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Abstract:

The nonlinear interaction of three drift modes,
including parallel ion motion, is discussed analytically
and numerically. An intrinsic stochastic interaction bet-
ween the fluctuating electric field and the parallel ion
current is observed and the saturation level is of the ex-

pected magnitude.
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I. Introduction

Experiments in tokamaks show broad spectra of frequency
and wavelength around those of drift waves, indicating a strong-
ly turbulent state. Usually, statistical methods are used to in-
vestigate a turbulent state. In recent years, however, progress
has been made in understanding the chaotic behaviour of deter-
ministic low-order systems. This suggests a different way to in-
vestigate the onset of a turbulent state by using a system of few
degrees of freedom. In Ref. []:] Terry and Horton studied the non-
linear interaction of three drift waves from the polarization drift
and the convection of density fluctuations. Stationary states have
been observed which are either phase-locked steady states or satu-
rated states with stochastic electric field fluctuations. Their re-
sults show an apparently intrinsic cause of the onset of turbulence
and the applicability of the random phase approximation. The energy
fed by electrons into the system passes from the unstable wave to
the others through wave-wave coupling. However, if finite parallel
(to the magnetic field) wavelengths are permitted, there is another
possibility of wave-ion interaction leading to direct transfer of
wave energy to kinetic energy of ions. This possibility is proposed
in Ref. [}{] and further developed in Ref. [}:I. It is pointed out
that in the linear theory the ions are not resonant when « > kzvi
and have little damping effect on the unstable fluctuations, but

various nonlinear process may cause the ion motion to be stochastic.

In a kinetic description the ions could therefore absorb energy




from the drift wave fed by electrons and damp it. In the present
paper we study the effect of parallel ion motion in a low-order
system of fluid model to show that the stochasticities of the inter-
action between the electric field and the parallel ion current, and
consequently that of the parallel ion sound wave, may occur intrinsi-
cally in a deterministic system. We consider a system of three inter-
acting drift waves including fluctuating parallel ion currents. In
Sec. II, model equations are obtained in the limit of weak nonlineari-
ty. A condition is found for the existence of a steady state due to
the convective nonlinearity of the parallel current. In Sec. III, we
derive a set of rate equations for the amplitudes and phases of both
electric fields and parallel ion currents. In these equations, we
include the nonlinearities of polarization drift and the convection
of density fluctuations as well as that of the convection of parallel
current fluctuations. These equations were solved numerically. It is
observed that with the change of the rate of phase space volume con-
traction the stable solution changes from stable steady state to a
modulated periodic oscillation and finally to bounded chaotic oscilla-
tions. When drift wave parameters are used, the major result is that
including the effect of finite parallel current leads to saturation
levels in a range as anticipated for drift wave turbulence, and that
the results have less dependence on the growth rates chosen, in con-
trast to the strong parameter—dependent results observed in the case

k, = 0 , treated in []j.



II. Simplified model equations and parametric decay

In the presence of magnetic shear, there is, in general,
an ion current J along the magnetic line coupled to the drift
wave, The ion density n and the parallel current fluctuation J

are determined by the following moment equations [}:I [}I:
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are the E x B and polarization drifts, respectively, n = n_ + T,

n_ is the unperturbed ion density, and n' is the density pertur-
bation, Eo is the applied magnetic field, P is the ion pressure
which will be neglected in the following, e,m are the ion charge

and mass, respectively, V,*is the divergence in the direction per-
pendicular to Zz’ and V,, is the derivative along the magnetic field;

: . y . eB, . .
¢ is the fluctuating electric potential and wy = agﬁ is the ion




cyclotron frequency.

We use the following units: EEE

Pg p
T for ¢, n_ec —=
o n

s L,
for J, Ln/cs for t, and 1/Ln and 1/ps for v,, and V,, respectively.
Here Lp is the characteristic length of the density gradient and
p. = c_/w ., where c_ is the sound speed.
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If the response of electrons is assumed to be linear, then by

using the quasi-neutrality condition the Fourier component of

T

k,w

the density fluctuation n, is related to that of the fluctuating

potential ¢k - by the following expression:
»

Here, Gk results from the nonadiabatic response of the electrons.
w
Hl

Since the mechanisms for the nonlinear interaction coming
from the terms V * n (;E + 3p) have already been studied elsewhere
(e.g. Ref. [:6:[), we should like to shed some light on the effect
of the third nonlinear term, zE-VJ. In this section the nonlinear
terms in eq. (1) are omitted but are included in the numerical calcu-

lation in the next section. In this case, eq. (1) and eq. (2) reduce
3¢
k

to (writing 16k == T ¢k)
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In a dissipationless case, Yj = 0, it is easy to see that the

total energy W 1is conserved:

daw _ d 2 2
de ‘dt% Cogl® + [agl®
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o
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The linear dispersion relation derived from eq.(3) and eq. (4)

is

w? - (ky +iY)w-K2=0, (6)

where K,, is the parallel component of K along the magnetic line.
(in the following the subscript of K,, is omitted). When K << k
and ¥ << w, one can find a solution of the dispersion relation

(6) around the drift frequency:

2
Wy = ky (1+{y7). e

We now investigate the simplest nonlinear interaction, i.e.
three-wave interaction. The three modes form a triangle with
- - s . n . .
ky + ko + k3 = 0. Their projected components on the magnetic line
> . .
B are Ky, Ko, K3 , respectively. We express the j—th mode of ¢

in terms of real amplitude aj and real phase angle uj:




¢J. (t) = aj(t) exp {- mj(t)} . (8)

aj(t) can be divided into two parts, aj(t) = w.t - g.(t), on the
J

’ "\ .
assumption that aj(t) << wj, where wj is a constant (eq. (7).).

If weak nonlinearity is assumed, eq. (4) for the j-th mode

can be written as

dl; _ _ = K1 _ Kpy,*
—_—3 1Kj¢j A (0J = )¢1 ¢

(9)
dt 1
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¢j is the complex conjugate of ¢.. Here we have neglected higher
]

orders in the nonlinear terms.

Substituting eq. (8) in the time derivative of eq. (3),
using relations (9) and (7) and neglecting small terms, we obtain

the model equations for the amplitude aj and phase aj:

Y.
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The summation of eq. (11) for j = 1,2,3 gives

(11)
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Here, a = a +a +a , A==k xk +n, {j,1,m} is a cyclic
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permutation of {1,2,3}.
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with I Dj =0, and Yj = T:ﬁy%az—- . Equations (10) and (12) have

i=1
the same form as that discussed in []:I with real susceptibilities.

In a dissipationless case it is therefore easy to find from egs. (10)
and (12) the conservation laws that are similar in form to those in
[]:I for real susceptibility, and a solution in terms of elliptical

functions can also be obtained. The details are omitted here.

In a similar way, one can also find simultaneous conditions for
the existence of a steady state for eqs. (10) and (12) in a driven-

damped system:

sgn CB ) = - sgn (71) - sgn (ym) , (144)

sgn (Dj) - sgn (Dl) - sgn (Dm) s (14B)

where sgn (x) is the sign of x. Here we have obtained formally the

same condition as in [ﬁ]. But, in the present case, the quantity for




the criterion is Dj’ which is a function of phase velocities along

magnetic lines instead of a function of wavelengths.

If it is assumed that the j-th wave has the intermediate phase

velocity, that is,

Km . XKi . KL
w w. wl

(or the inverse inequality), then Dj always has a sign different
to that of D1 and Dm. Consequently, condition (14) tells us that on-

ly in two circumstances can a steady state exist: the wave with

intermediate phase velocity grows and the faster and slower waves
are damped, or the wave of intermediate phase velocity is damped,

while the other two waves grow.

It follows from this discussion that a large wave can
parametrically decay into two waves, the one with higher parallel
phase velocity, the other with lower phase velocity. In a cascade
process the decay of a large-amplitude wave would thus lead to a

broad spectrum in wavelength and frequency.




ITI. Numerical solutions of the complete equations

In deriving the model equations (10) and (11) in the last
section, we used eq. (9) with the current J in the nonlinear term
3E°VJ being replaced by its linear value %i(¢, where W is the
linear frequency. However, if the amplitudes are large, this
substitution is in general not valid. One must allow for a non-
linear change of the frequencies and growth rates, which strongly
affects the possibility of parametric decay, discussed in Sec. II.
Moreover, the fluctuating field and the parallel current may usual-

ly have different phases. We therefore assume ¢j and Jj in the more

general forms

. . - 1ia. F 5
¢J(t) aJ(t) exp { 1aJ(t)} (15)

J.(t) = b.(t) exp {- iB.(t)} (16)
J J ]

Taking into account the polarization drift and the density
convection nonlinearities as well as the nonlinearity resulting from
the convection of the parallel current, we obtain from eqgs. (1)
and (2) a set of rate equations for the amplitudes and phases of both

. and J.:
¢J J

A5 - Vids = Kjbj sin Bj & A(Fj cosa - Gj sina) a,a_,{(17)

dt 1] 1%m
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dbj i i s
T Kjaj sin ej + 2A [él b, cos (B 61) ay b1 cos(B-%niI, (18)

dt
J 4 ]
aa
-AEF. sina + G. cosoZ[ B -

] ] a.
]

- 21bm .o - 2nbl L

2A [: bj sin (B 61) bj sin (B ami], (19)

d 3 K:a:
——E’—=.Z= —J-f-'l-J-— cos §. - 2A T [Eghm sin(B—Bl) -
] T i Lm 7

ambl . _
Y sin (B Bmij, (20)

for the three-wave interaction. The three waves have the same trian-
gular relation as in Sec. II., ej = Bj - aj is the phase difference

between J. and ¢. , B=ZB +B8B +8B ,a=Za +a +a =B-20
] J 1 2 3 1 2 3 1

-9 -6 , and F. and G. are the contributions of the V. o+ W
2 3 ] ] E E

. . ’ > g
part of the polarization drift and of the Ve Vn' convection of the
2 2

density fluctuations, respectively, Fj = (kl)l = (kl)m, and Gj is

chosen in accordance with linear drift wave theory, Gj = Go[Ik k_,_z)1

Y

- (ky klzx;] as in [:f]. The functions Fj and Gj have the properties

3
that z F. = 0 and

=t j
mutation of {1,2,3}.

N ™~ w

Gj = 0. Again, {j,1,m} is a cyclic per-
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The energy balance can be derived from eqs. (17) and (18).

The rate of change of the total energy of the system is

= B 2 2
dt - dt 2 (aj +bj)

3
= I vy. a. . (21)

In the present case we have a phase space of 10 dimensions

with the volume element dV = dalzdazz d332 db12 db22 db32 de,

d8, d6, dB. The rate of change of V calculated from eqs. (17) -

(20) is

av 2 1 2 da; 1 3 db: 3 ,de:
—- = e e, ecibie 3 = (=3
at ~.E Goaa & @ 5w 5 ) Y he G
= 1 3 ] ] ]
3
y 138 § gy,
B dt s5f 3 (22)

When ¥ = ¥, * Yy + Yy < 0, the volume in phase space contracts,
which is a necessary condition for the existence of a stationary

state.

Numerical calculations were made for the coupled equations
(17) = (20). First we allow the parameters Fj, Gj’ mj, Yj to be

arbitrarily chosen and investigate the general properties of the

solution of the equations, particularly the existence of steady
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states. The conditions for the existence of steady state deduced
from Ref. [:{] and from the last section for different nonlinear

terms are briefly recalled:

sgn (Yj) = - sgn (Yl) - sgn (Ym) s (23A)

sgn (Hj) - sgn (Hl) - sgn (Hm) " (23B)

where, Hj = Fj if Gj = Dj =0 Hj = Gj if Fj D-:.| = 0y Hj = Dj iE

F. =G, = 0. For the case of no parallel ion current, it was conclu-
ded in []:I that a steady state would be reached if both Fj's and
Gj's satisfy the condition (23). We now fix Fj's and Gj‘s to satis-
fy the condition (23), i.e.,if we switch off the parallel current,
the system could have a steady state. We then study the effect of
parallel current in the following cases: 1) The wave which has the
intermediate parallel phase velocity is the driven mode. (2) The
faster wave is the driven mode. (3) The slower wave is the driven
mode. Apparently in case (1) the condition (23) is satisfied for
Dj's as well as for Fj's and Gj's. But in cases (2) and (3) the
condition (23) is only satisfied for Fj's and Gj's, but not for
Dj's. A phase-locked steady state is found numerically in case (1)
with ¥e =~ 0.1791. The result is given in Fig. 1. In the final steady

state all the amplitudes of either the fluctuating field or the current

approach constants, and so do the phase differences ej's and phase a.



But in cases (2) and (3), only turbulent states are observed.

Figure 2 shows a result of case (3) as an example.

To study the stability of a steady state, we take the so-
lutions which are obtained by solving the stationary equations
(éj - Bj = éj =f=0,3=1,2,3, in eqs. (17) - (21)) as initial
conditions and calculate its time evolution. Figures 3 —= 7 give a
series of results when ' (z Ty * ¥y Y3) is increased from —.01491
to —-0.0991. With ¥ = -0.1791, the steady state is stable, as can be
seen in Fig. 1. When e is larger than Y. (=-0.1496), the stationary
solution loses 1its stability and periodic oscillation is observed
(Fig. 3, T =~ 0.1491). Then with a larger Yoo (Fig. 4 , T, -0.1441)
a slow periodic modulation of the fast oscillation appears. It is
very likely that the trajectory is attracted to a two-dimensional
torus in phase spac:e.[:Sj Meanwhile, in Fig. 4(e) one can see evidence
of the appearance of the second frequency. When Yt is further increased,
both the modulation frequency and the modulation amplitude increase,
but the basic fast oscillation frequency of the amplitudes is almost
unchanged (Fig. 5, ¥, = -0.1391). When L 0.1291, it is observed
that the chaotic and regular behaviours occur alternatively (Fig. 6).
This is characteristic of intermittencJ;7;inally, at higher A it
is observed that the trajectory behaves chaotically (Yt = - 0.0991,

Fig. 7). In contrast to the exponentially increasing envelope observed

in [ 1], the amplitudes are bounded in our case.

When K5 s are twice as large as that in Fig. 1, at higher

growth rate ¥ ™ = 0.1391 we still have a stable steady state.




And only when " is as high as about - 0.1091 can a turbulent
solution be obtained. On the other hand, when K.'s are halved, a
turbulent state starts at smaller Yt(< - 0.1791), and the existence
of a stable steady state needs stronger damping. When Kj's =+ 0s

one could expect the unbounded unstable steady state observed in

Ref. E1:[ :

We also made numerical calculations with Fj’Gj’wj chosen accord-
ing to the linear theory of drift waves but with Yj's still being
free parameters. Saturated states with stochastic phases and amplitudes
of both the fluctuating fields and the parallel currents were observed.
Figures 8 (a), (b) give the time evolutions of the amplitudes of ¢j
and Jj of the three modes, respectively, (c) gives the phase difference
ej of one mode, and (d) gives the phase a. v, in the plots is - 0.01584.
It is clear from the plots that in the linear stage the linearly un-
stable mode grows exponentially, while the other damped modes decrease.
When the growing amplitude is large enough, the nonlinear interaction
becomes dominant and a turbulent stationary state is set up with all
aj's and also bj's of the same order on the average. At this stage,
the phase difference ej between ¢j and Jj becomes very irregular,

and so does R(or a).

Different behaviours occur as growth rates Yj's change. We vary
the driving rate Y, and keep the two damping rates ¥y and Y4 fixed,

so that the total 2 = Y4 + Yo 4 Y4 is changed, too. In a case of




strong damping rate Yt(* 0.05064), the picture is a little different
from Fig. 8. From time to time the interacting amplitudes are al-
most damped when they aré excited again. At the time when the modes
are excited, the phase difference ﬁj undergoes sudden oscillations.
In this way, the system is kept at a certain turbulent level.
B 3 1/2
Figure 9 shows the average amplitude a = (jQIAL ajz(t)dt/ﬁt)
versus |y |. The solid circles are of the model of eqs. (17) - (20).
In this group of runs we use Kj's ~ 0.5. For all T, 0, we obtain
saturated states. Since At used for the average is finite and the
behaviour in this case is very irregular with strong bursts, in par-
ticular when T * 0 and E'gfo, the obtained @ values in Fig. 9 and
in the following Fig. 11 and Table 1 are more qualitative than quanti-
tative. Roughly speaking, in Fig. 9 a increases almost linearly with
Yoo And the average amplitude a's are in the range ® 10. This value

is much lower than that predicted by the model without current and

is of the magnitude usually estimated for drift-wave turbulence.

For comparison with our model of nonlinear current (n.l.c), we
also calculated the models where the parallel current is completely
neglected (n.c.), and where the current is linear (l.c.), i.e. neglecting
the nonlinear term 3E-VJ in the J equation but including the other two
nonlinear terms in the ¢ equation. Table 1 gives the comparison of the

three models for several Yt's.

In the cases without current, which is what Ref. []:I has con-




sidered, we find that the range in Yy where one can observe stochastic
saturation is narrower than with current, and that the level of sa-
turation, if it exists, is much higher than in our model. If in the
n.c. model a moderate Ye is used (e.g. B, =8 0.02198 or - 0.01578,
see Fig. 10), it seems that one can find stochastic saturation, but
the average amplitude is about one order of magnitude higher than in
our model (Fig. 8). When . is increased above about - 0.01 (e.g.

¥, = = 0.00969), the amplitudes continue to grow on the average and
no turbulent saturation is found. However, for the n.l.c. model with

the same parameters and finite K.'s we still get a rather low satura-
]

tion level with a around 5. When damping is strong (e.g. Y = -0.05064) ,

the results from the n.c. model show apparently coherent amplitude
oscillation. It can be seen from Table 1 that, apart from their
relatively low values, the saturation levels of the n.l.c. model

are less sensitive to changes of the parameter Yo On the other hand,
for the n.c. model, when " is slightly changed, the result changes

dramatically.

The computation shows that the nonlinear term 3E' VJ by itself
cannot lead to saturation in the present model if the nonlinear terms
are neglected in the ¢ equation. In this case, the individual modes
keep growing or decaying, depending on their phases. Nevertheless, the
nonlinearity 3E. VJ still plays an obvious role in the process of sa-
turation in the complete model. In Fig. 9 it can be seen that for the
same parameters the average amplitude a of the l.c. model (without

;E' vJ) is several times as large as that of the n.l.c. model (including

= . . . = .
vVg* ¥J). One can imagine the way 1n which the nonlinear term 3E- vJ



plays a role in reaching saturation. It is the fact that the two
nonlinear terms in the ¢ equation excite a variety of different fre-
quencies and amplitudes which provides the condition for the para-
metric decay in the third nonlinear term 3E. vJ. In turn, this decay

excites even more values of frequency and amplitude, which keeps the

system at a lower saturation level.

Figure 11 gives the average amplitude a versus K/ky. The suppression
of a due to the presence of finite parallel wave number K is obvious.
With decreasing K, the average amplitude a rapidly increases. In the
case of small Kj's, after the first parametric decay the parallel
current is still small, and the amplitudes appear coherent, which is
characteristic of the same stage in the case without current. After
the current has become large enough to compete with the unstable electric
field, saturation can be reached. If K approaches zero, the behaviour
returns to the n.c. case.

Figures 12(a)(b) present the frequency spectra of the fluctuating

electric field ¢j and the parallel current Jj of one mode (mode 2),
respectively. The parameters are the same as in Fig. 8. For typical
turbulence levels the spectra are broad with widths Aw exceeding the
drift frequency mj, Aw> wj. The broad spectrum of Jj shows the random

motion of ion fluid caused by the nonlinear interaction.

Figure 13 gives the entropy-like quantity [b]




corresponding to the case of Fig. 8, where |d| is the initial
separation of two neighbouring trajetories in phase space, |dii
is their separation at the end of the i-th period of duration T.
This entropy-like quantity is related to the Kolmogorov entropy.
A positive value of H arises from the exponential separation of
two initially neighbouring trajectories in phase space and gives

a measure of the stochasticity of the system.

IV. Conclusions

We have investigated the three-drift-wave interaction, taking
into account the effect of fluctuating parallel ion current. In the
equations we have included the convective nonlinearity of parallel

. . 3 + + 3 - . . .
current in addition to the E x B and polarization drift nonlineari-

ties.

In the case of weak nonlinearity we find analytically a decay
mechanism considering only the nonlinear term in the J equation. The
condition for the decay is related to the parallel phase velocities

of the three waves.

For a contracting flow in phase space (Yt < 0) we have numerically

observed several different types of solutions: phase-locked steady

states bifurcated to modulated oscillations, as well as bounded chaotic
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oscillation, depending on the phase space contraction rate e

Numerical calculations of the time evolution in the present
model show the nonlinear stabilizing effect of parallel wavelength
which is the result of the stochastic interaction between fluctua-
ting fields and ion sound waves. When applied to actual drift
wave parameters, the saturated level obtained is relatively insensi-—
tive to the variation of s AL And with reasonable values of parallel

wave numbers, the saturation occurs at the anticipated level.
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Steady state, the wave with the intermediate velocity as
the driven mode.(a) aj's, (b) bj's (G=1,2,3), () cosB,,
(d) cosa.EE1 = (0.8935, 1.2048), k, = (-0.4436, -0.8032),
KB = (-0.4499, -0.4016), F = (0.297, -0.237, - 0.06),

G = (-0.2247, 0.2012, 0.0235), K = (0.78253, - 0.52169,

- 0.26084), w = (0.47065, -0.25615, - 0.2945), y = (0.09,-

0.25, - 0.0191).

Turbulent state, fastest wave as the driven mode.(a) aj's,
(b) by's (j = 1,2,3), (e) cose1, (d) cosa.K = (-0.26084,
- 0.52169, 0.78253), w = (-0.2945, -0.25615, 0.47065),

other parameters as in Fig. 1.

Marginally unstable steady state, ¥, = -0.1491. (a) aj's,
(b) §j's (j = 152;3); (c) cosgj, (d) cosa.

Solution of modulated oscillation type, T * -0.1441.

(a) as (b) b (c) cosh,., (d) cosa , (e) detail of cosH

1* 1 i*
Solution of modulated oscillation type , Ty = -0.1391.

(a) ajs (b) cos®,.

Solution of alternatively chaotic and regular behaviours
Y, = -0.1291. (a) a1,(b) cosBI.
Bounded chaotic solution, ¥y =~ 0.0991.
(a) as (b) c0581.
Time evolution for the complete model (n.l.c) with drift

wave parameters.

(a) aj's, (b) bj's (j=1,2,3) , (c) cose1, (d) cosa, E1 = (0.8935,
1.2048), 12 = (-0.4436, -0.8032), KB = (-0.4499, -0.4016),

K = (0.78253, -0.52169, -0.26084), Py = -0.01584,
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Average amplitude a versus lYt' for different models:
solid circle - the complete model of eqs.(17) - (20)
(n.1l.c.), open circle - the model with linear current (l.c.),

cross — the model without current (n.c.)

Time evolution of the amplitudes for the model without current
(n.c.), drift wave parameters.

ﬁ1 (0.8935, 1.2048), ﬁz = (-0.4436, -0.8032), k

-0.4016), v, = -0.01584.

. = (-0.4499,

Average amplitude a versus K/ky. . = -0.01584 .

-ia, (t)
Fourier spectra from fast Fourier transform of (a)¢2(t)=a2(t)e 2

and (b) Jz(t) = bz(t) e_lBZ(t) for the same case as in Fig. 8.

Entropy-like quantity for the same case as in Fig. 8.
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