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Abstract:

Gyroviscous MHD in two dimensions is shown
to be a Hamiltonian field theory in terms of
a non-canonical Poisson bracket. This bracket is
of the Lie-Poisson type, but possesses an un-
familiar inner Lie algebra. Analysis of this alge-
bra motivates a transformation that enables a
Clebsch - like potential decomposition that makes
Lagrangian and canonical Hamiltonian formulations
possible.
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I. INTRODUCTION

This work is concerned with the Hamiltonian field formulation
of the equations that describe two-dimensional non-dissipative
gyroviscous one-fluid plasmas[j’z’B’4 . These equations differ
from the usual Eulerian form of ideal MHD by the inclusion of a
non-entropy-producing stress tensor that arises from the finite-
ness of the ion gyroradius. The physics of this stress tensor is
important for modelling tokamak dischargesEﬁ:L and may be impor-
tant for calculation of the MHD k - spectrum by means of the parti-

tion function ¥

The Eulerian MHD equations in terms of their usual variables
do not possess the form of a conventional Hamiltonian field-theory.
Nonetheless, these equations were shown to be Hamiltonian in a ge-
neralized sense by incorporating a generalization of the Poisson
bracket e . Generalized or noncanonical Poisson brackets possess
the same algebraic properties as ordinary Poisson brackets, but
the notion of canonical variables is abandoned and degeneracy is
allowed. At present, noncanonical Poisson brackets for all of the
major non-dissipative plasma systems have been obtained. For review

of the formalism and applications the reader is directed to [p]

- [12].

This paper is organized as follows: in Sect. II the two-dimensional
gyroviscous MHD equations are described. In Sect. III we briefly
review some aspects of the noncanonical Hamiltonian formalism and
then present the Poisson bracket for the gyro-MHD model. Section
IV is concerned with the algebraic interpretation.of the bracket
presented in Sect. III. In case the methods of this section are
unfamiliar to the reader, it may be skipped without loss of continui-
ty. Section V deals with Clebsch[IiI- potentials, i.e. a potential

decomposition that transforms the noncanonical formalism into canoni-
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cal form with gauge conditions. We thus obtain a variational
principle. Clebsch-potentials are discussed in [p:[, [jgl,
[:1{1—{2@1. The Clebsch-potential decomposition presented here

differs in form from all previous work. We conclude with Sect.VI

II. EQUATIONS OF MOTION

The gyroviscous stress tensor is associated with a momentum
flux that is due to Larmor gyration. Evidently, this effect occurs
perpendicular to the magnetic field. Here we assume that the mag-
netic field has the form B = B ;z, where gz is a constant unit
vector and B is a scalar function that depends spatially only upon
the cartesian coordinates (x and y) of the plane defined by gz'
This same spatial dependence is assumed for the remaining dynamical
variables: ﬁ, £ , and p . Here M is the momentum density with
components in the x and y directions given by MS (s = 1,2). We
assume Zz « ¥ = 0. The symbol P takes its usual meaning as the
mass density, while p‘_—; P/!QI where P is the pressure. With

these assumptions we obtain

M, = =9, (MM, [p) -3 (B18l+ BAa) -3, M

-
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where the gyroviscous tensor Tt;s is given by

Mo = A{Q‘Lhﬁak(Mi/?) )



and

. = S (6)
A{‘i"h C(S“S"*E&i Sj‘eak) -

Here ¢ 1is a dimensional constant, S,‘h is the Kronecker delta

and E&i is the antisymmetric tensor with components
¢ L for ¢= 4 i s.= =9
c‘.; - -4 for i=a, §=1 (7)
o for i= 3.

We remark that in spite of the presence of the 11‘;._4 s
Eqs. (1) - (4) conserve energy, momentum, angular momentum and

center of mass motion given respectively by

M AT 9)

J(M%?HBIBI-\—BL/.L)J.T (8)

-2 g:)_c’xprd’t (10)

=I(fi'-;t—ﬂ°)al'r (1)

Q) 4 o, =x

where d"c‘ = Ax J(a. . In Sect. III we will discuss additional
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constants known as Casimirs.

ITI. NONCANONICAL HAMILTONIAN DESCRIPTION

The conventional version of Hamiltons equations for fields

can be written in the form

\i'/k ={\l'k,H}» R= ':""f“'J‘N

(12)

where F{ is the Hamiltonian functional, \f'h' denotes

the field variables and the Poisson bracket {' }

tionals F and G is given by

{F,6} = f.S_F 0"se ar

Sk syt
The quantity ()kﬂ. is given by
kA o ESY
(07) =
.‘jav ()

of two func-

(13)

(14)

where IN is the NxN unit matrix and the symbol SF/SL]—"

means the usual functional derivative defined by

4 Flek = (sF g
JEF[\{' +e%ﬂ\ ka YdT

g=0

(15)
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The bracket[Eq. (135] assigns the new functional {F, G}
to the two given ones F and G, and has the following important

properties:
(i) {F G} is linear in F and G

(i) (F, 6} = - {&,F]

(i € (F, G} +{F,(G,EH +{G'45,F}S = o
(iv) {€F, G = €lF,G} + (€ 6lF
Because of properties (i)-(iii) the product defined by Eq. (13)

acting on the vector space of functionals defines a Lie algebra.

We note the (ii)and (iii) depend upon the form of ij' , while

()hl.

and (iv).

need only be independent of F and G for properties (1)

The noncanonical generalization of Hamilton's formulation
stresses the properties (i) —-(iv) rather than requiring the spe-
cific form Q given by eq. (14). Indeed this is a generalization
since fields with an odd number of components can now be put in-
to the form of Eq. (12). In general () can be a matrix operator
that may, for example, be differential as well as have depen-
dence on the L{’k

The bracket for gyro-MHD has two parts: the first is essentially
that given for ideal MHD in [}{], while the second (new) part con-
tains higher derivatives (due to dispersion introduced by fT: Wa

A

The total bracket is given by

{F,G}: = [M (ﬁ: ng—é _ S6 ékg'_E ) (16)
L

SM, 58 sm, RSB

+ (&Eas_G_s_@a&_
k
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It is not difficult to see that Eqs. (1) - (4) are concisely
given by

M, = {m, 0}

Lp HY
{8 H}
{p ]

where H is the energy, Eq. (8).

Tre (P, ‘e
L | " i

Equation (16) can be seen to satisfy property (ii) by inte-

gration by parts and neglect of surface terms. Also by the same pro-

k

since the form of Eq. (16) as it stands is more transparent for rea-

cedure the operator () can be extracted - we do not do this here
sons that will be discussed in Sect. IV, where the Jacobi identity

[ﬁroperty (iiii] is shown.

Before closing this section we point out that associated with
noncanonical Poisson brackets are special constants of motion known
as Casimirs. These are bracket constants; i.e. constants that do
not depend upon the specific form of the Hamiltonian. They are asso-

ciated with the degeneracy of the bracket; if C is a Casimir then
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{C, F}= 0for all functionals F. Casimirs for Eq. (16) are given

by

.
C=%7\‘. fF B B AT (17)

.

provided a,; +£. + €, = { for all i. Here the A 's are arbi-
< £ be
trary constants. More generally it is not difficult to show that

the following commutes with all functionals
¢ = (_Q @-)A‘C (18)
f’oé i 2

where 1& is an arbitrary function. We note that in Eq. (18)
f;B and ﬂ can be permuted. These Casimirs are independent
of the gyro term.

IV. LIE-POISSON INTERPRETATION

The natural situation for quantum field theories, such as
the Klein-Gordon or the vacuum Maxwell equations, is that the
operator () does not have explicit dependence upon the field
variables. The standard form of () for these fields is the cano-
nical case. This is not the typical situation for Eulerian field
equations that describe continuous media. For example, in the case
of the ideal fluid, ideal MHD or the Vlasov-Poisson equations,
the natural form of the operator ()h has linear dependence upon
the field variables. Specifically, Poisson brackets for media

have the form

{F, G} = j'kll,‘- _S;Eq: ; %’?{:]Ldt_ (19)




where [., t]L is the ith component of the product for a
Lie algebra of vector-valued functions. Brackets of this type

have recently been termed Lie-Poisson. (See e.g. [jd], [E?j and

(1]

From the form of Eq. (19) it is clear that there are two
Lie algebras involved: an inner Lie algebra where the vector space
is composed of vector-valued functions and an outer Lie algebra
where the vector space is composed of functionals. When this si-
tuation occurs the Jacobi identity for the outer algebra is a
consequence of that for the inner algebra. (This can be shown
directly by use of the techniques discussed in [Pj.)Thus we see
the importance of studying the inner algebra. Additionally,
brackets of the form of Eq. (19) can be classified by their innmer
algebra; hence, field equations that have brackets of this form

can also be classified.

ngdenote the inner Lie algebra of gyro-MHD by G5. Any ele-

ment 1} of G. can be written as

gr = (}glr 6E.Iﬁ3’i 5; rﬁ%g‘) )

where ﬁ’, ,63, #f 7 %6 ) and */3 are sufficiently differentiable

functions defined on a domain, which has coordinates x and y.
—

The product of two elements ¢ and ‘j’ in Gy is given by
(615 ] = (6901 bu 400 - %0cks
§,9 ¥~ X0y 10Ty~ %9 b ;61-")4'“513 (20)
~3,9c6p = S Bk o, ()G
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where repeated indicies are to be summed only on 1 and 2 and
the quantities asj are real constants that for now need not be

further specified.

The first two components of the product given by Eq. (20)
have the familiar form of the Lie algebra that corresponds to
diffeomorphisms of our domain, which for purposes here we can

take to be the plane. If we set the asj to zero, then our algebra

corresponds to a semi-direct product extension of the diffeomorphism

algebra. This_sort of inner algebra is basic to ideal and reduced
MHDE6’1O’17’1H. Here the addition of the a_. alters this form by
including a higher degree of differentiatioi in the last component.
Nevertheless, it is straight forward to show directly that Eq. (20)
satisfies the Jacobi identity for all constant asj . This is un-

necessary as we will subsequently show.

As in the case of the semi-direct product algebras, elements
of the form (0, O, é?, éh ’6”) constitute an ideal of Gg (with

null second power); but G. does not possess a subalgebra with ele-

5
ments of the form ("‘1'6"’# 0, 0, 0 ). By examination of Eq. (20)
we observe that G5 does possess a subalgebra with elements of the

form

t = (4, 6,00, “ﬁr),;'&&‘) ; i

Equation (21) suggests a transformation i such that

i (bybarbe, by, 8p) —Chtoby by Bty o))

This transformation is 1 to 1 and linear. We observe that
.7-L e PRy el
T [e), ) = (%7 ]

where g? a is the semi-direct product product. Thus
¥ lsop

sDP




“ ¥ =

by this isomorphism we see that G5 must satisfy the Jacobi

5

condition for all -‘:LAA-_ . If we pickdui-;c, &4. then G, is seen
to be the inner algebra for the bracket of Eq. (16); hence, the
gyro-bracket must satisfy the Jacobi identity. The physical in-

terpretation of i will be discussed in Sect. VI.

V. VARIATIONAL PRINCIPLE - CLEBSCH REPRESENTATION

In order to obtain a variational principle and a canonical
Hamiltonian description for Egs. (1) - (4), a representation for
+ . . -
M in terms of potentials must be introduced. Motivated by the trans-—

-5
formation i of Sect. IV we express M as follows:

M = P3X+8d + 00 - 22
' fﬂ‘ 4‘{' 7% ca,,hah(% j (22)
where the quantities ?(’Lf’ and o are Clebsch-like po-
tentials. We note that the canonical description requires the
. -
introduction of "gauge' conditions; i.e. the physical state M
does not uniquely determine the potentials on the RHS of

Egq. (22). Unlike the connection in e lectrodynamics between the
magnetic field and the vector potential, Eq. (22) has quadratic

dependence upon the field variables. This situation arises be-

cause Poisson brackets for media are naturally Lie-Poisson.

Equations (1) - (4) can be shown to be implied by the Euler-

Lagrange equations obtained from the variational principle

S([L 4Td+ =o (23a)

where the Lagrangian density is given by
ol . ~ .
L=-Mjo -pIBl-B/ ~(BX+BY+PX) . am

Here M is a shorthand for the expression given by Eq. (22).

£ can be shown to be numerically equal to the total pressure

B + P,
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Evidently cﬁ is a first order Lagrangian of the form
-P%, - H shence we define:

ﬂ;-‘_—'—f’ , TT:_r:'_:—Band T=-f3.

The Euler-Lagrange equations of Eqs.(23) can thus be written in

the following form:

{'X,HS‘C ) Tr.x':'{ﬂ_.;ru}c
O AT

CEIE A

where H is given by Eq. (8) with the substitution of Eq. (22),

and { , } stands for the canonical bracket; i.e.
[

X
v

Qe
1"

]

(F, G =[§F§£"’*_E.S_§ SF $6 _ sF 3G
t; X Sfiy $ My 6 X T st s S, S

+ 8F 86 _ SF 6

{25)
S« ST S 5« :

We note that the connection between the bracket ( 1 }c. and
the noncanonical bracket of Eq. (16) can be made by assuming
that the functionals F and G in Eq. (25) obtain their dependence
upon X ,ﬂ"x ) ete. through -r\;\v'f’ etc. In this way, for example,
functional derivatives with respect to X can be related to
functional derivatives with respect to Eﬁ? . Thus Eq. (25) can

be transformed to Eq. (16).




VI. CONCLUSIONS

We have presented the noncanonical Poisson bracket for
gyroviscous MHD in two dimensions, together with a class of
Casimir invariants. This bracket is seen to be Lie-Poisson,

a standard type for continuous media. The associated inner
Lie algebra was presented and identified by making use of the
transformation i of Sect. IV. Using this transformation a
variational principle and a canonical Hamiltonian description

were obtailned.

The transformation i corresponds physically to a change of
reference frames. If we transform the momentum density according
\ . . \
to M, = M, —Cﬁkctﬂh(b , then Egs. (1)-(4) written in terms of M,
have a Poisson bracket representation using the ideal MHD bracket

together with the Hamiltonian

H __.j[m%? - ™M o, B * 5 (aiﬁ’)(‘)im t
+(%IB\+B:7J»]°"Z :

The relative velocity of the primed and unprimed frames is given by

> - ?5 A E_Box\?lal

X mg g2 M%Bs (26)
The first term of Eq. (26) corresponds to the well-known diamagnetic
drift velocity, while the second term is seen to be minus an average
of the particulate 9B drift velocity, since P:_ql(df) . By going
to a frame moving atgiz, the Hamiltonian formalism takes a more
natural form. We thus see that the Casimir constants for two
dimensional gyro-MHD must be in a | to 1| correspondence with those
for ideal MHD. Ramifications of this in three dimensions will be

[19]

reported in the future 3

One application of the model and formalism presented here is to

[6’7]

-
calculate the |g-spectrum by integrating the partition function
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This is most clearly understood in terms of a Hamiltonian formalism.
Although it is unlikely that the two-dimensional functional integral
encountered here can be evaluated analytically, a Montecarlo type
computer calculation[zo] appears possible. The gyro-model presented
here is intriguing since knowledge [}:Iobtained from one-dimensional
functional integration suggests that the dispersion introduced by

gyroviscosity may be crucial for eliminating the ultraviolet

divergence.

In closing we mention that the formalism presented here can be

P . 121,22 . e .
useful for stability analy51s[ ’ ]. Using the Casimir invariants,
variational principles for equilibria can be constructed and in many

cases criteria for nonlinear Liapunov stability have been found.
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