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Abstract

A finite-difference computer program is described which
has been written to treat diffusion and trapping problems
in ion implantation and plasma-wall interaction

applications.

The one-dimensional code employs a nonequidistant, ex-
ponentially varying mesh grid, the numerical approximation
on which is only precise to order Ax. Examples, however,
show this inaccuracy to be negligible for practical

problems.

Representative results for deuteron implantations into
stainless steel are compared to analytical predictions.

The role of simplified source distributions is discussed.
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I. INTRODUCTION

Many problems in the field of ion implantation are in-
fluenced by bulk diffusion and the interaction of the im-
planted atoms with traps. A recent interest in the
phenomena associated with hydrogen implantation arose
especially in the field of fusion research /1-3/. In fusion
devices making use of magnetic plasma confinement, high
fluxes of neutral hydrogen atoms will bombard the first
wall of the vessel, the release, retention and permeation
of which play an important role for the machine operation

and, in particular for the tritium isotope, safety aspects.

In order to describe these phenomena mathematically,
one has to solve the diffusion equation with a source term
representing the depth distribution of the implanted atoms
after coming to rest, and with boundary conditions which
generally account for the reemission of hydrogen from the
surface in molecular form, i.e. after recombining from the
- in general - atomic bulk solution and surface adsorption
states. Furthermore, a trapping and detrapping term has
to be included, as hydrogen atoms are often bound to local
traps with an enthalpy exceeding the activation energy for
interstitial diffusion. These traps can be either pre-
existant due to bulk impurities or defects, e.g., from
mechanical deformation, or ion-induced due to damage cre-

ated by implanted ions /4-6/.

The complexity of the source and trapping terms and
of the boundary conditions recommends and often requires
the use of numerical methods for the present problem,
though analytical solutions can be aiven under simpli-
fying assumptions /7-9/. Numerical codes have been set up
by a number of authors /10-13/. Of these, the DIFFUSE 12/
and PERI /13/ codes have been frequently used in plasma-wall
interaction studies. Both these codes are subject to

limitations which are due to a general difficulty in the



numerical treatment of implantation problems, which arises
in particular for permeation calculations: The thickness
of the implanted material is in general much larger than
that of the implanted region; for the latter, however, a
sufficient resolution of spatial mesh points is required.
A special combination of equidistant meshpoints in the
implanted layer and nonequidistant ones throughout the
bulk of the target is employed in DIFFUSE; this might cause
discontinuities of the results at the depth of transition
/14/. PERI always assumes a delta-function source at the
surface restricting its applicability to certain cases
(see Sect. 5).

To avoid the problems mentioned before, the PIDAT
program employs a continuously varying exponential mesh
grid. It has originally been set up by the author at the
university of Bochum, FRG, and made available to the
AMDAHL-470 and CRAY-1 computers at the Max-Planck-Institut
fiir Plasmaphysik. The program has been applied in the past
successfully for problems of hydrogen and helium im-
plantation /6,15/.

In the present report, first the basic equations ancd
boundary conditions will be listed, together with simple
analytic approximations and solutions. Subsequently, the
finite-difference approximation will be discussed
to some detail. After a section which describes the
input and output data for a standard version, finally some
examples and comparisons will be given on plasma-wall

problems.




2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

For the given problem, a solution of the diffusion
equation including a source term and a trap term is re-
quired. It is sufficient to treat the problem one-
dimensionally, as long as the lateral expansion of the im-
planted area is large compared to the thickness under con-
sideration. As in the standard version of PIDAT, we assume
an homogeneous host material and only one implantedrand

diffusing species, but allow for n, different types of

i i
traps. The total concentration of foreign atoms is composed

of solute and trapped fractions

D

c(x,t) = c (x,t) + 2 c.(x,t) (1)
s 5=1 ]

as function of depth x and time t. In the following, all
concentrations, fluxes and areal densities will be taken

in atomic units, i.e. relative to the host atomic density

CH' Then according to Fick's law for a plane geometry:

n
s  _ s _ .
= = D 5 'E Tj (cs,cj,x,t)
+ Slx, k) o (2)

where Ty and S denote the trap terms and the source function,
respectively. Accordingly,

aC.
= 1.(cS,cj;x,t). (3)

ot ]
The trapping terms are composed from a capture rate and a
release rate /16/ both of which are controlled by diffusion
/17/. For the case of permanent and isolated traps with a
local concentration being small compared to the host

atomic density, it can be written as /18/:



- -U, /KT
T. = 47 rj CH D [cS (cj - c.) - c.z.e v (4)

J J 2
In eq. (4), rj denotes an effective trap radius, z. a co-
ordination number (the number of solute sites adjacent to a
trap through which a released atom may escape), and Uj
the binding enthalpy. The traps are assumed to saturate at
a local concentration cj = cg, cg(x) denoting the trap
concentration. Together with the Arrhenius relation for
the diffusion coefficient,

_ Ug/KT
D=D- e - (5)

the activation energy for release from a trap amounts to

(Uj + Ud). Trapping terms similar to eq. (4) have been pro-
posed by different authors /7, 19/; as the results of the
calculations are mainly determined by the given activation
energies and trap concentrations, differences in the factors
of eq. (4) are generally of negligible influence. Different
trap terms for larger precipitates have also been pro-

posed /6, 11/.

The boundary conditions (for the target surface x=0
and the rear surface, or a given depth, x=d) are chosen
according to the model of Baskes /20/. The flux of
diatomic molecules, which leaves the surface after re-

combination, is given by

i_ =K _[c_(x=0)1% , (6)

with the recombination constant

K, _ U, /kT
K. = Cy 7% e | (7)
The activation energy UO and the preexponential factor KO
can be calculated in a simple way from the diffusion and
solution data /20/. The boundary condition (6) contains
the limiting cases of the impermeable surface (Kr=0) and

the ideally permeable surface (Kr+w).




With eqg. (6) and

BCS
J = - D5~ (8)

the boundary condition for x=0 is (similar for x=d)

acs Kr 2
% = B—[Cs(x=0)] : (9)
x=0

Under certain circumstances, e.g. for very shallow im-
plantations, the problem can be simplified by approximating
the depth-dependent source term of eq. (2) by a delta
function at the surface, i.e. S(x) = joé(x) with the in-

cident ' £liax-4 (jo will always represent the nonreflected

o
fraction of the incident beam flux). The conservation of

fluxes then requires in generalization of eqg. (9)

ac

9x

x=0

8 1 [Kr(cs(x=0))2-jo]. (10)

3. ANALYTICAL CONCEPTS

Analytical solutions of the above equations are only
possible in simple cases. For example, an exact solution
can be derived by, e.g., Laplace-transform techniques

/21/, in the absence of traps for an ideally permeable

surface, i.e. cS(O) = 0, and a delta function source term,
i.e. S(x) = jOG(x—R) at the mean range R. The solution for
a semiinfinite medium is given by:
s el B (Rtx)2 = (R-x)°
CS(X,t) = - E‘ﬁ [2(—&'—) (e 4Dt - e 4Dt )
(11)
- (R+x)erfc it T (R-x)erfc R ]

Y4Dt Y4Dt

for x £ R and



; s 1 (R+x)2 - (R-x)2
cs(x't) = - 2_8. [Z(EE) ; (e 4Dt . 4Dt )
(12)
- (R+x)erfc 2E_ _ (rR-x)erfc ¥R ]
V4Dt V4Dt

Eor X > R.

The calculation of permeation problems requires a finite
medium and leads to an even more complicated calculation.
Here, only the result for the atomic flux leaving the rear
("downstream") surface of a sample of thickness d shall

be given for later comparisons:

» " - szkzt
-~ [ L Pl sy R, 2 )
Jo d TR k=1 k d d

i, (13)

It is often helpful to study the asymptotic behaviour with
respect to time. This can even be done including the

correct boundary conditions (eq. (6)). Still with a delta
function at x=R as source term, the stationary situation is
depicted by the diagram of Fig. 1. Due to the shallow depths
of implantation, the permeating fraction j+ will in most
cases be small compared to the implanted flux, i.e. j_ = j0
for the reemitted flux at the upstream side. Then, accord-

ing to eq. (6):

Fig. 1:
Depth profile of the solute

Six) = joblx-R)

concentration in case of an

idealized source distribution

SOLUTE CONCENTRATION

DEPTH x




I 1/2
c (0) = (=) ' (14)
s Kr
and
3. 2
2 o . 1/2 R
c (R) = (E;) (1 + (3 K. 5 ) (15)
Using the parameter /9/
W = (joKr)1/2 - 3 (16)

one may now distinguish different regimes: W >> 1 means
cS(R) >> cS(O), i.e. the recombination process is fast and
the release through the surface is limited by diffusion.

W < 1 characterizes recombination-limited processes; in
the limit of W << 1, which is valid for highly exothermal
solution behaviour and very fast diffusion, the implant
will be distributed homogeneously throughout the whole

thickness.

For the situation depicted by Fig. 1, approximate

analytic steady-state solutions are given in Ref. /9/.

As a third example for analytical approximations, it
shall be shown that the effect of shallow traps with
small occupancy may be included into an effective
diffusion coefficient /8, 22/. Assuming local equilibrium,
which is justified over a wide range of conditions 1575
and for I c? (for only one type of traps), eq. (4)
yields

E'_I: U,I/kT

17 % 7 © SEL

Equations (2) and (3), without source term, may then be

combined to

2
Zzs = 2 0. /kT : zs ’ (18)
T 1 X
1+ Z-e
21




that is, the change of the solute concentration is sub-

ject to an effective diffusion coefficient

D = (19)

For a trap concentration which is independent on depth,
simple analytical solutions will then apply also for the

case of shallow traps.

4. NUMERICAL SOLUTION

In the previous section it was demonstrated that the
applicability of analytical approximations and solutions
is rather limited, so that numerical solutions will be
required for a large number of problems. Also, from a
practical point of view, numerical evaluations will often
be preferable, which, by the availability of fast com-
puters, are often much faster than the evaluation of com-
plicated analytical results. The main advantage of numerical
methods is, however, their flexibility with respect to
boundary conditions and additional processes, e.g. differ-

ent trapping terms for the present problem.

4,1 Finite - Difference Scheme

Numerical approximations to partial differential
equations of the diffusion tywve have been known for long
(see, e.g., ref. /23/) .Here, only the main results will.
be given for the normal case of equidistant spatial mesh

grids. Based on this, the non-equidistant approximation
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used in PIDAT will be derived and described in detail.

For the one-dimensional problem and a plane geometry,
the target (or its region of interest) is commonly divided into
(n-1) slabs of equal thickness Ax, starting at x(1) =0
and ending at x(n) = d. For any function of the depth,
f(x), its value at the mesh point x(i+1) is given by the
Taylor-expansion

2 .2

F(i+1) = £(i) + ax 25 4 Ax 2
X : -

x (1) 3X

Hh

+ 0(bx3)+ 0(axY)

[\S)

x(1i)

+ ... (20)

With the similar expansion for f(i-1), one obtains

Y: _ U+ - £(i-1) -
3;' o 2 AX M o
x (1)
and
3£
—> =£0+1) - 2 £(4) + £01=1) , 5(px?), \22)
IxX . 2
zed.) .

i.e. approximations to the first and second derivatives
which are precise to the order (sz), which are both

valid for 1 < i < n.

Defining a non-equidistant mesh grid according to the

recursion relation

x(i+1) = x(i) + Ax(1i), (23)

the above procedure yields:

3 f _ 1 . T
x|y (q) | SR FAX(E-D) LEGEH1). ~ Bl
s 2 : 2 2
(Axél) . Ax(1;1) y 2 g (24)
ax :
x (1)
=33 : 3 3
Ax (1) e (a1 3 f 2
( 3 + 3 ) 3X3 1 + 0(Ax™)

x (1)




[}
Fh

2

s Ax (1) Z+Ax (1=1)

[£(i+1)-2£(i)+£(i-1)

B
|

= Thxlil) = deli=1)) %%
x (1) (25)
ax(i)3  ax(i-13, 3¢ 2
) o axoD ) 25y 4 oax?)
X g
x (1)

Inserting egs. (24) and (25) into each other and neglect-

ing the cubic terms, one obtains

= = ! Ax (i=1) R e
x| gy  Ax(E) + bx(i-1) Lax - (E@+N)-£(1))
Ax (1) . .
T Ax(i-1) (£(1) - £(i-1)] (26)
and
x (1)
f(i-1)
A (=17} (27)

The cubic terms, which correspond to a term of order Ax

in egs. (26) and (27), vanish only for ax(i) = ax(i-1),
i.e. the equidistant case. Thus, a "nonequidistant"
approximation is only precise to the order Ax rather than
sz for the equidistant one, so that any results have to
be carefully checked with respect to the influence of this

approximation.

For PIDAT, an exponentially varying mesh grid is
employed with




- 12 -

x{1) =0 (28)

and
o L. ot
AX (1) = e - Ax (29)
with an 'expansion coefficient' o and the subsurface mesh
width Axo. Accordingly, the nodes are

e(i—1)a_1
x(i) = —— b0x_ . (30)
a o
e -1
From eq. (30), Axo may be calculated with given d = x(n)

and a:

e® - 1
AX = ———=v— d. (31)
o e(n 1)&_1

with eqg. (29), the spatial derivatives of the solute con-

centration become

*°s _ 1 [cs(i”)“cs(i) , st -cg i1y
g sl iy 2Axocosh% e(l"‘l/z)Ol e(1'5/2)u
(32)
and
37cg _ 1 [cs(i+1)—cs(i) . cs(i—1)-cs(i)
X Ax® coshZ 6(21"5/2)3 c(21*7/2)a

(33)

Whereas eq. (33) can be directly inserted into the
diffusion equation for 1 < i < n, the boundary conditions
(egs. (9) and (10)) require an additional treatment. At
the surface with x(1) = 0, an artificial external node
x(0) is defined. The general boundary condition (eg. (10))

then reads

cs(2)—cs(1)_FcS(1)—cS(0)
ea/Z e-3/2a

K_(c_(1))2-3y = —= [

& 2AX coshE
o 2

1(34)

from which



_13_

c_ (0) 20X cos h=
S - o) 2 2 _ .
3% " 5 [Ry(eg (1)) = = 3/
c_(2)-c_(1) c_(1)
S S S
MY * —3/3¢ ¢ (33}
e e

Inserting eq. (35) into eq. (33) with i=1, one obtains

finally
2
a3 cC Ax
S _ _2 o | 2 =
— = =5 leg@me (1) = 5= (K (e (T30, (36)
x(1) o
and, correspondingly for the downstream surface, x(n) = d:
2
9 C
S 2 1
- . — [e_ m=1)] = g, (n)
Bx2 sz e(2n 4) a s s
X (n)
AX
(n=2)a o 2
+ e = Kr(cs(n)) 1 . (37)

4.2 Integrator Routine

With the numerical approximations given by egs. (33),
(36) and (37), the extended diffusion equation system (2)
and (3) can now be solved. Standard methods of solving
equation systems of this type can be found in the literature
/23/. It is advisable, however, to employ a well-tested
integrator routine from a suitable program library. For the
present purpose, the program package GEARB /11, 24/ is
employed, which provides solutions for systems of ordinary
differential equations with band structure (see below)

with selfadjusted step sizes to guarantee stability.
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By means of the finite-difference approximations, the
partial differential equation system (2) and (3) is
converted into a system of ordinary differential equations
of rank n-(nt+1), by setting

Y((i-1)nt+i) = cs(i) (38)

and

y((i-1)n, + i+3) = Cj(i). (39)

As only the concentrations at up to the first neighbouring
nodes contribute to each equation, the resulting equation

system

Mo
1
S

Y

(40)

is of banded structure, i.e. the matrix A contains

zero coefficients except for a band of width (2nt+3) around
the main diagonal. This is compatible with the GEARB in-
tegrator package.

The GEARB routines are especially suited for 'stiff'
problems, i.e. problems with widely varying time con-
stants, for which the terms with the smaller time constants
have already decayed to insignificant levels. Diffusion
in a medium containing traps represents such a problem,
as, for example, a local equilibrium may be achieved very
quickly (see Sect. 3), whereas long times may be required
to establish stationary situations during implantation, or

especially permeation experiments.



5. USE OF PIDAT

Besides the quantities defined in Sect. 2, PIDAT has
to be supplied with an initial distribution ;(t=0). In
the basic version of PIDAT, PIDVC, the input stream of which
is also described iﬁ App. B, either a solute distribution,
cs(t=0), or a trapped distribution cj(t=0) may be defined,
the other components being zero.

As well as the source distribution, S(x), and the trap
distributions, c?(x), the initial distribution may either
be defined as a Gaussian function or as an arbitrary data
set. The complete initial distribution ; may also be taken

as a dump file from a previous PIDAT calculation.

The normalization of the source distribution is per-
formed internally to a given flux jO of nonreflected atoms.
Furthermore, as a simple time dependence of the source
function,

| gy 2

S(X)  [1-erf (—2)]

S(x,t) = 5 - '

(41)

is included, with the 'cutoff' time tO and a smoothing
parameter o. In particular, a sudden stop of the implantation
is simulated with o << to' The source term is set to zero

if the extended boundary condition, eq. (10), is required.

Each run starts at the time t=0 and ends at a given time

t = tm In order to apply the program also for thermal

ax
desorption problems, the temperature (assumed to be homo-

geneous) is allowed to ramp linearly as function of the time:
T=T + 8¢t ; (42)
The program outputs, after present time steps, the complete

profiles, cs(x) and cj(x), the particle fluxes emitted

through both surface and the corresponding total fluences,
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and the individual depth integralsof Cg and cj as well as
the total bulk integral. The integration may either be per-
formed up to a maximum depth or according to an arbitrary

weighting function defined by an input data set.

An additional control output contains the performance
report including a list of the current GEARB step size, the

surface fluxes and the total bulk integral.

The GEARB results are precise to a preset number e,
denoting the single-step error in Yi- The internal time
step size is adjusted by GEARB between 10_10 and 102 of
a preset initial step size, Ato. If an increment less
than 10_10 Ato is required, the program will be aborted.
The user is informed on the reduction of step sizes on the

control output.

Any error conditions met in GEARB will be reported by

their error code (App. A) before the program is aborted.

The GEARB package allows to choose between different
methods of solving the differential equation system, by

means of a method flag

me = 10« Mooth ¥ Miter LA
M oeth 1S the basic method indicator, with Moeth - 1 for
implicit Adams methods and W = 2 for backward
differentiation formulas. Different m may be adequate

meth
for different problems or even in different subintervals of

a problem /24/; Meoth = 2, however, has been found to work
best for problems of the kind described in Sect. 5.

i o is the corrector iteration method swi?ch /24/, with
Wy s = 0 for functional iteration, 1 for chord method
with user-supplied Jacobian matrix (aﬁk/ayi), 2 for chord
method with Jacobian generated internally, and 3 for chord
method with diagonal approximation to Jacobian. 0Of these,

m. = 0 is least effective. m, = 1 has been found to
iter iter

—
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be only insignificantly more effective than W e = 25 at

the expense of an often complicated coding of the Jacobianj;
therefore, miter
certain problem with a diagonal-dominated Jacobian,

= 1 has been excluded for PIDVC. For

Mtar = 3 may be most effective.

More detailed information on the use of GEARB can be
obtained from Ref. /24/.

The standard version of PIDAT, PIDVC, is run on the
CRAY-1 computer. Typical computing times for problems like
those of Sect. 5 are several seconds. An example of a batch

submit file is given in App. C.

6. EXAMPLES

In the present section, some examples will be given for
deuterium implantations into stainless steel (304 LN).
Diffusion and recombination data are taken according to
present knowledge /25/ (DO = 2-10_3 cmz/s . Ud = 0.535 ev,
CyK, = 2.29 + 10 cm k'/?/s, U_ = 0.428 V). The numerical
results will be compared to analytical results given in
Sect. 3. Furthermore, the influence of the extended bound-

ary condition (eq. (10)) will be demonstrated.

Let us first assume a deuterium flux oOf 1'1016/Cm% s to
be implanted into 304 LN stainless steel at an energy of
10 keV, corresponding to a mean range of R ™ 7’-10—6 cm.
Trapping effects shall be neglected. The dependence of the
W-parameter (eqg. (16)) on temperature is displayed in Fig.2;
at room temperature, the system is clearly diffusion-controlled
(W >> 1). Therefore, the idealised analytical solutions of
egs. (11) and (12) should be applicable. Figure 3 compares

the analytical results with those of different PIDAT com-
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putations. Except for the structure given by the mesh-grid

in the PIDAT results, all profiles are identical within

the precision of the drawing.

As mentioned above (Sect. 4.1),

the nonequidistant

mesh grid causes an additional error in the numerical

approximation compared to an equidistant grid. With the

interval increment parameter a (eq.

(29)) being a measure

for non-equidistance, the results have to be checked there-
fore with respect to the dependence on the choice of a.

For the calculations carried out for Fig. 4, an

approximate realistic source function (Gaussian accord-

ing to Ref. /26/) has been chosen rather than a &§-function.

It is seen that even large variations of a (corresponding

to surface intervals of Axo = 1.32

_ =8
Axo = 2.48 10

for the mesh-grid structure.

10keV D —SS

o0 jo = 116107 Tem/s
293K
05cm
100s

0.15, 0.25, 035

=1
n

PIDAT

ATOMIC RATIO D/SS

= " L L
B.BR 2.18 B.28 8.38 [ Y ]

DEPTH (107%cm)

=16

cm to

cm) do not change the profiles, except

Fig. 4:

Solute concentration
profiles for differ-
ent increment para-
meters,oa. The source
distribution was
taken from the
tabulations of
Andersen and Ziegler

/26/ as Gaussian
6

"with R = 7.2-10 °cm,

¢ = 5.2 To7ngkt,

The following example (Fig. 5) describes the permeation

of implanted deuterium atoms through a stainless steel foil,

with a é-function as source term. Satisfactory agreement

of the analytical solution (eq. (13)) and the numerical
result is obtained at 350 K and still st 375 K.
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At higher temperatures, the temporal behaviour is still
identical,with, however, significantly larger stationary
fluxes for the numerical calculation. This is explained
by the fact that the upstream surface outflux becomes
gradually recombination-limited (see Fig. 2), whereas the

analytical formula is only valid for strictly recombination-

limited kinetics.

Figure 6 confirms that the result for the permeation
problem is also independent of the choice of a. For
a = 0.02, Ax amounts to 8-‘i0-6 cm, which is close to the
mean range. Correspondingly, the deviation for o = 0.02

results from a too coarse grid within the source range.
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a homogeneous distribution of traps throughout the foil
with a binding energy of 0.25 eV /26/. The permeation
fluxes obtained from the analytical calculation are
strongly smaller than those from the PIDAT computation
below 425 K, as the trap occupation is still too high in
this temperature range. At 425 K, the temporal de-
pendences are in reasonable agreement; the analytical
stationary flux, however, becomes too small as it was
discussed above. From this, we can conclude that the
simple effective diffusion theory cannot be applied at

all to systems with the parameters given here.

In the last example, the influence of a simplified
source term shall be studied, which is embedded into the
boundary condition at the upstream surface (eg. (10)).
This source term is exclusively used in the PERI pro-
gram /13/.

In order to simulate wall processes typical for plasma
experiments, a deposition distribution has been calculated
using the TRIM /27/ program for a Maxwellian deuteron
energy distribution with kT = 16 eV at cosine-distributed
angles of incidence. This distribution has been supplied
to PIDAT as the source function with the results for the

deuterium inventory displayed in Fig. 8 (bottom).

Even for this shallow implantation depths, the simpli-
fied ('PERI') version yields a result which differs from
the realistic one by more than a factor of 20 at room
temperature. The dependence on temperature is even in-
verted. In the limit of high temperatures, however, when
the system becomes recombination-controlled, both results
become identical. This is consistent with the anti-
cipation that PERI-type calculations are only valid for
recombination-controlled kinetics, as the deposition at
the very surface leads to an overestimation of the reemitted
flux for the diffusion-limited case.

i
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Fig. 8: Calculation of the deuterium inventory for a
typical plasma-wall-interaction problem.
The source distribution was calculated by

TRIM (a = 0.2, other parameters as before).
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Appendix A: GEARB Error Codes

The program will be aborted if one of the following errors

occurs:
Code Meaning
-1 Integration was halted after failing to pass the

error test even after reducing the step size, h ,

by a factor of 1010 from its initial value.

-2 Integration was halted after some initial success
either by repeated error test failures or by a
direct test indicating that EPS is too small.

-3 Integration was halted after failing to achieve
corrector convergence even after reducing h by a

factor of 10‘]O from its initial value.

-4 An input value was found to be illegal .
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Appendix B: PIDVC In/Out Data

The following input data and formats are required for a
PIDVC run (the standard version of PIDAT). The individual
quantities may easily be correlated to the text of

Sections 2 and 4, except for (see eq. (4))

BL(j) = 4nrch. (B 1)

One type of traps is to be defined at minimum; a calculation
without any traps, however, can be performed by putting
BL(1) = O at one type of traps.

The input stream is subdivided into a parameter data
set and several distribution data sets, which are ex-

plained below with the corresponding formats given:

1. RECORD (5I5):

MF: GEARB METHOD SWITCH (NORMALLY 22)

IOUT: OUTPUT OF INTEGRALS AFTER EACH IOUT'TH TIME STEP

IPR: ADDITIONAL OUTPUT OF PROFILES AFTER EACH IPR'TH TIME STEP
N: NR. OF GRID INTERVALS (EVEN, MAX. 188)

NTR: NR. OF DIFFERENT TYPES OF TRAPS (1 < NTR < 7)

2. RECORD (4E18.4):

H@: INITIAL TIME STEP SIZE
EPS: REQUIRED RELATIVE ACCUR
TMAXS: SOURCE SWITCHOFF TIME
SIGS: SMOOTHING FOR SOURCE S
3. RECORD (2I5,4E1@8.4}):

IFR: FRONT SURFACE PERMEABLE(®) OR RECOMBINATION-

0s)
WITCHOFF (E.G. TMAXS/1E4)

LIMITING WITHOUT(-1) OR WITH(+1) SOURCE TERM
IRE: EEQ?T?gEFACE PERMEABLE(@2) OR RECOMBINATION-
RC@: PREEXPON. FACTOR FOR SURFACE RECOMBINATION (CM/S)
AER: CORRESP. ACTIVATION ENERGY (EV)
RCER, AERR: SAME FOR REAR SURFACE (IF BOTH =@, FRONT SURFACE

DATA ARE TAKEN)
4. RECORD (4E18.4):

TMAX: LAST VALUE OF TIME (SEC)

DT: INCREASE IN TIME PER _STEP (SEC)

AL: EXPANSION COEFFICIENT FOR X-SCALE GRID (@: EQUIDISTANT)
X@: SAMPLE THICKNESS (CM)

5. RECORD (3E12.4):

TMP@: START TEMPERATURE (K}
RATE: LINEAR RAMP CONSTANT (K/S

EC)
ALIM: MAX. DEPTH FOR INTEGRATION (

CM)
6. RECORD (2E18.4):
DC@: PREEXP. FACTOR OF DIFFUSION (CM2/SEC)
AE: ACTIV. ENERGY OF DIFFUSION (EV)

7. RECORD (BE1@.41):
BL{1...NTR): TRAPPING/DETRAPPING RATE FACTOR (CM2)
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8. RECORD (6E18.4):

BM{1...NTR): COORDINATION NUMBER FOR DETRAPPING

9. RECORD (6E108.4):

AET(1...NTR): BINDING ENERGY OF TRAPS (EV)

1. RECORD (3I5):

ISW(1): INITIAL = SOLU
IF <@, X-Y DATA SE

ISw(2): TRAP CONCENTRA
OR FROM X-Y DATA S

ISW(3): SAME FOR SOURC

11. RECORD (315):

JSW: INTEGRATION FROM @ TO ALIM(®) OR ACCORDING TO RELATIVE CROSS
SECTION ACCORDING TO X-Y DATA SET(-1)'

LSW: INPUT OF Y FROM DUMP FILE(-1)

MSW: OUTPUT OF Y TO DUMP FILE BEFORE EXIT(-1)

12. RECORD (4E108.4):

XM@,S9,C0,XMAXB{(1): PARAMETERS OF GAUSSIAN FOR INITIAL
CONCENTRATION (CENTRAL(CM), STD.DEV.(CM), MAX.CONC.,
MAX.DEPTH ABOVE WHICH = @& (CM))

RECORDS NO. 13...(12+NTR) (4E1@.4):

XM@,SH,CH,XMAXZ(2.. .NTR+1): SAME FOR TRAP: DISTRIBUTIONS

RECORD NO. (13+NTR)} (4E19.4):

) OR TRAPPED{(2...NTR+1) DISTRIBUTION
READ:! ( XM@,S@,C@8,XMAX@(1) ARE IGNORED)
ACCORDING TO PARAMETERS(#)

TE(1
T 18
TION
ET(-1)}

E DISTRIBUTION

S
1
S

XM@,S@,CO,XMAX@(NTR+2): SIMILAR:FOR SOURCE DISTRIBUTION,
CO(NTR+2): NONREFLECTED FRACTION OF IMPLANTED FLUX(CM/S),
I.E. IMPLANTED FLUX DIVIDED BY HOST ATOMIC DENSITY
IN CASE OF IFR=+1 OR ISW(3)<@, XM#@,SH<AND
XMAX@(NTR+2) ARE IGNORED

DUMP INPUT IN CASE OF NEGATIVE LSW:
TO BE APPENDED AS FIRST DATA SET AFTER ABOVE INPUT PARAMETERS
(ISW(11)<@ IS THEN IGNORED)

INPUT DISTRIBUTIONS IN CASE OF NEGATIVE ISW,JSW:

TO BE APPENDED IN CONSECUTIVE ORDER, CONTAINING ONE HEADLINE
(12 CHAR.) AND UP TO 1089 X-Y DATA PAIRS (2E15.6)

An example of a parameter data set is given below:

22 199 5808 109 1
B.1980E-2 9.10900E-7 ©.1000E+9 ©.1090E-4
=1 -1 §.22909E+4 @.4280E+0Q
F.1PPRE+2 B.1PPQE-2 B.1500E-9 9.5000E-0
9.2930E+3 9.0QPQPPE-2 U.500PE-1
9.2000E-2 B.5350E+0
9.4830E17
g.1908E+1
B.2400E+8
1 a =1
o) =1 a
P.85QQPE-5 9.388QE11 O.Q9QQQE+]1 &.1000E+]
@.1430E-4 9.8500E-5 F.00PPE-1 9.5000E-3
@.1430E-4 @.8500E-5 ©.1320E-6 ©.500QE-3

|
|
i
|
|
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The program output is as follows:

PRINTED OUTPUT (PUNCH FILE):

INTEGRALS: COLUMN 1: TIME(S)
2: TEMPERATURE(K}
3: AMOUNT TRANSMITTED THROUGH FRONT SURFACE
4: INTEGRAL OF BULK CONCENTRATION
5: AMOUNT TRANSMITTED THROUGH REAR SURFACE
6: FLUX THROUGH FRONT SURFACE
7: FLUX THROUGH REAR..SURFACE
8: INTEGRAL OF SOLUTE CONCENTRATION
9...NTR+8: INTEGR. OF TRAPPED CONCENTR.S
PROFILES: COLUMN 1: DEPTH(CM)
2: TOTAL CONCENTRATION
3: SOLUTE CONCENTRATION
4...NTR+3: TRAPPED CONCENTRATIONS

CONTROL OQUTPUT (PRINT FILE):

COLUMN )
IDTH (S)

HROUGH FRONT SURFACE

ﬁL OF BULK CONCENTRATION

1
2
3
4
5 ROUGH REAR SURFACE

s ae we ae ae

Note again that all quantities are calculated in atomic
units; fluxes, fluences and areal densities must be
multiplied by the host atomic density in order to obtain

the common dimensions.

An evaluation program which performs plots of the results
is available on the PWW PDP 11/60 computer.
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Appendix C: Batch Input Example

The first line of the batch stream contains the maximum
run time and the output switches PR, PU, and PU1, which
are normally either 10 (PDP 11/6¢ PWW) or 13 (AMOSPRNT
or AMOSPNCH files). PR refers to the control output,

PU to the main output and PU1 to the optional DUMP
output.

In this example, the input data consist of the parameter
set (example in App. B), a dump file from a previous
calculation for the initial concentrations, and an x-y

data set for the source distribution.

/JOB R=10¢ T=0@9:28 PR=13 PU=14 PU1=13
ASSIGN(DN=SPUNCH,A=FT#7)
ASSIGN(DN=SPUNCH1,A=FT17)
CFT,L=8,0FF=P,0N=Z.
LDR,MAP=0,SET=INDEF.

EXIT.

DUMPJOB.

DEBUG, TRACE

/EOF

$$ WDM:F.PIDVC

$$ WDM:F.GERB4C
$% WDM:D.ERF

$S PRB:F.DATIC

$5 PRB:AMOSPNCH.PRB381
$$ PRB:B.TRI133

/EOF
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