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Abstract

The generalized eigenvalue problem Ax = ABx with a non-symmetric matrix A is solved
by means of inverse vector iteration. The algorithm makes use of the band structure of the
matrices thus allowing quite large dimensions (d < 3742). In the application all complex

eigenvalues for the resistive Alfven modes are successively computed.




I. Introduction

Many problems in physics and engineering study the oscillations and the stability
of a given system, thus requiring the evaluation of eigenvalues. In general, the physical
model includes dissipation and overstable or damped normal modes evolve, which are

described by complex eigenvalues.

Let us consider the generalized eigenvalue problem Ax = ABx, which is typical
of a finite-element discretization, where A is a general, non-Hermitian matrix and B a
Hermitian, positive definite matrix. The eigenvalue A and the eigenvector x are complex.
More specifically, the problem is posed to compute selected eigenvalues and eigenvectors
when the dimension d of the matrices 4 and B is large, i.e. d > 1000. For systems of
stiff equations such large dimensions become necessary even for one-dimensional problems.
A discretization in terms of finite differences or finite elements usually leads to large but

sparse matrices, often with band structure.

While for the treatment of the self-adjoint eigenvalue problem accurate and very
efficient solvers exist - we refer to the excellent books of Wilkinson /1,2/ and Parlett /3/
and, in the special case of inverse vector iteration, to Refs. /4,5/ - the situation is much
more difficult for non-Hermitian matrices. Let us assume that the chosen discretization
does not lead to pathologic Jordan-type matrices. The QR algorithm can then be applied
to compute all the eigenvalues of the system /1,2,6/. However, this algorithm destroys
the band structure of the matrices and produces full matrices. The storage and CPU
time requirements eventually put a limit on the dimension d of the matrices, e.g. on the
CRAY-1 of IPP Computer Center d has to be less than 600. However, much finer grids are

necessary in the resistive MHD model for finding the stability limits and scaling properties

/1.8/.



The inverse vector iteration is a very efficient method to compute selected eigenva-
lues and eigenvectors of general matrices. It preserves the band structure and thus allows
the treatment of very large matrices. The slow convergence, which is sometimes considered
a severe drawback, is strongly improved by a suitable complex shift. Fast convergence is
found by restarting the iteration with a new shift. In conjunction with a continuation
procedure in a relevant parameter the result is found by performing only a few shifts. In
the case of Hermitian matrices Sylvester’s theorem (see, for example, Ref. /3/) yields the
number of eigenvalues in a given real interval and every desired eigenvalue can be found by
the bisection method. A generalization of this theorem for general matrices does not exist
and therefore the inverse vector iteration cannot be used as a black box to compute all
the eigenvalues in a given complex domain. But this also holds for the subspace iteration
/9/ or for the Lanczos algorithm /10,11/. In practice, we did not find this drawback very
restrictive; the results from a coarse mesh by means of the QR algorithm or from a fine
mesh by continuation provides a good guess for a suitable shift. Inspection of details of
the eigenfunctions, such as the number of radial oscillations, even makes it possible to

compute all eigenvalues in a certain domain of the complex A-plane successively.

In this paper the algorithm for inverse vector iteration is described and results
are presented for the spectrum of the quite complicated resistive MHD operator. Large
matrices with a dimension up to 3742 are treated and the extension to even larger matrices
is discussed. Not many large-scale applications dealing with the complex eigenvalue pro-
blem have been presented in the literature so far. We, therefore, encourage its tackling by
using inverse vector iteration because of its accuracy and simplicity. The algorithm and its
implementation are described in Section II. The CPU time and storage requirements are
discussed in Section III. The results are presented in Section IV, and Section V contains

the discussion and conclusion.



II. Algorithm

The general eigenvalue problem

Ax = ABx (1)

is to be solved, where 4 and B are complex matrices; B is Hermitian and positive definite
and A is arbitrary. The eigenvalue X and the eigenvector x are in general complex. In
the algorithm presented the band structure of 4 and B, which usually occurs in a finite

difference or finite element discretization, is preserved and utilized.

The initial value )\, is considered as an approximation to the eigenvalue of the system (1),

i.e.

A= Ao + A, (lA'\ol <= |’\o]) (2)

With the shift A, the eigenvalue equation reads

(A — XB)x = AXoBx. (3)

With x, as initial guess new vectors x; are computed as solutions of the iterative system

(.4 = I\OB)X" = AA.'_IBX,'_l 'l:=1,2,3,..., (4)

and the iterated eigenvalues A); by means of the Rayleigh-quotient

AA,‘ - x:(A - )\OB)Xf i = 1,2’3“- ) (5]

x; Bx;




Here the symbol * denotes the Hermitian conjugate. The vector x, is usually initialized by
random numbers. Special choices prompted by analytical solutions or previous numerical
results are admissible and can speed up the convergence. However, this is only done for

convenience.

An important condition for the convergence of the system is given by the following

result:

Let Ay, A2, ..., Ag € C be the eigenvaluesof 4x = Mx, A € C an approximation to
one A;, 1 <7 <d, and t,, ty,... € C? asequence of vectors, t, with random initialization.

The inverse vector iteration is then defined by

(A=ADt; = t;ioy,  i=1,23.. 6)

If A is chosen sufficiently close to an eigenvalue

A7 = Al << A = A (7)

for all k # j, then the sequence t;,ts,ts,... converges to the eigenvector corresponding
to A;. For the proof we refer to textbooks, e.g. Ref./12/. With an appropriately chosen
shift A, any eigenvalue of the system together with its eigenvector can be computed. Since
the matrix B is positive definite the inverse B~! exists and the general eigenvalue problem
(1) can be reduced to its standard form Ax = Ax with 4 = B—'4. We then apply the

above theorem to this system.

Since the matrix A is in general non-Hermitian, a second sequence is defined by the

left-hand eigenvectors, yielding the iteration




(A — XoB) % = AXi_1Bxi_, i=LEd e (8a)

(A — XoB)'yi = AXi—1 Byio1 (8b)

where the bar denotes the complex conjugate. In the nonsymmetric case an improved
eigenvalue is determined from right-hand and left-hand eigenvectors x; and y, by using

the generalized Rayleigh-quotient

Y:(ﬂ = A,,B)x,-

AN, =
viBx;

(9)

The system of linear equations is solved by factorization. The shifted matrix is written as

a product of triangular matrices

A = A-2B = LU . (10)

This LU decomposition preserves the band structure and can be performed efficiently.

With the definitions

ri_1 = Al-1Bxi_y = Al s (11a)

8;_1 = Bri—1Byic1 = BXio1 ¥i-1, (11b)
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the following equations are solved for p; and q;:

Lpi = ri_y, (12a)
Urqi = si_y, (12b)

and eventually new vectors x; and y; are evaluated by
Ux: = iy (13a)
L'y = q; (130)

Utilizing the decomposition of 4’, eq. (10), it holds that
yi (A = XeB)xi = yjLUx = q; pi ,
and the Rayleigh quotient assumes the form

q; Pi q; Pi
KXy == : = == 14
yiBxi yixi (1)
where x; = Bx;, defined in eq. (11a), is needed to compute the new vectorr; = AX; x;.

The iteration is terminated if the error is smaller than a defined tolerance ¢, which has to

be less than the machine accuracy,



(A = Aic1)/2o | <€ (15)

for A, # 0. Convergence is then obtained in the step i = m. Termination is also forced if
the eigenvalue is not monotonically approximated, in order to avoid pathologic iteration

paths, i.e. if

|AX; — AXi—i] > |AXio1 — AXi.| (16)

for 1+ > 3. The final eigenvalue is given by

A=A + AMy (17)

and the eigenvector by

%= M (18)

Since we routinely apply inverse vector iteration to analyze part of the complex spectrum
of systems with a matrix size too large for the QR algorithm, we obviously have to define
a continuation procedure. Knowledge of a relevant part of the spectrum in one point
in parameter space is used to explore new regions. A continued vector iteration is then
obtained by increasing the number of mesh points or changing the physical parameter
o considered. It is explained in detail in the flow chart in Figure 2 subsequent to the
description of the algorithm in Section III. In cases where eigenvalues lie close together

good results were obtained with mesh refinement if the number of radial intervals was
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successively doubled. The final mesh size n,,,; is given by the available core. A way
to increase this maximum mesh size by utilizing external storage is discussed in the next

section.

III. Implementation

This implementation of the algorithm makes use of routines from the LINPACK
library /13/. If the matrices A and B are real, then the eigenvalues occur in complex
conjugate pairs. The matrices 4 and B are given as INPUT stored in the usual band-
matrix storage mode, so that the zero elements outside the bands do not occur at all.
Next, the shifted matrix A’ is computed and factored. Note that A’ is now considered
complex. In order to make full use of the fast execution on the CRAY-1 vector computer,
the LINPACK routines CGBFA for factorization and CGBSL for successive solution of
linear systems are used. The evaluation of left-hand and right-hand vectors is achieved
by using the same decomposition. The flow chart of the algorithm, presented in Figure
1, displays the steps in the execution. The iteration is terminated if the error is smaller
than the desired tolerance e. If convergence is achieved, the eigenvalue X is given by
A = A, + Al and the eigenvector by x = x,,. Usually five to ten steps are needed
for convergence. The maximum number of steps is chosen as t,;nqe = 20. It is found that
an eigenvalue is obtained more easily by choosing a new shift rather than by performing

more iterations.

The minimum amount of storage required includes the matrices 4 and B and
the decomposition of 4’ = LU together with the vectors x; and y,. If the norm of the
differences from two successive steps ||x; — x;_;|| and |ly; — yi—1]| is not used to monitor
the convergence, it is possible to overwrite x; and y; by r; and s, defined in eq. (11).
In addition, a work-space for the pivoting in the linear system has to be given. These

storage requirements can easily be improved by keeping only the minimum data necessary
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for the algorithm in the fast memory and by storing data on disk. The storage improved

algorithm then works as follows:

1. Compute matrix B and store it on disk B.

2. Compute matrix A and perform the shift during computation 4’ = A — X,B.
3. Factor 4’ = LU and store £ and U on disk A.

4. Compute new vectors and keep x;,y;, p; and q; in the fast memory.

5. Read in L, U or B separately, if needed.

This optimized version is a simple extension of the original one. Only one complex matrix
in band-matrix storage mode is required in the fast memory at any step together with
additional work-space for the factorization with the dimension of the upper band width.
The flow chart of this program is displayed in Figure 1. The continued inverse vector
iteration for the case of mesh refinement is explained in Figure 2. After initialization
the continuation loop starts, where the inverse vector iteration is applied. The converged

eigenvector is then transferred by interpolation to the new mesh.

Next we estimate the CPU time and the storage necessary for the algorithm. The

number of operations to factor a band matrix with band width b and dimension d is

pr’*dd-bz/:;,

and the number of operations to solve the linear system

NL, ~ d-b

10




For m iterations there are then

Ny = Np + m Ny =~ d-b(b/3 + m) (19)

operations required. Most of them are spent in the decomposition; this part contributes

to

100
1 + 3m/b

Example 1

In the case of d = 934, b = 47 and m = 6 there are N; ~ 0.95 - 10° operations
necessary with 72 % spent in the factorization. The storage available at IPP, 7.3-10® Bytes,
which corresponds to 365000 complex words, allows 270,000 matrix elements together with
the necessary vectors. In the example given above two matrices could be kept in the core.

Factorization and iteration required 3.2 s CPU time on a CRAY-1 with 4.6 s elapsed time.

In the case of continued vector iteration with mesh refinement the dimension d
increases in each step d; € { d,,dy,..dr;dy < da < .... < dr, }. The total number of

operations is then

L L
b
Ny = b- (3 g d + ) m,-d,), (20)

=1

and the fraction p for the decomposition

11




100
p = %

L L
1 + 32 my d{/(b Z d{)
=1 =1

Example 2

The continued vector iteration is performed for three steps with d; = 934, d; =
1870 and d; = 3742, m; = m; = ms = 3 and again b = 47. This gives N; = 5.8 X 106
operations. In this case only one complex matrix can be kept in the fast memory and I/0
on disk is necessary. The CPU time is 10.1 s with 18.4 s elapsed time. Now 84 % of the

CPU time is spent for the factorization.

It is our experience that two to three iterations are saved if the shift Ao is taken
from a previous run and parameters are changed continuously. Since the I/O has to be
paid for such an improvement is clearly visible in the execution of the algorithm. At
present we are working on a version with arbitrary matrix size, where the required storage
space is partitioned into tractable pieces which are successively worked up . While the
basic algorithm is still the same, this implementation is quite different. It will be reported

separately.

IV. Results

The algorithm presented is applied to a problem in plasma physics where the
question of stability and heating prompts study of the entire spectrum of normal modes.
The compressible, resistive MHD equations are linearized around an equilibrium in cylind-
rical geometry with an ansatz for the perturbed quantities x(r, 4, z;¢) = x(r e EriimeLhz)
where m and k are wave numbers and ) is the eigenvalue. The spectrum is evaluated

by applying the Galerkin method in conjunction with finite elements, which leads to the
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generalized eigenvalue problem eq. (1). The vector x contains the perturbed velocity,
pressure and magnetic field x!(r) = (vt(r), p(r), b-(r), b.(r)) and has six components when
V.b = 0is used. The matrix 4 contains details of the equilibrium and of the expansion
functions, which are chosen as cubic Hermite and quadratic finite elements. It is a real,
but non-symmetric matrix of dimension d = 12(N, — 1) + 10, where N, + 1 denotes the
number of radial grid points. The matrix B represents the norm and is symmetric and
positive definite; more details are given in Refs. /7,8/. Owing to the quite different length
and time scales a fine grid is necessary for accurate representation of the eigenfunctions,
i.e. N, > 100 with d > 1200. The matrices 4 and B have block tridiagonal structure
with blocks formed by 12 x 12 matrices. The matrices are sparse; outside a band of width
b = b, = b = 23 (for upper and lower band width) there are only zero elements. We

have added zeroes outside the blocks but inside the band width.

We now present details of the results for the resistive Alfven branch of the

spectrum. The equilibrium is given by

The Alfven modes are characterized by incompressibility and are easily distinguished from

the fast and slow compressible modes. For finite resistivity all the modes are damped.
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The QR algorithm can only be applied up to 51 radial points with a matrix dimension
of d s 600. The eigenvalues for a case with . = 1 x 10~* are displayed in Figure
3. In the case of zero resistivity the Alfven modes form a continuum, also indicated
in Figure 3, with singular eigenfunctions. Especially interesting is the question what
happens for small resistivity, i.e. in the limit n — 0. The results for smaller resistivity are
_quite puzzling; Figure 4 shows the spectrum for the same mesh as in Figure 3 but with
smaller eta. With decreasing resistivity the location of the eigenvalues in the complex A
plane drastically changes. On the contrary, analytical results suggest that in the limit of
vanishing n the eigenvalueslie on prescribed curves. (Refs. /14,15/.) More mesh points can
only be introduced by using inverse vector iteration. It has been confirmed in conjunction
with careful convergence studies that thé damping, i.e. - Re A, is independent of the
resistivity. With up to 313 radial points, this result could be verified for the resistivity as
small as n = 1076, In Figure 5 the spectrum is displayed for = 2.0 x 10—2, the same
value as in Figure 4, but computed by applying inverse vector iteration using 313 mesh
points. Comparison of the converged results of Figures 3 and 5 indeed reveals that the
eigenvalues lie on identical curves. The eigenfunctions have an increasing number of radial
nodes v = 1,2,3,... with v = 1 closest to the ideal continuum. The upper (lower) line of
the triangle corresponds to eigenfunctions with oscillations near the boundary (near the
origin). The more oscillations, the higher the damping. At the branch point the oscillations
occur at the centre and vanish at the end points, and further along the eigenvalue curve
these oscillations extend over the entire radius. Diagram 7 shows three eigenfunctions for
three different eigenvalues. Purely damped modes emerge from a second branch point on
the negative real axis of the A plane. The eigenfunctions are Bessel function-like with
practically constant amplitude but an increasing number of radial modes away from this
branch point towards the two accumulation points A = 0 and A = oo. If the numerical
resolution is not good enough, completely false results are obtained for normal modes with

eigenvalues between the two branch points - as those shown in Figure 4. To represent
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adequately both the radial oscillations and the amplitude modulation requires a much
finer grid than to resolve the purely damped modes. Only with the reported fine grids of
N ~ 300 were we able to understand the numerical results near the branch points. By
applying inverse vector iteration in conjunction with convergence studies we worked out
the details of the entire resistive Alfven spectrum. The smaller the resistivity, the more
eigenvalues lie on the curve, but the curve itself becomes independent of eta in the limit
n — 0. The ideal (n = 0) Alfven continuum is approximated only at the two end points
in the limit of n — 0 by modes where the eigenfunction is peaked in a small layerat r =0
and r = 1.0. This layer width & decreases with 5 as § ~ /2. Diagram 6 displays the first
twelve eigenvalues for n = 2 x 10~8. Figures 7a and 7d display the eigenfunctions of two
cases with almost the same eigenvalue but for two different values of the resistivity. The
structure of the eigenfunction is simila,r-,‘:but for smaller resistivity more radial oscillations

occur in a finite radial domain.

Finally, we want to point out that by applying inverse vector iteration in the
described continuation procedure the complete Alfven spectrum for even more complicated
configurations with three and four branch points was mapped out. In addition, results were
obtained for the resistive sound-mode spectrum with a similar pattern but much smaller

eigenvalues. Details are reported in Refs. /8, 16/.

V. Discussion

Many applications in physics and engineering culminate in numerical solution of
the complex eigenvalue problem Ax = ABx. If the dimension d of the matrices is small, i.e.

d < 100, the QR algorithm, which solves for all eigenvalues and eigenvectors, is suitable.

In many cases the physical model includes dissipation with a small value of the

corresponding parameter. The problem then has quite different spatial and temporal
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scales which require a fine grid for accurate numerical approximation. The numerical
properties and numerical accuracy can only be checked by elaborate convergence studies.
In such sophisticated models, analysis of the complete spectrum of eigenvalues is useful
for the development of suitable methods and for application. In the resistive MHD model
eigenvalues with positive real part correspond to exponentially growing instabilities, which
can terminate plasma discharges. The numerical search for stable equilibria is therefore
very important. But also the stable part of the spectrum is relevant for plasma heating.
Put briefly, there are many reasons for the solution of the complex eigenvalue problem for
large systems. The QR then cannot be used any more because of its immense storage and
CPU time requirements. For repeated study of a specific part of the spectrum, such as

stability, it is not efficient in any case.

For really large matrices we propose using inverse vector iteration. Since it preser-
ves the band structure of the matrices, it is a very efficient method of computing selected
eigenvalues and eigenvectors. The algorithm contains factorization and, subsequently, so-
lution of linear systems and is, basically, simple. Most of the computing time is spent in
the LU decomposition of a band matrix. With a suitable shift Ao fast convergence is found.
Its fast execution allows - in an interactive manner - efficient analysis of part of, or even of
the entire, spectrum. There is no guarantee against one or several eigenvalues being missed
somewhere in the complex plane. But this is a general problem of the non-Hermitian case.
All efficient solvers, such as subspace iteration or Lanzcos algorithm, suffer from this draw-
back, which has to be lived with. On the other hand, if one eigenvalue of the branch of the
spectrum of interest is found by means of random shifts or by a continuation procedure as
done by the authors, one can indeed find the next one and eventually the entire branch.
Careful inspection of the corresponding eigenfunctions, e.g. in terms of radial oscillations,
allows one to decide whether the nearest eigenvalue has been found. The efficiency of the

method makes up for the fact that one has to restart several times with slightly different
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shifts. In the application of the algorithm, we do not just show with a few examples that
we can indeed compute complex eigenvalues and eigenvectors; with the discussion of the
entire Alfven spectrum we also want to point out the difficulties involved in a complex
spectrum. Near the branch points of the Alfven spectrum a very fine grid is necessary.
Only careful convergence studies performed by inverse vector iteration allow correct, i.e.
converged, results to be separated from false ones. If the resistivity is chosen too small for
a given grid, totally wrong eigenvalues appear as shown in Fig. 2. This means that with,
for example, n = 2 x 10~° the starting values from the QR algorithm are not of much
use. Nevertheless, we are able to work out the details of the entire spectrum for values
of the resistivity as small as = 105, It then becomes evident that the eigenvalues lie
on specific curves which are independent of 5 in the limit of small resistivity. Part of the
Alfven spectrum, such as the purely damped modes or the neighbouring ones to the ideal
continuum, are easily computed for n as small as n = 107%. In conjunction with mesh
accumulation we are able to analyse instabilities for n values of  ~ 10~1°, In summary, it
is emphasized that the complete spectrum can be found by inverse vector iteration with,

admittedly, quite a lot- but very fast - computer runs.

Let us come back to the algorithm itself. Its successful application encourages us
to extend the inverse vector iteration to such large systems that one matrix cannot be kept
in memory, even in band-matrix storage mode. Such large systems naturally occur in the
normal mode analysis of two-dimensional toroidal equilibria. In this case the algorithm
has to be split up into tractable pieces. For the LU decomposition this is possible and thus

such an extension is straightforward.

Another useful extension is the computation of an entire branch. Starting from
one eigenvalue it should then be possible by suitable orthogonalization in the iteration to
find the closest one and hence, eventually, the entire curve. This procedure generates a

special subspace. In our opinion such a version, desirable as it is, will not replace the

17




algorithm based on inverse vector iteration, that is presented here.
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Figure Captions:

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Flow chart of the algorithm for the inverse vector iteration.
Flow chart of the algorithm for the continued inverse vector iteration.

The resistive Alfven spectrum for n = 10~* and N, = 40 intervals computed by
the QR algorithm. All eigenvalues are correct i.e. converged. The solid bar on

the imaginary axis denotes the ideal Alfven continuum (0.40 < I'm()A;4) < 2.80).

The resistive Alfven spectrum for n = 2 x 10~% and N, = 40 intervals computed
by the QR algorithm. A major part of the eigenvalues is false due to insufficient
numerical resolution. The solid bar on the imaginary axis denotes the ideal Alfven

continuum (0.40 < Im(};4) < 2.80).

The resistive Alfven spectrum for = 2 x 107% and N, = 312 successively
computed by inverse vector iteration. All eigenvalues are correct i.e. converged.

The solid bar on the imaginary axis denotes the ideal Alfven continuum (0.40 <

Im(Xiq) < 2.80).

The first twelve eigenvalues of the upper branch of the resistive Alfven spectrum
for n = 2 x 10~% and N, = 312 intervals successively computed by inverse vector

iteration. The solid bar on the imaginary axis denotes the ideal Alfven continuum

(0.40 < I'm(Aq) < 2.80).
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Figure 7 Normal component of the velocity v, = rv, computed by inverse vector

iteration corresponding to the eigenvalue

a) A=-027+41i-2.33forn=2x10"%, which is the fourth mode of the upper

branch.
b) A = —0.63+i-1.44 for n = 2 x 107° which is the tenth mode of the lower
branch.
“¢) A= —157+1-0.38 for n = 2 x 107° which is the last mode with oscillation
i.e. finite imaginary part.

d A=027+1i-232forn=2X 10—% which is the twelvth mode of the upper

branch.

Note that real and imaginary part of the eigenfunctions have similar structure and

equal magnitude.
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