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Abstract

The compressible, resistive MHD equations are linearized around
an equilibrium with cylindrical symmetry and solved numerically
as a complex eigenvalue problem. This normal mode code allows

to solve for very small resistivity n ~ 10-10

. The scaling of
growthrates and layer width agrees very well with analytical
theory. Especially, both the influence of current and pressure

on the instabilities is studied in detail; the effect of resisti-

vity on the ideally unstable internal kink is analyzed.




0. Introduction

A hot and dense plasma can be confined by strong magnetic

fields, thereby avoiding contact with the surrounding wall.

At fusion temperatures the product of the energy confinement

time and density must exceed a critical value given by the

Lawson criterion. In present tokamak experiments the plasma

is sustained for several seconds. A large variety of instabili-
ties can abruptly terminate the discharges. The ideal MHD in-
stabilities are the most dangerous kind owing to the characteris-
tic Alfvéen time scale of the order of microseconds. It has been
established that the ideal instabilities may limit the plasma
beta, i.e. the ratio of the plasma pressure and magnetic field
B~ p/Bz, but do not prohibit long-time experiments in general.
Non-ideal effects act on a slower time scale but can further
restrict the B-values attainable. We consider the resistive
instabilities as the most important of the dissipative pertur-
bations since they cause the plasma to break away from the magne-
tic field. Such tearing modes are widely accepted as causing the
disruptive instabilities seen in many tokamaks. Complete simula-
tion of the disruptions requires solution of the full time-depen-
dent, non-linear MHD equations, this being a very complex numeri-
cal problem. A set of reduced equations which eliminates the fast
time scale is therefore usually used for numerical solution /1/.
But even then the accuracy is questionable owing to the long com-

puting time required and the poor resolution.

The classical approach - consisting of the study of lineari-
zed perturbations around an ideal MHD equilibrium - has signifi-
cantly contributed to the understanding of resistive instabilities
/2-4/. The resistivity is only important in a small layer around
resonant magnetic surfaces. This leads to the A' (jump of the lo-

garithmic derivative of the perturbed magnetic field at the reso-

nant surface) concept. The generalization to several singular layers

interacting with each other is already very complicated and, in
general, not yet solved /5/. A completely different approach is

the energy functional formulated by Virtamo and Tasso /6/. This




method has been used for numerical stability analysis of multihe-
lical tearing modes for tokamak configurations with arbitrary cross-
sections utilizing just the usual tokamak ordering. The stability

is determined by the smallest eigenvalues of a Hermitian operator
/7-10/. The influence of finite aspect ratio and finite pressure

cannot be included in a stringent fashion.

As a complement to this 6W stability code, we develop a spec—
tral code for solving the full linearized equations - at first in
cylindrical geometry. This approach yields the physical growth rates
and eigenfunctions of the perturbation and is not limited to incom—
pressible perturbations or to ideally marginally stable configura-
tions like most of the analytical results. The numerical study of
the complete ideal MHD spectrum has significantly contributed to our
understanding of the mathematical and physical properties of ideal
MHD/11-12/. The accurate numerical treatment of the point of margi-
nal stability has been indispensable for the development of the
ERATO /13/ and PEST /14/ general 2D spectral and stability codes.

We strongly feel that a code solving for the complete spectrum in
resistive MHD is equally important. The inclusion of dissipation in
the MHD equations leads to a non-Hermitian operator with the occur-
rence of complex eigenvalues, i.e. damped or overstable modes. A
Galerkin procedure involving non-Hermitian matrices is not a standard
method. However, most problems in physics involve dissipation and
consequently lead to non-Hermitian operators. The numerical techniques

used here should thus be of general interest.

The most common method of solving the full linearized equations
is the initial-value formulation /15,16/, where the most unstable per-
turbation is obtained but not the entire spectrum. The shooting method,
especially the matrix shooting technique by Freidberg and Hewett /17,18/,
can be used to evaluate specific eigenvalues provided a sufficiently
close guess is made. It is, however, too difficult to obtain the entire
spectrum and to discuss '"pollution' properties /19/, which is no prob-

lem for the eigenvalue code.
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It is known that the QR algorithm applied to the linear
eigenvalue problem is a solid method for arbitrary matrices.
Guided by experience with ideal spectral codes, we introduce
an adapted finite element discretization. To keep the equations
linear in the eigenvalue, only first-order time derivatives are
kept. This has the interesting consequence that even without re-
sistivity the matrices are non-symmetric - although the ideal
spectrum can be obtained from a Hermitian operator. This allows
detailed tests for the numerical approximation of the entire spec-
trum. The successful numerical solution for the 1D spectrum yields
interesting insights for the development of a toroidal 2D code. The
knowledge of the full spectrum provides detailed information about
all the time scales involved and should be most useful for developing

an initial-value code, especially a non-linear one.

The paper is organized as follows: The physical model, in agree-
ment with the classical approach, is presented in sec. I. The Galer-
kin method used in conjunction with finite elements is described in
sec. II. The results, first for the ideal MHD spectrum and then for
the resistive interchange and the tearing modes are given in sec. III.
The numerical accuracy is discussed in sec. IV. The discussion and

the conclusions are finally presented in sec. V.

Physical Model

The plasma is described in the framework of single-fluid theory.

The resistive MHD equations consist of

mass continuity:

_gFt’_ + o lpv) = 0, (1

equation of motion:

, (2)
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Maxwell's equation:
1 3B
UXE = - — 22 (3)
C t
s L L S (4)
c
vB =0, (5)
Ohm's law:
E+ L+ @x®H=nT, (6)

: ; ; - F
where CGS units are used, and p 1is the density, v the velocity,
F > . . > . .
T the current density, B the magnetic field, E the electric field,
and p the pressure. For the equation of state the adiabatic law is

taken:

O () s v (2 -
= (OY) + vV (DY) =0, (7)
where y is the ratio of the specific heats.
Substituting eq. (4) in eq. (2), one gets
3+ - 1 ,_ > >
i bt VewW) = - Up + 7o (B) x E. (8)

The equation of state (7) can be combined with the equation of con-

tinuity (1):

—g—% = - Yp V°_\)r' - F\;-Vp (9)

Finally, eqs. (3), (4) and (6) give
c

aﬁ -+ 2 -
== = (vxB) - TV% (n7xB). (10)
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Equations (8), (9) and (10) form the full set of MHD equations
with resistivity as the sole nonideal effect and with sources

neglected. Equation (5) serves as an initial-value condition.

The adiabatic law, eq. (7), neglects the dissipation of
energy, which is, however, very small since the resistivity is
small. A more rigorous energy equation should also include the
heat conductivity, thereby introducing the temperature and re-
quiring thermodynamic relations. For the purpose of examining
resistive instabilities, eq. (7) is sufficient - in agreement
with the previous treatments in the literature. In principle,
an equation for the time evolution of the resistivity could be
added. But this introduces an unnecessary complication and is
therefore omitted. A more complete and consistent set of equations

will be treated as the next step in our program.

It is useful to rewrite eqs. (8), (9), (10) and (5) in di-
mensionless form. We normalize the radius to the plasma radius
a, and the time to the Alfvén transit time t, = éi , where V

A A
. ’ . Bz (o) . 4 ;
is the Alfven velocity VA g mey given by the toroidal mag

netic field and density on the axis. With the following transforma-

tions:
v N
—tE-'Pt,—'-'*r,aV—)'V,T—*V,
A A
>
B ~ 3 4m_ _a + . T B 555
Béioi % e Bz(o) J I 500 ?
9
4 (6 1
B (0)2 p*p and Zm - nFM
z A
we get the dimensionless equations
a+ > > -+ -+
p(a—:- + veVy) = - Up + (VxB)x B , (11a)
—Q-R = - Y-p VCF\;——\;-VP 5 (11b)

ot
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2B ¥ o

5o = V% (»B) - vx (nvxB) , (11¢)
B =o0. (11d)

These equations are now linearized around a static equilibrium

. d +* s s ;
characterized by 5~ © and VO = 0 . The equilibrium is then de-
termined by the equation

7p = (vxB ) x B . (12)
(o] o o]

It is known that in straight geometry static ideal equilibria can

be interpreted as resistive equilibria if

v (nJ) =o, (13)

with the consequence that noj0 = Ez = const. In toroidal geometry a
resistive equilibrium is only possible with flow, i.e. 30 z 0.

Since in our study only one singular magnetic surface occurs and the
resistivity is only important in a small layer around, it suffices

to assume constant resistivity throughout the plasma.

For a circular cylinder the equilibrium quantities only have
an r - dependence. With the usual cylindrical coordinates r, 8, z,

the equilibrium is determined by the equation

d 1 d
e Wi Bz P Bz . BB e (rBe) . (14)

With two profiles given, eq. (14) can be solved to give the remaining

one.

The following separation ansatz is suitable for the perturbed



quantities:

f(r,0,z;t) = £(r) exp (im6 + inkz + iwt) ,

(15)

where w is the eigenfrequency and m the poloidal mode number.

With k = 2n/L defining a periodicity length, a tokamak with large

aspect ratio is simulated, n corresponding to the toroidal mode

number. If iw is real and positive, then there exists an exponen-

tially growing instability. In ideal MHD iw is either real or pure-

ly imaginary, which leads to unstable or purely oscillating waves.

With resistivity included, the frequency can become complex. The

equations for the perturbed quantities read

iwp -% v

iwprv

; 1
1wp — VvV
r

n|—
Lol

iw

iw b

iw b

Y _ 2 g, 20k
# o Gl ® nkBy ) By~ or By ¥
ln-A .l. 1 _n_kr 1
r p+ ( 5 BB B BG) bl m Bz bi *

22
+ (2L 4+ 5y b,
2.2
nk » m n k nk '
T o= UG Sl b, b By By B
W T v, - ol v' - Ly, =
r po 1 Ypo T 1 Yp0 r 2

+

a b .
P, 1 ' _ nkr 23
[r % mBB b1 * (Bz m BB) I -—-[

m
( rBB

2
m 2.2 2nk
(—]:_-2 + 0k b, - bl .

+ = B, v, - Blv, +

‘ —
Bzv1 mBz ¥ r 6 3 z 1

1 m2 2.2
", E(b;3 - Tb3)' - (—1_-2*- n k )b;[,

LT
s nsz)v1 * [:b1 * = b

+

Bgbg »
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where the prime denotes the derivative with respect to r.

The transformation

vy =TV,
v, = ive 5

vy = irvz,

ﬁ - rp1 s 17
bI = irbr y

b3 = rbz .

yields only real quantities. The divergence condition for the per-

turbed magnetic field
5
Vb = - = (b' - mb, - nkb,) =0 (18)

is used to eliminate b2 provided m ¥ 0. The 6 - component of the
Maxwell-Ohm equation is then automatically satisfied. If m = 0
modes are to be examined, we can use eq. (18) to eliminate b3,
provided ak # 0, The case n = m = 0 yields b]' = 0 and hence b1 = ct.
and is not of interest. As pointed out earlier, the perturbed re-

sistivity is set equal to zero:

n, =0 . (19)

—1+

= (B V) 'b,-n , see Ref. /6/,
1 o] 1 o]

+ 3-Vno = o will be included later on.

More physical conditions like n
3

°F Bt ™

Finally, we discuss the boundary conditions.It is assumed that

the plasma is surrounded by a perfectly conducting wall, which

implies the following conditions at the wall:

[}
o

vi(a)

(20)

i
o

bi(a)
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For finite resistivity in the plasma the Maxwell equations re-
quire that the tangential component of the electric field vanish

at the wall. This implies

b1 .
0::') =0 (21a)
r=a
or
(rbz)' =0 (21b)
r=a

in case b3 is eliminated.

On the axis r = o all quantities are regular,yielding

v () =0,
vy(0) = 0, -
p () =0,
b, (o) =0,
by(0) = 0 .

To simulate a plasma - vacuum - wall system it is only necessary
to give the resistivity in the "vacuum" a sufficient large value
and hence a small value for the current, as already done in Ref.

/7 - 10/.
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II. Numerical Method

The set of resistive MHD equations is solved in its weak form.
. + - -
By introducing a state vector u which contains the perturbed velo-

city, pressure and magnetic field

T = (v1, Vs Vs B, by, b3) (23)

the differtial equations (16) can be written in the form L u = 0,
where L denotes the linear matrixoperator.

The vector u(r) is a weak solution if, for any function ;(r) of the
admissible Sobolev space satisfying the boundary conditions, the sca-
lar product gipﬁ, V> vanishes /20/. The components of Z(r) are appro-

ximated by a finite linear combination of local expansion functions:

) a e = ) a? h?(r) : k=1,...,6 (24)

where the a? are coefficients to be determined and the h?(r) are the
chosen expansion functions. In the Galerkin method, applied here, the
basis functions h?(r) are used in the weak form, yielding

’ ﬁj >=0 , i =1,..., N . (25)

<>
<L u

The error E (r) introduced in the differential equation through the
3 - : > .
approximation u (r) for u (r), i.e. L u(r) = E(x), is orthogonal
to every basis function.
. . . >
The operator ‘I is represented by matrices §+and+§; where in S
only the diagonal elements are nonzero and R contains differential

operators and equilibrium quantities:
%, 3
RelU=iuS+u. (26)

The Galerkin method leads to a general matrix eigenvalue problem

- >
a

=iw¥®-a, (27)
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. - ~ : . :
with a the vector of the 6N expansion coefficients and iw
the eigenvalue. The matrix B 1is symmetric and positiv definite
“— Birer i . - > .
but A 1s non-Hermitian. The matrices A and B consist of
NxN subblocks with identical structure and the dimension 6 x 6.

The subblocks for the matrix fE' read

1 4
A k(1’4) = [ dr hj (r) = h (£) »
A, (1,5 = farn! @ L8, 030 + farnl@ L& B+ nks )03 ()

k™’ ] m 0 k j r r o z' 'k
1 2 51
+ f dr hj (r) (- r—r'[TBB) hk (r) ,

1" 1 k dei 6
AL (1,6) = [ dr h, (r) £ (B, - = B) h + [ ar h (== n ()

2 4
A, (2,4) = [ ar by () ﬁ? h, () ,

nkr

A (2,5) = [ar bt () B+ B W@ + [ ar Y () (BEE g ymd" (r)

) A
A, (2,6) = [ ar b: (1) BZF+ By v,
] m
3 kK 4
A, (3,4) = [ dr hj (r) l%— h, (),
3 k. .5 3 1 .5
A, (3,5 = [ dr bl () -8, hy (r) o+ [ dr hy () 7 Bl by (6)
2.2
3 m n k 6
A, (3,6) = [ dr hy (1) (7 - 7)) By by (1), 565
A 1) = [ dr n! (@ (Lp) by (0 + [ dar b (vp D (@)

m 2
A, €4,2) = [ dr n] (x) (-Ypo <) h (),



- 12 -

3
Ao (4,3) = [ dr h§ (® Cvp, ) b (o),

- 5 _m 1
A., (5,1) = [ dr b (r) (-2 By +nkB) h (1),

jk 6
51 5! 5, 1 .5
Ay (5,5) = [ ar by (@) (n) b (@) [ dr by (x) oy by (r) +
+ [ dr b (o) B - W22 13 ()
; n, i n k (1) s
_ 5 oy (o 2nk ) 6
Ay (5,6) = [ dr b (r) (=== n) b (1),

Ay (6,10 = [ar % () B B + [ dr bl () B bl (),
Ao (6,2) = [ dr b® () (-mB)) hZ (r)
3 ’ 3 z k ’

_ 6 m 3
A., (6,3) = [ dr b (r) (T By h (©),

A 6,6) = [ar b8 (@) (n) b8 () + [ ar bS (@) Lo B

2

+ [ dr h? G == = a2k?) n, BY

. CED:

Ajk stands for the subblock which is created by the interaction between

the j-th  and k-th expansion functions. The numbers indicate which
. . ;

components interact. For the matrix B all of the nondiagonal elements

of a subblock are zero. The diagonal elements read

1 .1

- 1 e
Bjk (1,1) = [ dr hj(r) o= by 6
Bjk (2,2) = | dr h?(r) oyt hi (s
3 1.3
Biy (3:3) = [ ar hj(r) B W el (29)
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_ 4 1.4
Bl (4,4) = [ dr by (1) — By (0),

5 5
Bjk (5,5) = [ dr hj (r) h {r) R

6 6
Boye (6,6) = [ dr h, (r) hy (1)

Since we use as expansion functions finite elements, only the sub-
blocks which form the main diagonal and their nearest neighbours

contain non-zero elements. The matricesfx'andﬁﬁ¥thus possess a tri-
diagonal block structure. The dimension of the matrices is 6N x 6N,

N being the number of finite elements used in the expansion.

The development of the spectral codes for ideal MHD has indi-
cated that an appropriate choice of finite elements has to be found
for every component of 3(r). If the same elements are used for all
components, poor discretization is achieved because the condition
that the transverse divergence vanish exactly in every interval

21/, i.e.

1

1

>
Vi, ®°%g

5 =—11_-(v+mv2)=0, (30)

cannot be satisfied. This leads to numerical coupling of the fast
magnetoacoustic waves with the Alfvén modes, causing new spurious
modes to appear as the number of mesh points is increased /19/.

If Eer v, and b,| finite elements of order n + 1 are chosen and for
the remaining components elements of the order n, the divergence
condition (30) is satisfied and the spectrum is well approximated

numerically without pollution /21/. Linear elements for v, and b1

3> P and b3 - as used 1in

the ideal spectral codes - yield a good numerical representation for

and piecewise constant elements for Vos V

zero resistivity. But for finite n the component b3 has to be
differentiated, which also calls for the use of linear elements.
In this case it is found that the numerical approximation of the

spectrum is poor owing to coupling of fast and Alfvéen modes. Higher-
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order elements are therefore introduced. It is well known that cubic
spline functions yield good interpolatidn. Hence cubic Hermite

spline functions are used for v, and b1 and quadratic finite elements
for Vs Vg, P and b3. In each case two orthogonal functions define

a complete set. The cubic Hermitian elements are defined /20/

ror. 2 ror. 3
Fo } =0 - 2 R S 7 = v St
T.=T. .=t 171 ]
j o3 3 1
2
r, -r r_+1—r 3 (30a)
+
n (xr) =% 3- il U g 2. | r,. ET8Y.
] L, =T, r, -r. J J+1
31 4 ¥l 3
© i l_rj_1sr_]+;[
2
r-r.
(r—-r_) . .._-];]_ r. <r g Tr
s ) =1 ]
] J=]
2
r-r.
e i (30b)
g. (r) = (r-r.) - — r. s = I‘._H
J ] rj+1 rj 1 ]

for k = 1,5

and the quadratic elements

rJ+ri_1 r—rj_l
. - < <
2. (r 5 ) CR=TERYL rJ_] x £ rJ
-1
) 5 + =T .
k - T . ikl 2 7 %
hj (r) = 2 (r 5 ) & -r.)z rJ Srsr., (31a)
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(rj—rj_1 1=1 3

g‘; () = (31b)

for k = 2,3,4,6.
These elements are plotted in Fig. 1.

With the indicated choice of the two orthogonal finite elements per
. . . i “—r - 5 =

interval the dimension of a subblock in A and B 1is increased to
12 x 12. With the boundary conditions taken into account, the di-

. , > — .
menslon of the matrices A and B 1is d x d with
d= 12 N- 2,

where N 1is the number of intervals. Even for such a small number of

intervals as N = 20 the size of the matrices is already large.

For self-adjoint eigenvalue problems there exist very efficient
algorithms that solve for the entire spectrum or part of it, e.g. the
smallest eigenvalue. The inverse vector iteration, which takes into
account the band structure, allows efficient treatment of very large
systems with d ¥ 50 000 /22/. General non-self-adjoint matrix eigen-
value problems are much more complicated. As discussed by Wilkinson/23/,
only the QR algorithm evaluating all the eigenvalues and eigenfunctions
is stable. If the matrix B 1is inverted, the standard problem is ob-

tained:

(32)

and the routines of the EISPACK library /24/ can be used. These

routines are optimized for the CRAY. It requires only 4 seconds CPU
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time to calculate all the eigenvalues but not the eigenvectors of
a matrix of d = 238, which corresponds to 20 intervals, including
evaluation of the matrix elements and the inversion. Since the full
matrix has to be stored, we are restricted to d £ 600, i.e. N = 50
intervals. As all the matrix elements are real, the complex eigen-
values occur as complex conjugate pairs. The inverse vector itera-
tion can be used to iterate specific eigenvalues, provided a good
initial guess is available. Recently, we coded this algorithm, and
at the moment up to 313 radial mesh points or d £ 3742 are possible.
Our experience with this method will be reported in detail else-

where, Ref., /28/.
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Results

a) Ideal perturbations

The first application is aimed, naturally, at testing
the performance of the new method by reproducing known re-
sults from ideal MHD. The entire spectrumof a plasma column
with constant toroidal magnetic field and constant toroidal

current density is an interesting case. The equilibrium is spe-

cified by
Bz(r} =1, (33)
Be(r) = cr, c = const. (34)
p =1 (35)

yielding a parabolic pressure profile and a constant safety

factor q. As usual, q is defined as

rk B (r)
4

DR - g (36)
Be(r)

q(r)

In Fig. 2 the spectrum is displayed as a function of the safety
factor. The square of the eigenfrequency is plotted, positive
values corresponding to stable modes and negative values to ex-
ponentially growing unstable ones. Three parts of the spectrum
can be clearly distinguished, namely the discrete fast modes,
the Alfvén modes, which form for this equilibrium a discrete

set of modes, and the slow-mode continuum. If nq is sufficiently
close to -m, the Alfvén modes become unstable, as can be

seen from Fig. 2, and for nq = - m there are infinitely many
unstable modes. Our approach yields at this point as many in-
stabilities as correspond to the entire Alfven class, namely

1/3 of the spectrum modes. This result holds for all mesh sizes.

The entire slow-mode continuum degenerates to one point wz = 0.
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The spectrum presented is in complete agreement with that of
Chance et al. /25/, indicating that we can reproduce the spec-
trum without "pollution'"/19/, especially the marginal points in
agreement with analytical results /26/. It is emphasized that our
results are obtained from a non-self adjoint operator in con-
junction with cubic and quadratic finite elements, and that of
Ref./25/ from a completely different self adjoint operator in

conjunction with linear and piecewise constant elements.

If we examine configurations with peaked current profiles and
hence with shear, the Alfvén modes also form a continuum and their
numerical approximation is equally good. The unstable modes and
their marginal points are represented well, as was established in

further test cases.

b) Resistive perturbations

The results discussed so far have demonstrated the capability
of our numerical method to reproduce the ideal MHD spectrum accura-—
tely, especially the point of marginal stability. We are thus ready
to tackle resistive perturbations. With finite resistivity, the
magnetic field is no longer frozen into the fluid. This has the
consequence that a negative pressure gradient can always drive
interchange modes unstable /4/. The Suydam criterion, modified

to allow resistive perturbations, assumes the form

~EE (_;'1,_)2 <0 (37)

rB
z

For a monotonically decreasing pressure profile this criterion is
always violated, giving rise to unstable resistive interchange
modes. For small values of the resistivity their growth rate
scales like n1/3. Besides these pressure-driven interchange

modes, there exist current-driven tearing modes, which decouple
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the field from the fluid and cause islands in the fields
around resonant surfaces. Their growth rate scales for small
resistivity like 113/5 /2/. It is known that such instabili-
ties can be stabilized by sufficiently smooth current gra-

dients near the resistive layer; see, for example, Ref. /7/.

These instabilities are studied for realistic tokamak-
like equilibria with peaked current density and constant to-

roidal field:

2V

=0 =) (38)
B = (39)
p = 1 (40)

This class of profiles yields for the ratio of the safety factor
: gqla) _ .
on surface and on axis (o) = v + 1. The constant i, 1s ad-

justed to vary qfo).

First we set v = 1 and hence {%T—Y = 2. Itis known /7/ :

that the m = 1 tearing mode is unstable if the q = 1 surface

(a)
(o]

is inside the plasma. This instability can be avoided if q > 1.0
over the whole plasma radius. Then the m = 2 tearing mode is the
most dangerous instability. As expected for this monotonically
decreasing pressure (see Ref. /4/), the unstable modes have
purely real frequencies. The growth rate of the most unstable
mode is plotted versus q(a) in Fig. 3a. If the wall is placed
directly at the surface r=a, then the m=2 tearing mode is un-—
stable for 2.20 = q(a) £ 4.0. If the wall is moved away from the
plasma surface, the internal tearing mode is unstable as long

as the q=2 surface is located in the plasma, and it becomes an
external kink if the q=2 surface is in the "vacuum" region.

For a finite distance of the wall Eg_ = 1.5 this kink becomes
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stable for q(a) £ 1.61. These stability limits, ob-

tained with the stability code of Kerner, Tasso /7/, are
indicated in the figure. The marginal point for the ex-

ternal kink is very accurately reproduced. The diagram

shows that the free-boundary tearing mode is the most

dangerous one. For the internal tearing mode the growth rate
becomes much smaller as q(a) approaches the value 2.20, yielding
good agreement with the marginal point of Ref. /7/. As pointed
out above, the resistive interchange criterion is violated,
which gives rise to additional pressure-driven instabilities.
The code finds more unstable modes. It is particularly worth-
while to take a closer look at these instabilities near the mar-
ginal point on an enlarged scale. Figure 3b displays the growth
rate of the two most unstable modes. On this scale the higher
modes are located on the axis and are therefore omitted. The
most unstable mode has the global structure for the perturbed
field b1 = irbr displayed in Fig. 4a. This perturbation has a
finite value at the singular surface. The normal component of
the velocity Vg = TV, is 'more singular' and hence more localized
around r, and is characterized by one radial node. If the value
for the resistivity substantially drops from n = 10_6 in Fig.

ba to n = 107° in Fig. 4b, the changes in b, due to a larger

1

gradient at r=r_ are barely visible - but those in v, are pro-

1
nounced. The second unstable mode shows one oscillation around

the resonant surface in the field perturbation b,. The normal

1°

velocity component v, is very localized at r=r_ and has two

1
nodes in the resistive layer, one more than the first mode.

It is evident that these unstable modes represent a Sturmian
sequence with increasing number of radial nodes inside the layer.
The plots also show that a very high resolution is necessary

to resolve these oscillations in a layer whose width strongly
decreases as the resistivity. We accumulate mesh points at

the resonant surface, thereby drastically increasing the nu-

merical resolution.
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Analytic theory distinguishes between current and
pressure-driven instabilities and treats them separately,
usually assuming that only one kind is present. The results
presented are obtained for a realistic equilibrium with both
pressure and current gradients. It is found that the two un-
stable modes displayed in Fig. 4 exhibit for all q(a) values
the structure discussed. The fundamental mode represents a
current—driven tearing mode which for gq(a) £ 2.20 turns smooth-
ly into a pressure-driven interchange. This transition is neat-

ly illustrated in Fig. 3b.

Such Sturmian behaviour of the current-pressure-driven in-
stabilities is found in general for the tokamaklike equilibria
eq. (38) . Besides current density profiles with v=1, we ex-
tensively studied the case with v=2. The next question is, of
course, the scaling of the growth rate with respect to resisti-
vity. The value of q(a) is chosen as q(a) = 4.625, which puts
the singular surface at r = 0.5. Again, several unstable modes
are found simultaneously. The most unstable mode is identified
as the tearing mode with a scaling AR o n3/5 for small values
of the resistivity and saturation at large ones. The second un-—
stable mode, a resistive interchange, scales like AR o n1/3.

These results are displayed in Fig. 5. It is emphasized that this
dependence is established accurately for values of n up to 10_10.
The results are confirmed by convergence studies with varying
mesh size. Analytic theory finds different scaling for the width
of the resistive layer for tearing and interchange modes, namely
§ = n2/5 and § = n1/3. A careful study of the eigenfunctions
allows the layer width to be extracted quite accurately.

The dependence of the width on resistivity is shown in Fig. 6.
For larger values of resistivity, n > 10_7, the scaling for the
tearing mode is § « n1/3. Only for very small values of resistivity,
n < 10-8, is the scaling § « n2/5 in agreement with theory. The

1/3 more uniform-

second unstable mode exhibits the scaling § = n
ly as a function of resistivity. The more oscillations in the
layer occur the more important the resistivity becomes and no

abrupt saturation at large resistivity occurs. As checked by con-
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vergence studies, the errors on § are small enough to establish
the scaling discussed. The accumulation of mesh points around
r=r yvields a local mesh size of about 10-3 a, if 100 radial
grid points are used. This allows a sufficient resolution, which
for n ~ 10-9 should be approximately 10_3. It is very likely that
the combined effect of pressure and current yields the interchange
mode layer at first, and only for sufficiently small resistivity
the expected tearing mode scaling. Our results show that for accu-
rate scaling the resistivity has to be given smaller values than
those usually used in numerical studies - and, furthermore, that

our scheme is capable of handling such small values of resistivity.

Tokamak discharges undergo peaking of the current at the magne-
tic axis, reducing the safety factor to a value of below one. This
gives rise to the ideal m=1 internal kink modes, identified as
sawtooth oscillations of soft X-ray emission. It is interesting to
note that their growth rate is a factor of up to one thousand
smaller than that of an external kink, which comes close to the
tearing mode time scale. Both the ideal and resistive m=1 and m=2
modes play important roles in internal disruptions. The last appli-
cation is therefore the numerical study of the m=1 internal kink
mode, where the assumption of marginal ideal MHD stability necessa-
ry in analytical calculations is not made. The equilibrium is de-

fined as follows:

B = 1, (41)
A
E
B, = ¢ —m————— (42)
B 1+(]7,E—)2

with constant density and resistivity.

The safety factor is then given by

r 2
q(r) = qO(I + (.7) Y (43)
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where q, = %?. For the existence of an unstable m=1 fixed-
boundary mode q, has to be smaller than one. We set q, = 0.7
The parameter c is varied, while k is adjusted to keep q, = 0.7
fixed. In Fig. 7 the current density and the safety factor are
shown for ¢ = 0.20. The parameter c modifies the pressure. In-

stead of ¢ we use the toroidal beta value on axis:

B, (o) = —zgé‘z’-)— = c?, (44)
Z

which depends quadratically on c. It is noted that these equi- :
libria are stable to ideal interchange modes. The growth rates !
of the unstable modes as a function of Bt(o) for different |
values of the resistivity are plotted in Fig. 8. The case with

n = 0 yields the ideal MHD mode. For small values, n = 10_6, the
resistivity has a significant influence only at small beta values.
This is more clearly seen in Fig. 9, where the ratio of resistive
to ideal growth rate versus beta is displayed. If the growth rates
are plotted versus resistivity for different Bt values - as done

1/3

in Fig. 10 - the small Bt cases show a linear dependence A_ o n

R
With increasing Bt the ideal mode becomes more dominant, yielding

a constant dependence. i

The eigenfunction of the ideal mode exhibits the step-function-
like behaviour of the normal velocity component Vi (or linear de-
pendence of VI) with the jump at the q=1.0 surface. The perturbed
normal field component vanishes at q 2 1.0. In Fig. 11 the results

for a low-beta case are displayed. The jump of v.atq = 1.0 be-

comes smoother with increasing Bt' A small resistivity makes the

jump of v at r = ry less pronounced and the perturbed field com-
-8 .

ponent assumes a non-zero value there. Even at n = 10 the differ-

ence is clearly visible, although small. Increasing the value of
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eta broadens the resistive layer, where the singularity of
the marginal ideal mode is removed. At a value n = 10.-5 the
layer width & 1is about 0.1 of the plasma radius, as can be
seen from Fig. 11. As the resistivity and beta increase, the
singular behaviour tends to smoothen. This explains the fact
that for large beta the resistivity has no influence on the

mode.

Our results are in agreement with the analytical findings
of Ref /27 /. However, the mixed case of small resistivity and
small beta, which is excluded in the analytical work, is readi-

ly analyzed numerically.

Numerical Accuracy

In the case of a non-Hermitian operator mathematical theory does

not provide a recipe for implementing the Galerkin Method which

ensures good numerical approximation of the eigenvalues and eigen-

vectors. For the ideal MHD operator Rappaz proved that the discret-

ized system approximates the true eigenvalues uniformly, i.e. without

numerical "pollution'", if the finite elements are appropriately

chosen. We are not familiar with a similiar statement applying to the

dissipative system. The development of our method is therefore guided

by experience and careful inspection of the entire spectrum obtained

numerically. The knowledge of the numerical approximation of the ideal

case provides detailed tests. We are thus convinced that we have estab-

lished a discretization capable of correctly representing the entire

spectrum of normal modes. The cubic and quadratic finite elements applied

yield fast convergence of the eigenvalues as the number of radial inter-
1

vals N 1increases. The eigenvalues converge with high power in h = N

For smooth, global modes twenty intervals are sufficient for an
accurate solution; with N >20 the eigenvalues do not change till the
third or fourth decimal place. The typical resistive modes are much

harder to represent. Figure 12 displays the growth rates of the first
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two unstable resistive modes as functions of the mesh size. The
resistive layer has a width of about 87 of the plasma radius where
the eigenfunctions have sharp gradients. The first unstable mode

is examined for N 2 20. Because the layer is not resolved well for
less than fifty radial points, the convergence is poor at first.
With N 2 60 more than four grid points are located in this layer
and the eigenvalue drastically improves. With more than a hundred
intervals the mode 1is represented with sufficient accuracy and the
growth rate no longer changes much. This part of the diagram is
shown on an enlarged scale. In this range the convergence is roughly
described by a quartic dependence of the growth rate on h and the
eigenvalue is approximated from below, i.e. from the unstable side.

If mesh points arm accumulated around the singular layer r = r_, the

S’
convergence is much better and 50 intervals are sufficient. The
second unstable mode has one oscillation in the layer. In the range

of 60 = N = 92 intervals quartic dependence of the growth rate on h

is again found with saturation for larger N. It should be noted that

the eigenvalue is now approximated from above, i.e. from the stable ;

side. With accumulation of mesh points around r = r_, this mode is

s?

accurately resolved for N 2 60. i
The convergence of eigenvalues and eigenfunctions does not i

follow a simple power law like kr a (lN)k and k = 2,3 or 4, but has

a complicated dependence on the mesh size with exponential-type !

behaviour in the saturated phase N + =

The numerical accuracy was considerably improved by the capability

of switching from the QR algorithm, where, with a mesh size of up

to N £ 50, all the eigenvalues are computed, to the inverse vector
iteraction (Ref./28/), where selected modes can be followed up to !
312 radial intervals. Especially the details of the eigenfunctions

needed for analyzing the resistive layer can only be obtained with such

a fine mesh.
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It is emphasized that all results presented in this paper
were checked through convergence studies. We are thus sure that
the possible "error bars" in all diagrams do not affect the
conclusions drawn. Sufficient numerical resolution is guaranteed

even for very small values of the resistivity.

. Discussion

The resistive MHD equations underlying this study yield a
realistic description of a plasma, but at the same time are highly
complicated. This is manifested in the very different time and length
scales involved, which require a sophisticated and accurate numerical
method for studying the normal modes connected with linearized perturb-
ations around an equilibrium state. Complex eigenfrequencies have to
be computed. This is accomplished by means of the Galerkin method, which
leads to a non-Hermitian matrix eigenvalue problem. This approach enables
us to study the influence of the resistivity on all the different branches
of the ideal spectrum. The fast magnetoacoustic waves - seen as the
uppermost branch in Fig.2 - undergo damping proportional to the resistivity.
The larger the oscillation frequency is (i.e. the more radial nodes there
are), the larger is the damping. Both the shear-Alfvén and sound-mode continua
show completely different behaviour. If resistivity is added, the logarithmic-

type singularity in the eigenfunction disappears and the modes are damped.

In the limit of vanishing resistivity the ideal continuum is approx-
imated at just a few special points. These points are determined from the

142

ideal frequency wA(r)=§;§/(4ﬁpo) and are given by the end points r = o,a,

singular surfaces r = r_ and extrema of W, (r). The special case of an
equilibrium with non-degenerate, monotonic profile tuA(r) yields an approx-
imation of the ideal continuum only at the two end points. For small res-
istivity the eigenvalues are located on specific curves in the complex plane.

A separate paper deals with the Alfven and slow-mode branches /29/.

In this paper we have studied the influence of resistivity on the
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unstable part of the spectrum. The ideal spectrum provides a detailed
test for the numerical approximation of the entire spectrum. Tearing
modes and resistive interchange modes are analyzed in detail in conf-
igurations where current and pressure driven instabilities occur
simultaneously. The value of the resistivity can be made sufficiently
small to compare the scaling of the growth rates and even the resistive
layer width in detail with analytical results. Values of the resistivity
up to n %10-10 are tractable with sufficient accuracy. Numerical and
analytical results agree very well. However, it is found that finite
beta configurations yield a mixture of tearing and interchange modes,

which are strictly distinguished in the analytical description.

The study of the influence of resistivity on the ideal internal
kink modes again reveals the agreement with analytical results but also
yields new results for small beta and eta values. In forthcoming applic-
ations we shall concentrate, of course, on more complex phenomena not

included in analytical work.

To summarize, a non-Hermitian operator has been successfully
discretized. The results presented demonstrate the capability of our
code to reproduce known results for very small resistivity exactly.
Convergence studies including up to 312 radial intervals which can be
accumulated around singular surfaces to improve the resolution prove
that the numerical accuracy is sufficiently good. Most physical problems
lead to non-Hermitian operators. These are, however,often approximated
by Hermitian operators, which frequently contains considerable analytical
work. Our results should -encourage numerical solution of more general
questions and especially general eigenvalue problems. Switching from
the QR algorithm to the inverse vector iteration together with a continu-
ation procedure in a physical parameter allows one to study a domain

in the complex eigenvalue plan thoroughly.
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Figure Captions
Figure 1 -
Figure 2 :
Figure 3a
Figure 3b
Figure 4a 2
Figure 4b
Figure 5
Figure 6
Figure 7

Finite elements

a) Cubic hermite and b) quadratic expansion functionms.

Complete ideal (nZ0) spectrum of the constant current
equilibrium; the squared eigenvalue is plotted versus

the safety factor with n=1, m=2, k=0.2
Growth rate af the most unstable mode for a tokamak-like
current profile (v=1 in eq.(38)) versus the safety fac-

tor on the plasma surface for n=10_5 and n=1, m=2, k=0.1

Growth rates of the two most unstable modes for the same

case in an enlarged scale.

Normal component of the perturbed magnetic field b1 = rbr

and of the velocity Wy for n = 10_6 in arbitrary
units.

Normal component of the perturbed magnetic field b1 = rbr
and of the velocity v, =TV, for n = 10_9 in arbitrary
units.

Growth rate of the two most unstable modes for a tokamak-
like current profile (v=2 in eq.(38)) versus resistivity

for n=1, m=2 and k=0.02 .

Resistive layer width of the two most unstable modes for
a tokamak-like current profile (v=2 in eq.(38)) versus re-

sistivity for n=1 and m=2 and k=0.02

Current density and safety factor profiles for the equi-

librium of eqs.(42), (43).



Figure 8

Figure

Figure

Figure 11a

Figure

Figure

10

11b

12

Growth rates of the internal kink modes versus plasma pres-
sure for different values of the resistivity for the equi-

librium of Fig.7 .

Ratio of resistive to ideal growth rates of the internal kink
modes versus plasma pressure for different values of the re-

sistivity for the equilibrium of Fig.7

Growth rates of the internal kink modes versus resistivity
for different values of the plasma pressure for the equili-

brium of Fig.7

Normal component of the velocity 2, and of the magnetic field

br for the ideal internal kink mode ( n = 0 ).

Normal component of the velocity L and of the magnetic field

br for the ideal internal kink mode ( n = 1075 ),

Convergence study for a) first and b) second most unstable re-
sistive modes. The equilibrium is defined u=2 in eq.(38) (n=1,
m=2, k=0.02) and n=10"7,

The number of intervals N is displayed in a 1/N4 scale.
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