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Abstract

Numerical calculation of schlieren-deflected millimetre-wave
probing beams simulates the x-ray emissivity of the hot centre
and the local shear of the ploloidal magnetic field during

m = 1 perturbations. This allows reproduction of the complicated

structures of x-ray signals observed experimentally.
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Numerical calculation of schlieren-deflected millimetre-
wave probing beams simulates the x-ray emissivity of the
hot centre and the local shear of the poloidal magnetic
field during m = 1 perturbations. This allows reproduction
of the complicated structures of x-ray signals observed

experimentally.

PACS numbers: 52.35. Py, 52.65.+z, 52.70.Guw

Growing oscillations of soft-x-ray emission have been identified
as due to current-driven m = 1 tearing modes, which are believed to
be the cause of internal current disruptions in tokamaks /1,2,3/.
With the growth rate of the emissivity oscillations as a basis, the
growth of an m = 1 magnetic island and the radial motion of the hot
central peak till its annihilation have been invoked in models to
explain these disruptions /3,4,5/.

To simulate the radial dependence and growth rate of the m = 1
oscillations, the shear of the poloidal magnetic field a = o (dg/dt)
and plasma resistivity effects were introduced in the usual model /3/,
where the amplitude E of the oscillations relative to the unperturbed
emissivity A is expressed by ‘

A/A = S ¥(a)ds = S Y (dT/dx)ds, (1)
s being the line of sight of an x-ray diode.
If a parabolic radial profile is assumed for Te, the shear parameter
dTE/dx, transversal to s, reproduces the observed radial dependence
of the oscillation amplitude. The latter has a minimum at the centre
for dTe/dx = 0 and a maximum a few cm from the centre where dTB/dx is
maximum. The time depencence of the growth rate YT(a,t) is dependent
on the implication of the model /3/ that By and & are also functions

of time. For the asymmetric shear parameters, however, the shear
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effetcs may be obscured by the integral taken along the line of
sight /8/. This makes reproduction of observed perturbations
very cumbersome and has not yet allowed clear interpretation of
the wide variety of fluctuations ranging from purely w, 2w and 3w
bahaviour to several complicated double-peaked structures with
evenly and unevenly spaced peaks /6,7/.
In the following, schlieren calculations in the form /9/
AA/A = KfSF(dNe/dx)ds,

which is numerically similar to the poloidal field shear, reproduce
the complicated structure of the experimentally observed m = 1
soft-x-ray wave forms simply by radial displacement and rotation
of the hot centre, without the time dependence and fitting problems
of the various parameters .encountered in other simulation models.
In the above expression AA is the intensity of the schlieren- .

deflected electromagnetic rays, A is the total amplitude of the
undeflected rays, and Na is the local plasma density.
The schlieren method is only applied to simulate the observed m = 1
fluctuations of the x-rays. The possibility of simulating the
sawteeth of internal current disruptions is not considered.

As is well known, the schlieren calculation of a ray path
deflected in a dispersive medium is derived from the Fermat law by
taking the minimum of the integral J; k dl, where k is the wave
number. When this k is replaced by that given by the dispersion
relation of an ordinary wave, the radius of curvature R of the

deflected ray path is expressed by /10/
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where V = N/Nc, N being the local density and N, the cut-off

density for the wavelength used, and N is the unit vector of the
normal to the trajectory. From eq. (3) it is seen that the ray
deflection is in the direction of decreasing density, is directly
proportional to the density gradient and increases as the
density.

If a pencil radiation pattern I(8) is assumed for an exploring
electromagnetic wave beam, the unperturbed signal at the receiver
is A = 2f21(9)d9, whers U is the angular width of the two undeflec-
ted external rays of a wave beam impinging on the edges of the
receiver antenna.

With a perturbed radiation pattern, the received signal



AR = fg:I(B)dB depends on the ray density of the beam inside the
two deflected external rays which reach the receiver edges.
Analytically, these two rays, which are calculated from eq. <
are identified by the two angles 8+ and 8- of the radiation pattern
1(8), which is approximated by the function
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) (4)
The amplitude of the normalized schlieren signal is then given by
B+
AA IB_I(B)dB

Q= = ] (5)
A 2/M1(8)d8

where the error introduced by the numerically simulated radiation
pattern proved to be below the uncertainty limit for the measured
data points of an experimental pencil radiation pattern realized for
the Pulsator tokamak.

From eq. 5) one immediately sees the advantage of the schlieren
method in comparison with other diagnostics or other models for
simulating MHD mode perturbations: the detected signal at the
receiver antenna does not need to be integrated along the ray path
like the x-ray emissivity or the phase shift of an ordinary wave.

Any change in the distribution of the density V(E,n) deflects the ray
path as calculated by egs. 3) to 5) and the signal is the one not
deflected from the edges of the receiver antenna. Even small variations
of the density distribution at any point of the plasma are detected
by a sufficient array of exploring wave beams, which, for fusion

plasma densities of Ne 21014 cm-s, are most sensitive in the millimetre
wavelength range /9/.

In view of the asymmetric situations that must be faced by the model
all the calculations involved in eqs. 3), 4) and 5) were referred to
orthogonal coordinates E,n. The density distribution V(&,n) is then
expressed by £
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where U0 NB/NB is the normalized maximum density values, T is the
radial coordinate of UD,T cost is the vertex abscissa,wz is the

angle of Uo’ Wl is the angle of the plasma centre and P its radial




coordinate, and f is a profile-flattening index.

Figure 1 shows the isodensity lines and the labelling of the
density distribution parameters of eq. 6). The geometrical
arrangement of the exploring millimetre-wave pencil beams of the
Pulsator tokamak is also sketched in Fig. 1. For a symmetric and
centred density distribution, viz.T =0 and P = 0 in Fig. 1, the
results of the numerical model were compared with the Shmoys model /11/
valid for a centred and parabolic radial density distribution only.

The results of the two models devigted less than 1 %. A detailed
description of the numerical program /12/ of the model will be
reported elsewhere, the aim of this work being to show that the
schlieren method can give an insight into localized MHD phenomena
inside the plasma, as shown in the following application of the model.

Figure 2 presents the @ values calculated from eqs. 4) and 5) for "
a parabolic and centred density distribution for the three values
UD = 0.2, 0.5 and 0.8. It is seen from Fig. 2 that by choosing a
convenient density distribution it is possible to obtain an unperturbed
schlieren signal intensity, Q versus radius, which is numerically equal
to that, ID vs radius, of the unperturbed x-ray source, as reported in,
for examples, Fig. 6 of Ref. 13.

Although the schlieren method allows simulation of the x-ray
emissivity of the hot centre from a given radial density distribution,
the following density distributions were chosen in order to simulate
some possible physical processes underlying the observed fluctuations
of soft-x-ray signals. In this context particular interest is shown
in a central density peak radially displaced from the geometrical ‘,
centre of the discharge tube as shown in the example in Fig. 1. The

rotation of such a peak density simulates soft-x-ray signals relating

to observed MHD perturbations. The various examples of individual
situations shown in Fig. 3 are meant to be combined to provide a
possible physical understanding of the observed signals.

In Fig. 3 the centre core of a centred, symmetric and parabolic
density profile was radially displaced at T = 0.25, 0.5 and 0.75
for the three values UO = 0.2, 0.5 and 0.B. The displaced central
core is then rotated around the centre of the discharge tube and
the calculated schlieren signals for the vertical chords at r/a = O,

X 0.25, ¥ 0,5,% 0.75 are obtained. The rotation was kept centred



at the geometric centre in order to have individual situations
closer to the symmetric measurements above and below the equatorial
plane reported in Refs. /6,8/.

Features of a dominant m = 1 are evident in the theoretically
derived wave forms in Fig. 3. Especially for UO = 0,5 and 0.8
these wave forms are very similar to those experimentally observed
in PLT and 1IS5X-B and reported in Refs. 6 and 8. The only difference
between the theoretically derived wave forms in Fig. 3 and those in
Refs. 6 and 8 is that in our model the growing amplitude of the m = 1
activity is a function of the radial displacement T of the centre core,
whereas in the experimentally observed m = 1 activity reported in
Refs. 6 and B8 the growing amplitude is a function of time. In Fig. 3
the wave forms at r/a = + 0.5 and + 0.75, being the mirror images of
those at r/a = - 0.5 and - 0.75, are not shown. For the calculations
of Fig. 3 the radiation pattern of the A = 2 mm wave antennae and the
plasma radius a = 11 cm of the Pulsator tokamak were assumed.

Additional fine-grained details of the radial displacement model in
Fige 3 are common to the x-ray measurements reported in Refs. 6 and 8:
1) The channel nearest the centre shows the expected dominant 2w
resulting from m = 1. Successive peaks on centre are not of equal
amplitude, a feature that results in the model calculation from the
intrinsic simulation of the shear term dT/dx 2) The double humps on
positive half-cycles at nearby channels, e.qg. r/a = 0.25, are not
equal either and the ordering of the inequality reverses between the
two channels. These features are again the result of the shear term
due to the centre core displacement. If counter-rotation is assumed
in the model, the theoretical traces of symmetric channels r/a = % 0.25
and £ 0,5 are exchanged 3) At channels r/a = t 0.75, the wave forms are
triangular in nature and are again reversed between symmstric channels.
The triangular wave forms are outside the g = 1 surface and depend on
the large displacement T > 0.5 of the central core.

Note in Fig. 3 that the growing amplitude of the m = 1 wave forms {
occurs for the channels at large radius, whereas in the central
region persistence of the signal amplitude is observed. This persistence
of the signal in the central region is also experimentally observed
in the emissivity oscillations of soft-x-rays reported in Refs. 6 and 8.

In Fig. 3 no attempt was made to fit the numerically derived data
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to the experimental data reported in Refs. 6 and 8. The "gmissivity"
used is that simulated in Fig. 2 for a parabolic density distribution.
0Of course, a refined fit could be obtained if a more refined simulation
of the x-ray source emissivity was obtained by choosing a more conveni-
ent density distribution. Nonetheless, the radial displacement T = 0,75
provided in Fig. 3 for the appearance of triangular wave forms compares
well with a central core displacement of about 10 cm reported in Ref. 6
for the PLT tokamak. This is deduced from the maximum amplitude of the
triangular wave form of the soft x-rays observed at r = 16 cm in PLT /6/.
To summarize, the key point of the numerical calculations shoun in
Fig. 3 is that they clearly demonstrate that the model of central-core
radial displacement reproduces well the observed behaviour of sof t-x-ray
signals without the cumbersome fitting of time-dependent parameters .
such as shear, resistivity and poloidal field strength faced in other
simulation models.
The dichotomy of a millimetre-wave pencil beam which reproduces observed
fluctuations of x-ray emission from the hot centre is clearly dependent
on the intrinsic property of the schlieren method that it simulates
local shear of the poloidal magnetic field for any pressure distribution
in the plasma interior.
Besides simulating MHD perturbations, the schlisren reproduction of
x-ray signals, presented for the first time in this paper, may provide
a powerful tool for studying variations of the local pressure distribu-

tion in hot plasmas preceding the onset of current disruptions.
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FIGURE CAPTIONS
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Isodensity lines with the parameter labelling

of eq. 6).

Schlieren signals { vs radius for a parabolic

radial density distribution.

Schlieren signals for radially displaced density
centre core, T = 0.25, 0.5, 0.75, and peak density
values U0 - 0.2, 0.5, 0.8 for A = 2 mm wave pencil

beams positioned at r/a = 0, * 0.25, * 0.5 and * 0.75. .
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