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Abstract:

The influence of gyroviscosity on the fluctuations of an MHD plasma is
investigated by the method reported in a previous note ] . The main
result is that gyroviscosity does not help to remove ultraviolet divergences.
For a sub-class of observables it does not even show up. The full non-

linear problem may be needed.




A general formalism for obtaining the fluctuation spectrum of plasmas
and fluids in statistical equilibrium has been proposed in Ref. 1 . It is
valid for linearized equations of conservative systems in a heat bath
which allows the use of Gibbs statistics. The application of this formalism
to gyroviscous one-fluid homogeneous plasmas is discussed in this letter.
For general observables the spectrum depends on the eigenvalues of a
symmetric operator containing gyroviscous and ideal MHD contributions.
For a more restricted class of fluctuations such as density fluctuations,
however, the spectrum only depends on the eigenvalues of the MHD

operator.

The linearized equations of motion of non-dissipative gyroviscous

one-fluid plasmas can be written 2 in the form
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PP + TS + @0 = o (1)
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where T is the perturbed fluid velocity, £ is the mass density in equi-

e d
librium, @ the MHD operator 2 and $1r the perturbed gyroviscous

tensor .

It is assumed that the unperturbed plasma is in homogeneous static

e
equilibrium with a constant magnetic field B, , and that the perturbations
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are two-dimensional with velocities perpendicular to 8, . For
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E and W, being the pressure and the ion cyclotron frequency in

equilibrium, respectively.

It is a matter of simple algebra to write

- 2, —w —b (6)
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and
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where Y is the ratio of specific heat capacities.

Equation (1) can now be written as

? + E 6'? + F 1_}'-0 = O (8)
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is an antisymmetric operator and

F=-bv( ...) (10

is a symmetric operator,

a and b are given by
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As discussed in Ref. 1 the Hamiltonian of eq. (8) can be written
as
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and the symmetric operator
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y is expanded in terms of the eigenfunctions of N\
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in view of the homogeneity of the equilibrium. # and ¢ , as® and U™,
. =
are vectors perpendicular to EB . The eigenvalues ?\‘: can be obtained

from
MY =2 7 (17)

which by substitution of eq. (16) in eq. (17) reduces to
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After crossing the first equation by J} the characteristic equation

leads to
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For large k_ . the )(: behave as
<
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The formula for the expectation values of QL  derived in 1 s
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Its application leads here to a spectrum having contributions in h_
[>

R
and h for large k The latter contribution is obviously not
< [

acceptable. Without gyroviscous effects the contributions would be like
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h_ and 1 for large h . The latter contribution, though not diver-
(2 ¢

gent, is not acceptable either.

This "ultraviolet" catastrophe well known in other areas such as
field theory = seems to become worse when gyroviscous effects are
taken into account. This is true of a Gaussian distribution and is an
open question for the full nonlinear problem. Non-Gaussianity may be
the key answer as demonstrated for the Korteweg-de Vries equation

in 6

An improvement can also be achieved if the observables are
-—‘
restricted to being functions of U” only (not of ). In this ccse<Q5>
<L
depend on the eigenvalues of F only, which behave as k‘. . This

is easy to see from the general Hamiltonian introduced in 1
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the integration over ¥ can be done separately, leaving
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For such observables the expectation values are thus unaffected by
"2
gyroviscosity and behave as h, -
<
As noticed in 1 , the expectation value of the total Hamiltonian
diverges for a Gaussian in any case and leads us to the conclusion that
non-Gaussianity combined with gyroviscous effects will have to be studied

next. This is a very difficult problem in more than one dimension, as

discussed in 1
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