied with exactly the same methods as before. It is clear
that A' now has an additional dependence on q and Rz/p2 i

For a particular case (q0 = 1.05, p/R = 0.1), the results are
illustrated in Fig. 5 : in the range of positive Bp values,

the region of instability with respect to ideal ballooning

modes is reduced. Also, the boundaries for the onset of resistive
interchanges are shifted toward higher values of Bp . The

stability boundaries for resistive ballooning modes are illustrated
in Fig. 7 for a particular value of the shear ( S = 25 ) and

different values of TR/T and k.

A
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6. SUMMARY

We have studied some effects of resistivity on the stability
of tokamak equilibria which have circular cross-sections near the
magnetic axis. For these configurations, the ideal MHD ballooning
mode theory predicts a second region of stability at high values
of Bp . These good stability propertities at high Bp deteriorate
in the presence of resistivity, which introduces both resistive
interchange and resistive ballooning modes.
In the first region of (ideal) stability, no resistive interchanges
appear. Here, however, resistive ballooning modes shift the stability
boundaries toward lower values of Bp , the magnitude of the shift
depending on the degree of localization of the perturbation. If one
allows arbitrarily large mode numbers (corresponding to very
localized perturbations in our picture), the whole region of
stability would be destroyed. This, however, would not be consistent
with the model employed, finite Larmor radius effects having to be

taken into account.
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APPENDIX

CALCULATION OF THE EQUILIBRIUM QUANTITIES AND SCALE FACTOR

NEEDED TO EVALUATE THE RESISTIVE BALLOONING MODE CRITERION

In the axisymmetric case, the equilibrium quantities M,

G and H can be expressed as

<Bz/|vx|2> { <|VX|2/B2> + 4w2f2( <B_2> - <]2,2>_1 ) 1, (A.1)

=
1

@
[

<82> /M, (A.2)

' 2 2
H = 2nf dp { <1/|vﬂ2> s fE_LlEKL;i }

5 - (A.3)
q dx <B7>
In order to calculate the mean values, it is convenient
to invert the power series for y(p,8), equation (2.8) and
express p as a function of x and 6 :
(8)
1/2 A 1/2
0,8 = iixg) T2 1 - (lxg 1%+
2 X
(A.4)

02(8)(x/x0) iz F 3
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where x, = ﬂfO/qOR.
Taking into account equations (2.2) and (2.6) - (Z.11), one

then obtains

1/2

2 f; 2 cosH
2

(x/xg) 1241 ose x, (O (R xp) +

R R
(3 cos?8/R% + GAIPEL ) + (2f xglfy ) (xixg)
LT TS B (A.5)
ox| = xgx {1+ (2x, (@) /xg) (e/xg) T2 +( 20,(6) -
220 /x3) + (x,2(0) /4xg +

4x2(8)/x0} (x/xo) ¥ www J & (A.6)

which lead to the following surface mean values:

<cosf x,> 3 Xé 2£,Xg. X
<B > = —{ 1 +{ - + + } — +...1, (A.7)

RXo 0 o Xo

Hh
omN

e
[
[y&]
[ge]
[y&]
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1 R2 <cosh x1> 3 xé 2f1x0 X
- =z L1 temtg gt b=+l (A8
<B"> fo RXO 2R w f0 fo X0
1 R2 1 <cosH x1> xg 2f1x0 X
<—=>=—={ 14+ {—=- - - J=%.::F 4 (A.9)
B2 £ 2R’ R 2g2 £
0 X0 ™ %o o Xp
B2 fg <5cosH x1> 3 XS
< 5 = 2{1+{ + 5t =55+
| vx | by gXR Rx,, 2R® nf,
2f1x 23 <Xy> <4X2> X
= 2<02> $o—— - }— #+...} , (A.10)
£o 4 Xg Xo Xg
2 B R <3cosf x> 1 "
< |VX£ > = 02 {1 +{ L+ 7~ e -
2.2
B fO Rxo 2R T fO
2£4%g 7o by X (A.11)
+ 2<p2> — ; + } — +...} ’
£o 4 %o Xo o

. . . ; 2
With these expressions we obtain ( to lowest order in ¥ . p /Rz)
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2
M =1 +2q , (A.12)
28 1
H=—L (8_+- ), (A.13)
s Py
3 1 quz
G ==y === b (A.14)
5 MB a
In deriving the last expression we set Yy = 5/3 and defined
the radius a by
p(0) B a2
5 = —t. (A.15)
<B">(0) R

The remaining equilibrium quantity which enters the stability
criterion, namely DR’ can be derived from H and Dm/482, equation

(3.4), by means of the relation

D =H _H+_, (A.16)

which follows from the definitions of DR and Dm/Asz. This leads

to
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5 3 . 5
Dp = —E5 { -64(B_+-)s - —+ 11 _ - 88" + 808 } . (A.17)
328 P w2 S F

This expression for Do is valid only when qq = 1. When q, A1,

terms proportional to ( qg -1 )»(Rzlpz) must be taken into

account,

Besides the equilibrium quantities, the scale factor Yo

(CORREA-RESTREPO 1982, 1983) must also be evaluated. This is

given by
2 3 508
<B°/|vx| > [x|
Vo = 7172 2 .2 172 W3 (A.18)
B8y kinq M

with ppl the plasma density, n the resistivity and 1/k, a
small number which defines the degree of localization of the

perturbation around the field line.

Defining the Alfvéntransit time by 1, = 1/2 qR / <B2> and

A ppl

the resistive diffusion time by T, = Aﬂzazln (with a from

R

equation (A.15)),one then obtains

R2 a2 TR 1 1/3
vy = ( ).{ 28 — } i
0 4mS 02 R? T, kf (1 + 2(13)1/_2
p
(w)l‘/3 . (A.19)
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FIGURE CAPTIONS

FIG.1 Stability boundaries for ideal interchange and
ballooning modes.

FIG.2 Stability boundaries (DR = 0) for resistive
interchange modes.

FIG.3 Stabilizing effect of compressibility (finite
G-1) on the stability of resistive interchange
modes. Given €, » the fastest growing registive

interchange mode is unstable if DR > G_1

(Ea).

The curves labeled 1, 2, 3 are for e, " 0, 0.1 and
0.25, respectively.

FIG.4 Stability boundaries for resistive ballooning modes.
The relevant parameters are clearly given in the
diagram.

FIG.5 Stabilizing effect of qq > 1.Shown in the diagram are the
stability boundaries for ideal and resistive interchanges
and ideal ballooning modes.

FIG.6 Normalized growth rates y of ideal and resistive ballooning
modes for 9 = 1, S = 25 and different values of 7 /T, and

R A

k., . The values of Bp corresponding to the condition

ES

(4.5) are clearly indicated by the arrows.

FIG.7 Normalized growth rate Yy of ideal and resistive ballooning

modes for 99 = 1.05, § 25, p/R = 0.1 and different values

of k. .

S
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