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Abstract

Integrability of Hamiltonians of the type H(P1,P2,Q1,Q2)=
§=1 : P, Gi(Q1,Q2), Gi 2r-periodic in Q1, QZ’ is investigated
numerically and analytically. With Gi= w, + Fi(Q1,Q2) and
H0= i=§ ; miPi, the unperturbed frequencies W, = BHD/BPi are

3
independent of the momenta, and KAM theory cannot be applied.
Surface of section plots and Fourier analysis of orbits reveal

that "most" Hamiltonians are integrable. Possibly nonintegrable

Hamiltonians do not show "island plus ergodic region" structure

but sequences which tend towards infinity. No theory is available

to distinguish completely the classes of integrable and non-
integrable functions Gi(Q1,Q2). In such a theory the problem
of 'small denominators' would play an essential role just as in

KAM theory.



1. Introduction

A Hamiltonian system

P, = =28 q. == i =12, s 6 (1.1)

is called integrable if apart from H(p1, «+P sy ..qn), n-1
analytic single-valued functions I(pI, v+ Py ..qn) exist,

i= 1,2, ..n-1, which are constants of the motion, i.e. I= 0.

In addition, they have to be linearly independent and in in-
volution with each other, [ L, Ikﬁj = 0. They should also be
solvable for Pys ++ Py /1/. The motion of integrable systems
proceeds on nested n-dimensional tori in phase space and does not
exhibit the chaotic behaviour familiar from non-integrable
Hamiltonian systems /2/. In order to understand the qualitative
nature of the motion of a Hamiltonian system, it is therefore

important to know whether it is integrable or not.
If an integrable Hamiltonian H is slightly perturbed,

H=H +¢eH le] << 1 , (122

1°?
the theory of Kolmogorov, Arnold and Moser (KAM) /3/ ensures
that a large measure of phase space tori does survive. Two
conditions, however, related to the fundamental frequencies Wy
i= 1, .. n, of the unperturbed system,

8H (P, .. P)

w, = s (1.3)
: JP,
1




have to be satisfied: a) the frequencies ws have to be sufficiently

irrational, see /2/, /3/, and b) they have to be functions of the

amplitude:

S, 5% (P,, .. P)
det o’ 1 n )
3P. oP.
] i

[a N
(1]
t
—~
—
m

#0 (1.4)

These conditions are formulated in terms of action and angle
variables Pi’ Qi of the unperturbed Hamiltonian Ho(p1, + Pslys --4 )

n

= Ho(P1’ s Pn). All P;» q; are 2m-periodic functions of Q1, . Qn'
(Instead of condition (1.4) there exists an alternative condition

/3/ which, however, is equivalent for the present purpose.)

Condition b) excludes a class of Hamiltonians from KAM theory
which at first glance might seem to be trivial but which in fact

are not, namely those linear in Pi’

H= 3} P 6;(Q, . Q) , (1.5)

. n

i=1,n
where the G, are arbitrary functions, 2m-periodic in each argument.
In order to compare whith KAM theory, we split each G, into an

"unperturbed" part, namely an arbitrary constant vy and a "'pertur-

bation" Fi:

G, = w; + Fi(Q1, . Qn) . (1.6)

It is useful to assume that <Fi> = 0, where <..> corresponds



to averaging with respect to all Q. The "unperturbed" Hamiltonian

is taken to be

H o ) WP, . (1.7)

As the notation indicates, Pi and Qi are automatically action and
angle variables for Ho'

With Ho as defined above, condition (1.4) is violated, and
KAM theory does not apply. The purpose of this paper is to obtain
some numerical and analytical results on the integrability of such

Hamiltonians in the case n= 2.

In Sec. 2 we present Poincaré surface of section maps, both
for randomly chosen and specifically selected pairs of functions
Fi(Q1,Q2), i= 1,2, In Sec. 3 we discuss some of the difficulties
involved in the analytic treatment of integrability. Section 4

contains a summary and conclusions.

One might think that Hamiltonians (1.5) could be transformed
canonically in such a way that some nonlinear H0 might be identi-

fied. In Appendix A it is shown that this is not the case. Hamilt-

onians (1.5) are generic.

Hamiltonians of the present type with n= 3 occur in plasma
physics, in the domain of wave propagation in toroidal con-

figurations /4,5/. They also occur in solid state physics /11/.



2. Numerical investigation

The equations of motion from Hamiltonian (1.5) in the case n=2 are

Q; = 6,(Q,,Q,) , 2.1
P; = - J=§ , P Gij(Q1,Q2) (2.2)
for i= 1,2 where
3G, JF,
O manid = . (2.3)
Q. P
QJ <

The flow (2.1) in (QI’QZ) space may be studied independently
of eqs.(2.2). There are many topological types of solutions for
Q2(Q1). Figures 1 - 7 show some typical cases. While it is not the
purpose here to study flows in Q1,Q2 space in detail, some topo-
logical classification is needed below when eqs(2.2) for the
momenta are solved and the orbits Qi(t) enter into the coefficients.
In Figs. 1 - 7 Q1 and Q2 are plotted modulo 2m. One starting point
only is used throughout in all figures. w, = 1 is kept fixed

1

without loss of generality.
Two classes of G1’ G2 can be distinguished: I) div G =
G11 + G22 = 0; the flow in Q space is incompressible, and

I1) div G # 0; the flow has sources and sinks.

In class I, with w2/m1 "irrational" (see below) the region



0

A

Qi £ 2m, i=1,2 is covered ergodically, see Fig. 1, provided
that at least one "perturbation" F. is "small". Here "small" is
defined by |Fi| < |mi|, so that Gi does not change sign along

the orbit. When both "perturbations" are large part of the area
may still be filled ergodically, see Fig. 2, while a closed curve
results, Fig. 3, if the initial values are chosen in the com-
plement of the ergodic region. For w2/m1 rational there results a
periodic curve, see Fig. 4, or, provided that both "perturbations"

are large and the initial values properly chosen, a closed curve

as in Fig. 3.

The functions Fi(Q1,Q2) used throughout in Figs. 1 - 4 are:

F, = A, sin Q,, F, = 24, (v 1 + 0.6 31n(32 + Q1) -0.97523),

case H1 for later reference. While the amplitudes A,, A, are indi-

™2

cated in the figures the phases B1 (see below) and B, are kept
constant and chosen as 1.23 and 4.56, respectively, throughout the
paper. Similarly, (Q10,Q20) = (0.34, 0.56)+2m in all figures
except in Figs. 3 and 7, where (Qlo’QZO) = (0.75, 0.75)+27 and

(0.50, 0.25)+2m , respectively.

In class II, div G # 0, the 2n- square may also be covered
ergodically. This is usually found to happen for small "perturb-
ations", see Fig. 5. For large "perturbations" all orbits may be
attracted to the point(s) where Gi = 0 simultaneously for i=1,2,
see the end of the spiral ‘in Fig. 7. Furthermore with intermediate

amplitudes, all orbits may be attracted to a periodic line attractor,



see Fig. 6. Situations where all orbits are periodic and closed
also exist as evidenced by simple analytic examples. The ratio
wzfm1 is then a function of the amplitudes of F, and F.,.

1 2

In Figs. 5 - 7 there is F1 = A1 cos Q1 * sin Q2 and

F, = A, cos 2Q1 . sin(82 + QZ)’ case H2.

After these preliminaries we return to the full system of
eqs.(2.1),(2.2). In order to study integrability, the surface of
section technique is applied: if apart from H a further invariant
I(P1,P2,Q1,Q2) exists, single-valued and 2m-periodic in Q,,Q,
then the motion proceeds on a two-dimensional torus surface. At
the cut Q1 modulo 2m = Q10 = const P1 and P, are periodic functions
of Q2, and analogously at the cut Q2 modulo 271 = on = const. If the
surface of section plots, on the other hand do not yield curves

but a two-dimensional distribution of points the existence of

the above-mentioned invariants is disproved.

The system of eqs.(2.1),(2.2) is studied as follows. A pair
of functional relationships Fi(Q1,Q2), i=1,2 is chosen. They
contain some amplitude and phase constants A1,A2, - B1,B2, .
which together with the ratio m2/m1 have to be fixed. Initial

values Py »Py39159Q4 are also selected. A numerical integration

routine is applied long enough for a sufficiently clear picture

of the surface of section cut to be obtained. This proceedure is



repeated for different parameters and different functions Fi'

Equations (2.2) are linear in P P,. It suffices therefore

1’

to vary the initial direction of P =P = (P, ,P, ), with
- —0 10" 20

[£O| = 1. With P10/P20 = tg o, a particular direction o is
defined by

G,(Q, ,Q, )

tg ao = - _2...10_20__. (2.4)

G1(Q10’Q2o)

because H = 0 for a = a- In the figures Aa = a -« is indicated.

It turns out that the most '"non-trivial" figures are usually obtained

for Aa = *0.5m. See also Sec. 3 below.

It is advantageous to use Q1 or Q, instead of t as the inde-
pendent parameter in the numerical treatment because no inter-
polation is required to reach the cuts at Q1 or Q2, modulo 27 =

const exactly. Cases where both G, and G2 change sign during the

1
evolution have, however, to be excluded then because dQ1/dt =0 and

dQ2/dt = 0 at those points, respectively.

The essence of the numerical solutions of the combined system
of eqs.(2.1),(2.2) is contained in the surface of section plots,
Figs. 8 - 17. They are representative of the numerous cases studied.
Figures 8 - 15 show regular, sometimes rather involved closed

curves. Figure 17 shows a finite number of periodically recurring



points, and Fig. 16 presents a sequence of points which tend

towards infinity. No case with a two-dimensional distribution of
points was ever observed. All Hamiltonians studied were there-

fore integrable, on the graphical scale, or could not be categorized

with respect to integrability with the surface of section plots alone.

In the figures P1(Q2) , in polar coordinates, is plotted for
Q1 modulo 271 = Q1o = const. The unit lenght is marked on the
boundaries. For zero '"perturbation", F, =F, =0, the figures would
be unit circles, provided that mzlm1 is irrational - corresponding
to ergodic QZ(Q1) flow. For slight "perturbations'" the circles are
somewhat deformed, see Figs. 8 and 12, 13, with the underlying flow
still being ergodic. For larger max|F1|, max |F2| the momenta F1
and F2 may change sign, which in the plots corresponds to the
crossing of the origin and the ensuing formation of loops, see
Figs. 9, 10 and 14. A further increase of max |F1|, max |F2| yields

either an explosiv wealth of very extended loops, see Fig. 11, or

a "comet" like structure, Fig. 15.

Obviously, in Figs. 11 and 15 the amplitudes are close to
some critical values. Beyond the critical values the outcome de-
pends on the class of functions used. For class I functions, to
which Figs. 8 - 11 belong, the critical amplitudes Ai = Aic turn

out to be those for which both G1 and G2 can change sign. For

"supercritical" amplitudes the computational method for the surface

of section plots breaks down, as explained above. Computations with




the independent variable t show, however, that P P2 become un-

1’

stable, i. e. they increase unboundedly with increasing t, if the
Q2(Q1) orbit is as in Fig. 3. For class II Hamiltonians, see
Figs. 12 = 15, the Q2(Q1) flow changes at the critical amplitudes
Aic from the ergodic to the attracting type, Fig. 6. Here, the

A. are, in general, not related to a change of sign of G

or G
ic

1

(In the example in Sec. 3 they are, caused by the particular

¢

simplicity of the example.) For "supercritical" amplitudes there
is again an instability. The surface of section plots show

very few scattered points visible with a reasonable scale of the

figures owing to exponential divergence of |Pi

For class I Hamiltonians with rational m2/ w, = m/n (and
<F,>= 0) the QZ(QI) flow is also non ergodic, see Fig. 4. In this
case the surface of section plots usually consist of n sequences
of points, each on a line, with |Pi|’ i= 1,2, growing linearly
in time, provided that n is not too large. Figure 16 is an example

with m2/ w, = 1/2. For large n, however, the surface of section

1

plot changes to a periodic assembly of points. Figure 17 with

w,/ w

)/ wy = 51/100 shows exactly 100 points although 1000 points

were calculated and plotted. The transition, with the parameters

used in Figs. 16 and 17, takes place somewhere between n = 15

and n = 20. Obviously, any number m2/m1, such as 0.521111 in
Figs. 8 - 15, used to mimic an irrational number leads to period-

icity of the solution with such a long recursion period that

ergodicity for QZ(Q1) or continuity for P, are indeed mimicked.
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The functions used in Figs. 10, 11 and 16, 17 are

F1 = A1 sin Q2, F2 = A2 sin(B2 + 2Q1), case H3, and, in Figs. 13,

14, F1 = 2/ 2 + sin Q1 + A1 sin Q2 » Fy = 0.5 AZE s:m(B1 + Q1) +
0.6 sin(B2 + Qz):jz, case H4. (Here, as an exception <F.> # 0.)

112 T22

Class I Hamiltonians which, unlike cases H1, H3, have F
# 0 show qualitatively the same behaviour as cases with F11 = Fyp,

=0.

In those cases where |Pil stays bounded one can Fourier
analyze the time evolution Pi(t). Figure 18 shows the spectrum
P1(w) for a class I Hamiltonian, case H3, with A1 = 0.4, A2 = 1.0
and w, = 0.521111. The unit frequency is marked on the abscissa.

The spectrum consists of lines w, = r-2m1 * stw,, with r and s
3

integer. For the most prominent lines r and s are indicated. The
*

spectra of Qi(t) = Qi(t) - w.t, i= 1,2, are of the same type.

Such quasi-harmonic spectra confirm integrability: The Pi are

2n-periodic functions of Q> Q, and hence of w,t, wyt.

With increasing A A2 the spectra become denser from lines

1,

with higher |r|, |s|. The increasing density corresponds to the

profusion of loops in the corresponding surface of section plots.
If the amplitudes are increased so much that, with initial values
Q10, Q20 in the ergodic region, a flow with changing sign of both

G1 and G2 is obtained, the spectra seem to become diffuse, see

Fig. 19, case H3, with A, = 2.0, A, = 1.0, w, = 0.521111.

1 2 2

Unfortunately, the demand on computing time rises exponentially
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in this domain of amplitudes. A stationary state for max |P1(t)|,
if it exists, has not yet been reached at t = 263-21r/w1 in the

sequence of P1(t), the analysis of which yielded Fig. 19. No con-
clusions on integrability can therefore be drawn from the spectra

in this regime.

For class II Hamiltonians with |Pi| bounded the spectra are
also found to be harmonic combinations of two fundamental

frequencies, say 91 and QZ' Here, however, the Qi depend on the

amplitudes AT’ A2, with 91, 92 > Wy, Wy for At’ A2 -> 0.
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3. Theoretical aspects

The unexpected result of the previous section was the fact that

no manifestedly non-integrable Hamiltonians were found numerically.
One might therefore think that these Hamiltonians are trivally
integrable, and might try to find an addidional invariant L(P,Q)

from the partial differential equation

- 9L dH oI OdH
I_IsH]=_I (_ ____]
i=1,2 aq; 3P, 9P, 3Q,
(3.1)
= 0.
With an ansatz such as
_ r _ n-r
1= _{ PP, I.(Q,,0Qy) (3.2)
r=0,n

and some trial it is indeed possible to obtain single-valued 2n-—

periodic invariants I for certain more or less simple types of

Gi(Q1,Q2), i=1,2.

For example, let c1, <, be arbitrary constants and

h1(Q1), gZ(QZ) harmonic functions which satisfy
n = n = -
c, ‘n1/h1 gzlg2 const. Then, with

G1(Qs Q) = ¢y +cyhy Q) g, (@)

{3.:3)

G2(Q1, Q2) h1(Q1) gé (Qz) 5
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where the prime denotes differentiation, a proper invariant

is given by

_ 2 2 . 2
I(p,,P,,Q,) = ( By - cP; ) ey ]° . (3.4)

(It may be noteworthy that it is not possible in general to

1 P2.)

obtain another invariant I = I (I, H) which is linear in P

For general Gi(Q1,Q2) it does not seem possible to write ex-
plicit expressions for I(P1,P2,Q1,Q2) if such invariants other
than H exist. It seems all the more impossible to decide whether
potential invariants are 2m-periodic in Q1,Q2, as required for
integrability. For two classes of Hamiltonians it will be shown
that the (dis-) proof of periodicity is indeed a much harder

problem than finding an invariant in the first place.

Let us first consider Hamiltonians with div G = 0 and, in

addition
oy =6 0m™0 , (3.5)
as used in H1, H3 of Sec. 2. From eqs.(3.5) and (2.1) one obtains
G,(Q,) dq, = G,(q,) dq, , (3.6)

which determines Q2(Q1) from the relation
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Q Q)
! dq; GZ(Q;) = f dQé G1(Qé) . (3.7)
QIo 2

o]

Equations (2.1) for P1, P2 may also be solved analytically.

(Take Q, as "time" variable, for example, eliminate P, by an

2
additional differentiation, and note that the resulting second-

order equation for P1 is a total differential.) One obtains

P Q) = 6,(Q)[ ¢+ e, s(Q) ],

(3.8)
3
P,(Q,) = - GI(Q2(Q1))[:C1 + ¢, s(Q,) ]+ ,
G,(Q,)
with
Q
G,,(Q})
S(QI) = J dQ; 5 (3.9)
L 1
0, G,(Q, (@) [6,(Q) ]
cy = P10/G2(Q10) and c, = = H are constants of the motion,
determined by the values of P., Q att = 0.From eqs.(3.8) one
immediately obtains the invariant of motion I = eyt
E,
I(P,,P,,Q.,Q,) = + H(P,,P,,Q,,Q,) *5(Q,) (3.10)
G,(Q,)

whose property [:I,I{] = 0 is easily confirmed.

Obviously, for H = 0, which can always be achieved for a

particular initial direction a = o of the vector (P1,P2), see

Sec. 2, the invariant I(P1,Q1)= P1/02(Q1)is 2m-periodic in Q,
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and the motion is integrable, P, is proportional to G2(Q1), in

agreement with numerical results,

For H # 0 integrability depends crucially on the properties
of S(Q1). For S 2m-periodic in Q, integrability would hold, of
course. Considering the fact that the orbit Q2(Q1) from eq.(3.7)
enters into S, periodicity cannot, however, be expected in general.
On the other hand, requiring periodicity in Q1 is too much.
Sufficient for integrability is the requirement that S(QI) be

represented in the form

5(,) = 5(Q,,Q,) (3.11)

with S 2m-periodic in Q1 and Qy» with Q2 = QZ(Q1)' In Appendix B
it is shown that with wz/w1 = w the solution of eq.(3.7) is of

the form

- Q 3.12
Q,(Q,) wQ, + Q(Q,wQ,) (3.12)
with Q 2m-periodic in both arguments and given as a double Fourier
series, eq.(B4). In consequence, the integrand in eq.(3.9), denoted
by s(Qi), has the same representation,

+o

s(Q) = ]

m,n=-w

ei(mQ1 + an1)

3 (3.13)
mn
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i. e. it is a quasiperiodic function of Q;. From eq.(3.9) it

follows that

S(Qi) - S00'( QI - Q1o) *

(3.14)
& m [el®@Q*nuQy) _ i(mQ, +nuq, ) o

m,n#0 i(m+nw)

With eqs.(B2, B4) and rearrangement of terms one finally obtains

the formal structure

|
w
L
Lo
—_—
+*
~1
(3
©
e
g
O
+
=]
O
't
~—

(3.15)

where S, is 2m-periodic.

In consequence, in order to obtain an invariant (3.1e),
periodic in Q1, Q2’ two conditions have to be satisfied:
a) the average s, of the integrand in eq.(3.9) has to vanish,
and b) all the double m,n series involved in the derivation of

eq.(3.15) have to converge.

In all pertinent examples studied in Sec. 2 condition a)
was obviously satisfied, exept for rational w = w2/w1 = m/n with
low n, see Fig. 16. Apparently, this figure shows the linear

increase of P1, eq.(3.8), resulting from the term Soo.Q1 in S(Q1).
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Hamiltonians of type (3.5) with "low'" rational m2/m1 therefore
seem to be non-integrable. For larger n, on the other hand, the
observed integrability, see Fig. 17, seems to be real and not an
artefact of numerical discretization and round-off errors because
improved accuracy does not change the result. The analytic
evaluation of S, Seems an impossible task, unfortunately, even

for Gi as simple as in H3.

The precise formulation of conditions a) and b) requires to
distinguish between w = w2/w1 rational and irrational. For rational
Q the double sums are replaced by simple sums and the convergence
properties may be discussed relatively easily. For irrational w,

"small denominators"

however, there is the classical problem of
m+ nw -> 0 for large |m| and |n| in eq.(3.14), which makes the
convergence of the series difficult. Analogous convergence problems
might exist in the transition from Q2 to (QI,mQ1), see eqs.(B2),
(B4). It is well known /6/, /7/ that the integral of a quasiperiodic
function, say ;(Q1,mQ1), is again a quasiperiodic function only if

w is 'sufficiently irrational". Furthermore, ;(Q1,wQ1) must have

piecewise continuous h'th order derivatives, with h sufficiently

large (h = 5 according to /7/).

We have made a deliberate attempt to violate condition b) by
using functions G, whose first-order derivatives Gij in eq.(2.2)

are only piecewise continuous, namely, case H5, G1 =, + A1f(Q2),
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G, = w, + Azf(B2 + 2Q1), with
2Q/m - 1 0£Qs=sn
£(Q = ) for (3.16)
3 - 2Q/m T<Qs< 21,
and continued periodically. Figure 20 with A, = 0.5, A, = 0.3,

1 2

wy = 0.521111 shows the surface of section plot. It is evident
that the attempt to construct a manifestedly non-integrable
Hamiltonian by this choice of Gi failed. The only difference to
corresponding figures such as Figs. 8 - 10 is the reduced smooth-
ness of the resulting curve. The observed behaviour is explained
if the integrand S(Q1) in eq.(3.9) is smoother than the functions

G.. themselves.
1]

Even for rational m2/w with low m and n there are integrable

1

cases among the Hamiltonians (3.5). Trivial examples are F1 =0

or F2 = 0 with I = P, or I = P, respectively, for all Wys 0

2 1 2°

For Hamiltonians with compressible flow in Q- space,
div F # 0, analogous considerations on integrability as above can

again be made for restricted classes of Gi(Q1,Q2). For

F2(Q1,Q2) =0 (3.17)

for example, one obtains from egs.(2.1)
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o
=]
|

= wot +Q, (3.18a)

_:O
|

=w, + F1(Q1,w2t + on). (3.18b)

Substituting the solution Q = Q1(Q2) of eq.(3.18b) in eqs.(2.2)

yields
Q,
1 L 1 1
P, (Q,)) =P, exp {-— 7 dQ) F,.(Q,(Q}),Q}) } (3.19)
Llj2 QZo

and similarly for P,. For the Hamiltonian to be integrable the
integral in eq.(3.19), denoted by T(QZ)’ must again have a repre-
sentation of the form T(QZ) = T(Q1,Q2) with T 2n-periodic.

The class (3.17) of G,, G, includes trivially integrable

1* 72
cases with "spectacular" Q- flow. A line attractor, for example,

1s obtained with
F.(Q,,Q.) = A, +(2 sin’q, - 1) (3.20)
11222 1 1 *

The solution of eq.(3.18b) is

w,-A, ¢ exp(291t) + 1

Q1(t) = arc tgf LA (3.21)
Q, ¢ exp(291t) -1
The effective frequency Q1 depends on the amplitude:
2 2
= - 3.22
2, 4 A - v ( )




= D0 =

It has been assumed that Qf >0, i. e. max|F1| > w,. In the limit
-> o 1 1 = -

t Q1 is attracted to the line Q, = arc tg[ Oﬂi A1)/91]

which implies the limits G, => 0 and P1(Q1) = const / G1(Q1) ->

exponentially fast.

The "Floquet Hamiltonians"

i
o

2
FI(Q1,Q2) = Aicos Q1'fl(Q2) : F (3.23)
with f1 arbitrary, 2mn-periodic are alsoof the type (3.17). The
canonical transformation Py = r’2P1 sin QI’ qq = V2P1 cos Q1 yields

the linear differential equation with periodic coefficient
q, + m1[tn1 + £, (w,t) ] q, =0. (3.24)

Floquet theory determines the type of solution q1(t) /8/ and
guarantees the existence of an invariant I(P1,Q1,Q2), linear in
P1 and periodic in Q1,Q2 although its explicit expression is hard
to obtain in general.Linear differential equations with quasi-
periodic coefficient f1(w2t, e mnt), n > 2, are equivalent to

non-KAM Hamiltonians with dimension n /5/. The theory of such

differential equations is only in its infancy, see /7/, /9/.




4. Summary and conclusions

The integrability of non-KAM Hamiltonians was investigated
numerically and analytically. Such Hamiltonians are linear in
the momenta when the Hamiltonian is expressed in terms of action

and angle variables P and Q of the "unperturbed" Hamiltonian.

Many different examples were analyzed. The mixture of
islands and stochastic regions typical of KAM Hamiltonians is not
observed. Usually, a closed curve is obtained in the surface of

section plot, indicating integrability, in particular if the

""perturbation" part in the Hamiltonian is not too large.

In some cases sequences of points are obtained which go to
infinity. Such sequences may be observed with "class I'" Hamilt-
onians (the flow in Q space is divergence-free) if the frequency
ratio m2/m1 = m/n is rational with low m, n. For all rational

w /u.\1 the flow in Q space reduces to closed lines. For "class 6 i

2
Hamiltonians (the flow in Q space is compressible) diverging

P sequences are observed if the Q flow is attracted to a closed
curve or a fixed point. Theoretical considerations suggest that

in class I cases the Hamiltonians with diverging |2J are non-

integrable, while in class II cases they may still be integrable.

The following partly tentative conclusions can be drawn

from these results:




1.
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The measure of integrable non—-KAM Hamiltonians seems to be
much higher than that of non-integrable ones, provided the
ratio of "perturbation" part to "unperturbed" part in the
Hamiltonians is not too large.

For non-integrable class I Hamiltonians the momenta P tend

to * «, This is not unexpected since the effective frequencies,
say 91,92, in the orbits are independent of the amp}itudes of
P, and resonences are not quenched by nonlinear effects as in
KAM Hamiltonians. Resonances are easily constructed since

Q., Q, are those of the "unperturbed" Hamiltonian, 2, =w

.

i = 1,2, and can be chosen at will. Resonances m 91

|
=]
2

2

with large m, n do not seem to cause non-integrability. In
addition, analytic examples exist for which the Hamiltonians

are integrable for arbitrary w w

1 "2

For class II Hamiltonians the effective frequencies Qi are
moved away from the "unperturbed" values ws by the perturbation
part in the Hamiltonian, in spite of its linearity in the
momenta. The Qi therefore are unknown in practice, except

for trivial examples, and resonance m 91 =n 92 cannot easily
be achieved by random variation of parameters. This could
explain why (apparently) no non-integrable class IT Hamiltonians
were observed. Again, Hamiltonians exist which are definitely

integrable for arbitrary Wy, W, and arbitrary amplitude of

the "perturbation" term.




4.

- 23 -

The distinction between integrable and non—-integrable

orbits for a given non-integrable Hamiltonian which is im-

portant in KAM theory disappears almost but not completely
for non-KAM Hamiltonians. A class of (apparently) non-
integrable Hamiltonians is presented for which all orbits
diverge except those with one particular initial direction
of the momenta.

More fundamental analytic work is required to derive con-
ditions for (non-) integrability. This task is related to
the generalization of Floquet's theory and it promises to

be as non-trivial as that for KAM Hamiltonians.
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Appendix A

We look for canonical transformations P, Q -> P', Q'

where P = (P, .. P ) etc. which transform H (P) = ) P,
— 1 n o = jef.qg 2
~ L ]

into HO(E'), a potentially nonlinear function, and retain the

2m-periodicity in Q' of H = z PiFi(g). These specifications

i
are required in order to maintain P' and Q' as action and

angle variables. With the generating function S(P',Q) we

have

p, =29 ' =38 . i-1,.. no (A1)

o ape
1

The P are functions of P' only, provided

SE',Q = 1 s;(B)eQ . (A2)

i=1,n

It follows that

os.
Q= ) Q. =: )} o,.(P") Q. (A3)
o j=1,n aPi J j=1,n t ]
and therefore
5 -1
Q= ) ", q, (a4)
Yot o

where o | is the inverse of the matrix {Oij} . Without loss

of generality it may be assumed that each of the Qi’ i=1,n,
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occurs as a variable in at least one of the Fj(g), j=1, n.
Otherwise the corresponding Pi would be constant and Hamilton's
equations would separate into a lower—dimensional non

trivial set without Piy Qg and a trivial pair of equations

for Pi’ Qi' Consequently, the 2m-periodicity of H1 in Qj re-
quires that all elements of 0_1 be integers. If, in addition,
unsteady transformation E_->‘£' are excluded, it follows that
the elements of 0-1 and hence of o itself are constants,
independent of P'. From the definition of Uij one then ob-

tains, apart from trivial constants,

8. = ) P!, (A5)
i j o3i

P.= ) P!o.,. , (46)
1

so that both Ho(zf) and the total Hamiltonian H(P',Q') =

H(P,Q) are again linear in P'.This proves the genericity of

this type of Hamiltonians.

Hamiltonians of type (1.5) are not to be confused with
the case called intrinsic degeneracy, where HO(E) is linear
and HI(B’g) is nonlinear in P. Here a suitable Q-averaged part
of BI can be added to Ho’ so that a new nonlinear ﬁo(g) is
obtained, and KAM theory can be applied. See, for example, /10/.
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Appendix B
From eq.(3.7), G, =w;, +F, and <F,> = 0 one obtains

Q, = wQ, *+ T'(Q,Q,y), (B1)
where T' is 2m-periodic. With the ansatz

Q, = wQ, +VY (B2)
one gets

¥ = T(Q, wQ, +¥) . (B3)
This determines ¥ as a function 6(Q1,mQ1) which is also 2m-

periodic in both arguments. It has therefore the Fourier

representation

& +o .
y = Q(Qt,wQ1) - 9 Q. e1(mQ1 + an1) ) (B4)

m,n=-=
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Figure captions

Fig 1  Orbit Q2(Q1) in subspace, case H1; A1 = 0.6, A, = 0.3;
wy = 0.521111

Fig 2 Q2(Q1), case Hl; A, = 2.0, A, = -5.0; w, = 0.521111

Fig 3 Q,(Q,), case HI; A = 2.0, Ay = =5.0; w, = 0.521111;
with different starting point to that in Fig. 2

Fig 4 QZ(Q1)’ case Hl; A, = 0.6, A, = 0.3; w, = 0.5

Fig 5 Q2(Q1), case H2; A1 = 0.5, A, = 0.3; w, = 0.521111

Fig.6 Q2(Q1), case H2; A1 = 0.5, A2 = =2.0; wy = 0.521111;
line attractor

Fig 7 Q2(Q1), case H2; A1 = 2.0, A2 = 2.0; w, = 0.521111;

point attractor

Fig 8 Surface of section P1(Q2) at Q, mod 27 = const, case Hi;

A1 = 0.3, A2 = 0.2, Aa = 0.5m; w, = 0.521111
Fig 9 P1(Q2), case H1; A1 = 0.5, A2 = 0.5, Aa= 0.3m;
wy = 0.521111

Fig 10 P1(Q2), case H3; A 0.5, A, = 1.0, Aax = 0.3m;

1

Wy = 0.521111

Fig 11 P1(Q2), case H3; A

]

1 0.8, A, = 1.0, Aa = 0.57;

w, = 0.521111

Fig 12 P1(Q2), case H2; A

0.3, A, = 0.2, Aa =-0.3m;

1 2

w, = 0.521111

Fig 13 P‘(Qz), case H4; A, =-0.95, A2 = 0.3, Aa =-0.297;

1

w, = 0.521111
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P1(Q2), case H4; A1 = 0.3, A2
wy = 0.521111

PI(QZ)’ case H2; A1 = 0.5, A2
w2 = 0.521111

P1(Q2)’ case H3; A, =.0.5, A,
wy = 0.5

P1(Q2), case H3; A1 = 0.5, A,

w, = 51/100

Spectrum P1(w), case H3; A1

Aa = 0.57; w, = 0.521111

2

Spectrum P1(m), case H3; A1

Ao = 0.57; w, = 0.521111

2

P1(Q2), case H5; A, = 0.5, A

1 2

w, = 0.521111

]

1}

n

-6.0, Aa =

-1.76, Aa

0.3, Aa

0.3, Aa

-0.267;

= 0.5m;

0.5m;




Fl= Al = S5INIQ2)

F2= 2. » A2 » (SORT( 1. + 0.6 = SIN(B2 + Q1) ) - 0.97523

Fl= Al = SINID2
F2= 2. = A2 = [SORT( 1. + 0.6 = SIN(B2 + Q1) } - 0.97523




Fl= Al = SINI(Q2
F2= 2. = A2 » (SORT( 1. + D.6 = SIN(BZ + 01) ) - 0.97523

Qe

Q1

Fl= Rl = SIN102)
F2- 2. » A2 » (SOAT( 1. + 0.6 = SIN(B2 + 01) ) - 0.97523
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gl




Fig. 6

Fl= Al = COS(Q1}

F2= A2 = COS(2.»01) = SINI(B2 + Q2)

x SIN(Q2)

T AT

Fl= Al = COS(QD)

® SIN(Q2]
F2= A2 w COBS(2.%011 = SIN(B2 + Q2)

7
Qe




Fig. 7

Fl= Al = COS(Q1) = SIN(Q2)
F2= A2 » COS(2.x01) = SIN(B2 + Q2)

62

Q1

Fil= Al = SINI1Q2)
F2= 2. » A2 » ( SORT( 1, + 0.6 = SIN[B2 + Q1)

- 0.97523 )




Fig. 9

Fig.

10

Fl= Rl = SIN(Q2)
F2= 2. w A2 » ( SORT( 1. + 0.8 » SIN(B2 + Q1) ) - 0.9'4'.525 1

Fi= Al = SIN( Q2)
F2= A2 = SINI B2 + 2 » Q1 )

e




Fig. 11

Fl= Rl % SINL Q2]
F2= R2 » SINI B2 + 2 » Q1)
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Fig. 13

Fig. 14

Fi= 2. = SORT (2.

+ SIN(Q1) + Al = SIN(@2))

F2= 0.5 = A2 = (SINIBl + Q1) + 0.6 » SlN’tBE + Q2) ) wn2
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Fl= 2. = SOAT (2, + SINIQ1} + Al = SINIQ2))

F2= 0.5 = R2 » (SIN(BL + Q1) + 0.6 » SINIB2 + 02)]ux2




Fl= Rl % COS! @1 ) = SINL G2 )
F2= A2 » COS1 2. = Q1 ) = SINI B2 + 02)

Fig. 15

Fl= Al = SINU Q2 )
F2= A2 =« SIN( B2 » 2 » Q1 )

Fig. 16




Fig. 17

Fig. 18

Fl= Rl » SIN( Q2 )

F2= A2 » SINI B2 + 2 = Q1 )
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Fig. 19

Fig. 20

Fl= Al » CYMGP( ZDP = Q2K - 1..

3, - 20P » Q2M, PI - Q2M )
3. - ZDP = QIN, PI - QIN )

F2= A2 » CVYMGP( ZDP = QIN - 1..
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