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Loop antenna coupling to toroidal plasmas is simulated in

a flat geometry by an infinitely repeated array of finite
loops in order to obtain a discrete spectrum along the y
(azimuthal) as well as the z (toroidal) directions. The
electromagnetic field of the entire configuration, including
the wall, the plasma, and the Faraday shield, is analytic-
ally expressed in terms of the antenna current. The self-
consistent antenna current is determined via variational
techniques which also yield the antenna impedance. Finally,
the theory is specifically applied to the case of

ion-cyclotron-wave coupling.




1. INTRODUCTION

Recent contributions1_13 to the loop-antenna theory have

led to the following important realizations:

i) A two-dimensional sheet current model is an inadequate
description of a practically realizable antenna which
of necessity must possess feeder elements. The field
contribution from these feeders can not be ignored and
it becomes imperative to resort to a three-dimensional

analysis as pointed out by Bhatnagar et al.12.

ii) An acceptable solution must incorporate a self-
consistent determination of the antenna current. This
requirement becomes critical near the resonances. An
elegant approach for achieving this end using Storer's

14, 15

variational technique is described by Theilhaber

and Jacquinot13.

The present paper offers the following significant ad-

vances over the existing results:

i) The electromagnetic field is analytically determined.
This serves to illustrate the precise importance of
feeder currents as well as the need for the accurate

knowledge of the antenna current distribution.




ii) A more realistic antenna spectrum is simulated by the
periodic antenna. The principal difference is that
the spectrum is not concentrated at ny=nz=0 as in the
case of a single loop, but is distributed over dis-
crete ny, nZ values, where ny and nz are the components
of the refractive index n in the y and z directions,

respectively.

iii) Considerable computational advantage may result from
this discretization because the integrations in the y
and z directions are now reduced to summations. The
plasma surface impedance for the (ny,nz) refractive
indices pairs can now be computed and stored and sub-
sequently recalled instead of requiring a fresh de-

termination during each iteration.

In other particulars this treatment resembles that of
Ref. 13. Specifically, the wvariational principle developed

141442 is used for the determination of the antenna

by Storer
input impedance. However, we use a more general expression
for the antenna current with complex amplitudes to allow for

spatial phase differences among the harmonics.

Unless otherwise stated, the MKS system of units is
employed. However, in order to avoid unnecessary clutter,
all lengths have been normalized by multiplying through
with ko=2n/lo, where AO is the free-space wavelength. Also

the angular frequency w and the free-space impedance are



set to unity. The exponential variation exp i(nyy +nz - mtﬂ

and explicit functional dependence on the refractive index n

or its components (nx

unambiguous from the
circuit theory usage
the results obtained
plicitly stated, the

from = to =,

For the sake of

5 ny, nz) are generally suppressed if
context. Impedance values conform to
and are obtained through conjugation of

by the exp(-iwt) ansatz. Unless ex-

summations extend over all integers

notational simplification, the present

analysis assumes that the antenna launches an evanescent

spectrum of vacuum waves, i.e., n__, the fundamental re-

fractive index along

Z0

the z-direction exceeds unity. It is,

however, a straightforward exercise to incorporate pro-

pagating waves within this description.

After outlining

the geometry of the system in Sec. II,

the electromagnetic field due to the loop antenna is de-

rived in Sec. III. The full boundary value solution includ-

ing the plasma, Faraday shield and wall effects is treated

in Sec. IV. In Sec. V coupling to ICRF (ion cyclotron range

of frequencies) waves is studied followed by a discussion

of the results in Sec. VI.




II. THE IDEALIZED ANTENNA MODEL

Figure 1 shows the idealized, periodic loop antenna
geometry. Each loop consists of an infinitesimally thin
rectangular ribbon of height 2%, breadth 2b and width 2w
and possessing a resistivity RA per unit length. It is

LE of voltage V situated

driven by a "slice generator"
at x=0, y=-f and -w < z < w. The antenna is imaged in-
definitely with periodicities Ayo and Azo along the y-

and z-directions, respectively.

The plasma is replaced by a smooth semi-infinite slab

boundary at x=a with the surface impedance matrix

—— —_—

s s

4; — (1)
e Lfi{ ﬁ%s__

The significance of the matrix elements is discussed in

Appendix A.

Faraday shielding is obtained by interposing a
metallic screen (x=f) between the antenna and the plasma
which selectively conducts along the z-direction and is
perfectly insulating along the y-direction. Finally, the
system is bounded by a wall at x=-c. The wall and the

Faraday shield are assumed to possess surface impedances

$1N and‘ﬁF, respectively. In addition to these idealizations,

we will assume the absence of the transverse antenna

current Jg.



III. ISOLATED ANTENNA IN FREE SPACE

It is convenient to introduce the unfolded antenna
co-ordinate -2(1+b) < § < 2(1+b) with origin at x=0,
y=€, as shown in Fig. 1a. The antenna current distribution

I(£) may be expressed as

13) = LEGIHLE, (2)
where
’ts(%) = % P (P) exp(ipn2) (3)
£, (2> = Z B (m) exp(inn, z) (4)
ngo = 2rr/[\30 A (5)
and
4S =yl (44 b)) (6)




Also by Fourier transformation one obtains

A, /2

\A

AR FGYepling)ds, o

~

§°_A /2
20 /2
and,
N,,/2
Ry = L £ &) exp (-inz) dz,  ®
Mo N, /2

h - = .
where, nE P ng0 and n=n, In order to allow for
asymmetries in the current distribution, both Fg(p) and
Fz(n) are, in general, complex. Note that this particular
choice of fgtg) insures the continuity of antenna current

including at £ = + 2(1+b) and no additional continuity

constraints need be invoked.

The solution for the antenna electromagnetic field
may now be obtained from the Maxwell's equations in
vacuum, subject to the boundary condition that the
magnetic field component H, has a discontinuous jump at

the location of the antenna current.

The total antenna field component eﬁ, where

A A A A A A A
6 - [.E* e E H  H O H ], (9)




may be expressed in the form

A AF AR AS AS As,
+ [e%

¥ AS
ev - ev 4= eu by ey ) *9,; TJ;(‘IO)

Y]

where eAF, SAB and GAS pertain to the contributions from

the antenna front surface, the antenna back and the two
antenna sides taken together, respectively. We will see
later that the field arising from the antenna sides has

four distinct components; corresponding to a transmission
line field BAST plus the contributions eAsb and eAs—b from
the open circuit terminations at x=b and x=-b, respectively,
and finally the contribution SASO due to the discontinuity
at the input drive. In the following sections, we enlarge

upon the description of each of these contributions.

A. Contributions from antenna front and back

From (2)-(4) one obtains the spectral distribution

of current at x=ib as

A 5 _
J_. _ Ny - = Hm) F (p - L(h + n )f]
+1, + P 3
5. T p n, t n

- @xp [t Lns (£4—b)] ex!o [C(n}x R +HZZ)J

(1)




where ny=mnyo and nyo=2n/Ayo. Successive application of
the boundary conditions for the tangential components
of eA at x=+b determines the electromagnetic fields due

to the currents in the antenna front and back.

B. Contributions from the antenna sides

In the upper antenna arms, £=x so that the current

IN

I1() =T1() , for -b<z<b. (12)

One may express I(x) as the superposition integral

o0

L) = / L (x-x) B0 dx’ (13)
— 0
where §(x) is the Dirac delta-function defined by the

Fourier decomposition

§(x) = 5; exp(wn,x)dmx 5 (14)

- OO0

consisting of "elementary excitations" exp(inxx). Observe
that in the periodic loop antenna model,I(x), and hence
the elementary excitations constitute endlessly repeated

current sheets at intervals Ayo in the y-direction.




The procedure for obtaining eS involves the following

steps:

i) Determining the electromagnetic field by solving
Maxwell's equations subject to the boundary conditions
at the current sheets due to an elementary ex-

citation (Appendix B).

ii) Obtaining the Green's function, GO{s(x)}, i.e., the
net response to the delta function excitation (14),
by integrating the fields of the elementary ex-

citations over -o T RS e (Appendix B).

iii) Using the superposition integral

oo
/ T(x-x) c.e[étx’)} dx’ (15)
— &0
gives the electromagnetic field resulting from the

current in (12).

iv) Finally, adding to (15) the field produced by the
lower antenna arms yields the desired field BS.
These last two steps involve a fair amount of algebra

but no problem of principle; hence, their detailed

derivation is omitted.
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C. The total antenna field

AB S

Upon summing the field contributions BAF, e and eA ’

one obtains the composite antenna field. As explained
already in (10), eAS may be further split into four distinct
components. For the Ey component of the antenna field, the
various contributions are given as (see Appendix C for

the remaining field components)

AF .
Ey =3 L(hrn/ZTI') ZiTHR1 BERIEFEE) & by
o h P
« (ny=1) N (n e )—1 exp?“‘ (e+b)] scnf(n, +n )0
™ N (s ;Y somidn 118 5
(16)
FAB ¢
= =~ (N Z31) ZE= Fin) FLpE) SCxab)
7 yo/ ) an )
'(“;'”4)|V;'(h -n 54 exP)—in, (4rb) <. ‘
7% {—tng } ““"{‘“‘/‘”iﬂi >
(17)
AS, :
Ey == (“ya /27) zz‘% Feny F(p) & (x-b)

2 2 1 .
.er\y(Nx +nz7) exPang(EHs)}

.[SG“[(ny+”;)e§ = u}_b (ng/Nx)ccﬁi(ny+ng)€§-l >

(18)
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E.7b = U(n, /2™ 2—2;?; Fin) F(p) & (x+b)

« Ny ﬂ}' (N; +n;')'1 exp i—f, ng (h-b)g
(19)
.[sv‘wj(n?—n})ii +U°><+b(n§/N") cos {(n),_ng){} ] 5

AS,
g, = U(ny,/20) ZZZ Fon) F(P) E(X)
MmN F
_ . —1
. LLX ny L (Vx— th)] ex,;(tlf\?{’.) 5 L {lﬂ3(2+b)§ 5
(20)
and
_AST '(n S = |
=y =, ik 2 /er)fzn,% =(n) F(p) [ngix—-u.) (—Elb‘)}_-hyﬂ]
5 Bfeb b)Y bR (NG R Ty e |
B 7n§ « 7}) exp}m} U (£+b)§ P
(21)
where

(22)

the "switch function"

(23)




vV = w N (24)
and the "box function"
B (%3 )= o (x,) -——"\(x?g) (25)
h(x) being the Heavyside "step function" defined as

hoy=0 ,  for x <o, (26)
=1 9 {OY‘ x >0 >

and
ECx) = exp (- N, [ x| ) " O

In (16)-(21) the common exponential dependence

exp[i(nyy + nzz)] has been suppressed.

Following are some significant observations regard-

ing the structure of the antenna field:

i) The field component pairs (BAF, sASb) and
(BAB, eAs‘b) tend to cancel16, leaving a net contri-
bution which is of order |E|-2 compared to the in-
dividual contributions; thus confirming the importance
of including the feeder currents in the analysis1.

Ignoring feeder currents and using a current sheet

antenna model instead would result in significantly

A . i O



ii)

iii)

D.

higher (O|g|2) fields for the given antenna current
with seemingly superiof coupling of radio-frequency

energy into the plasma.

The electric field component EZ is inherently present
for ny # 0. This effect is similar in origin to the
case of Ez component of the electric field associated
with a plane wave for finite n_. Note that (see
Appendix C) Ez vanishes identically for the case
n€=0, i.e., if one assumes the current to be constant
over the antenna loop. But a closer look at the

Eg expressions reveals that the presence of nyo term
accentuates the field at lower frequencies and one

must forego the temptation of ignoring the finite

wavelength effects even at low frequencies.

Because of the delicate cancellation effects, an
accurate determination of the self-consistent antenna
current is apparently necessary13. An arbitrariness
in the choice of the current profile may lead to

substantial error in the field quantities.

The self-consistent current

14,

We briefly outline Storer's variational

principle used for the determination of the antenna

current and the input impedance 2

A The electric field

along the antenna loop is given by
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E.(3) = RIGY-V 8(-3) , (28)

where RA is the antenna resistance per unit length, and V
is the driving voltage located at £, Multiplying (28)
by I(g) and integrating around the loop gives the

variational formulation

2 -
jé Es(i) I(g)dz = RAjg T'(3dz - VI (3) . (29)
Since V = Zp I(Ev), one finally obtains from (29)

Z Iz(gv) +9§E§(;) L) ds _RAjg Iz(g)ctg = 0. (30)

Differentiating (30) with respect to the Fg(pi) term in

the Fourier expansion (3), one obtains

b exP{ZLnEL(Q.;b)}pTZ F (P ex,;{za N (e+b)}
4

~ A . o ~ A *
*ZBOF E P erplinetrag 260§ &> ep i) 43
4

"ZRAE[:i(PJ)fe"F{E(“gL +”§J)%} dg = O,
J

(31)

where %?(p) is found from

A - ~ A
E = F%(P) E; (P)

<N

£32)
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In obtaining (31) from (30) we have exploited the sta-

tionarity property of Z, with respect to small perturbations

A
in the current. The integrations in (31) involving

s;mple exponentials may be performed analytically result-
ing in a set of algebraic equations with the unknowns
Fg(Pj) and, of course, the antenna impedance ZA. One of
the Fourier components Fg(pj) may be set arbitrarily. The

computational procedure consists in solving for the re-

then using

maining Fg(pj) using an initial guess for ZA'

(30) to determine Zn itself in terms of Fg(Pj)' The

iterations are terminated when ZA obtained from (30)

and (31) acquires the desired accuracy.

IV. THE BOUNDARY VALUE SOLUTION

For the present case of boundaries uniform in the
y—- and z-directions, the effect of the boundaries may be

simulated by the surface current distribution

' W W F P P
N T T J = ¥ ] (33)
— /4 z z b 4 z
where the subscripts W, F and P refer to the wall, the

Faraday shield and the plasma, respectively. The field

components eg due to the surface current distribution J




are readily determined using Maxwell's equations and the

boundary conditions involving the discontinuity in the

tangential magnetic field components at the location of

the surface currents. One obtains

5 g g
o] = £ ZZ I 4N, epfitny ena}, 0w
where

Y =[E(>«+c) gy EOcly Chea) g(x-a)])

(35)
E. =
:‘-U'mcn)f/l Ly *s Ls Y e /2 H
Wy ye Mo f2 .y Ly <, wo.. /2 O
oo Moya. "y o ol g pfs 0
WoaNy/2 oL o, oo o —u, /2
Wya Nz/2 A, Az L, u_ /2 O

(36)
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. 2 -1
X, = -—L(hy -4) N, /2_ A (37)
] -1
0(1 - — L h), Hz Nx /Z 2 (38)
: r 3 -1
A = —1 (nz_1) Nx/z_ : (39)
) N—1
0(4 = ¢ r\7 x /2‘ ) (40)
and
: -1
oLl = —L N, Ny /2 .

(41)

The total electromagnetic field 8 due to the antenna and

the surface currents must satisfy the boundary conditions

A
E7(—C) il I, =0

’

(42)
W
E, (-0 — ﬁ‘w J, = O , (43)
E, (£) ‘*?F ‘]; =0,

(44)
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ST T (D = O (45)
and
E, (-4 H, (& ﬂi@ H,(a) = O, (46)

wrhere,$W and %, respectively, are the wall and the

Faraday shield surface resistances. Writing

6 = 6, +© 5 (47)

where eg is the electromagnetic field due to the surface

currents J , (42) to (46) become

J W A 48
E?’ (=) ~§W47 = _Ey (-¢) > (48)
J W A
E,(0-% I =-F (o, (49)

Ej(‘é%‘ij; =-E, (£, (50)

T J T A A A
= H_ (a) =~ E L o
E, (-9 Hy G Pailod = E P0G, HL (2] 9, W50 5

(51)

and

J J A A A
E:—(a) _-qss Hy(a—) —1‘7’5‘- H, (o= Ez(a)i—-?ss Hy () + ﬁs{' H, (a) .
. (52)




The right hand sides of (48)-(52) involve known gquantities,
namely, the surface impedance matrix",iP and the antenna
electromagnetic field QA already determined in Sec. III.
The left hand sides contain, in addition to %P' QJ re-
sulting from the surface currents J. Writing QJ in terms

of J using (34)-(41) reduces (48)-(52) to a set of

linear algebraic equations in the five unknown surface

currents, with the matrix solution

4
J = g ™M (53)

—_—

A A A A A A
{_EY (-9 -E () -Ef) {— ACERNOEEN Hz(a)} {—c-:(a) . Hy () +“54Hf(a)}]
(54)

and
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=
(l

%1 —-%W) e of, £lcif) (X, + qn/z) £latec) (, ip/)_) s(a+c) -
iz (3-5)  H3Eccety  (4,-4, /2) Eave) oy +4,,/2) Ere)
A, &) A ECenfd (3-8 ) (- 44 /1) #ap) (<4 + G, (2) €Ca-()
Xy € (d4c) A, EC@a+c) o, Elaf) (%4- x;“ 12 (X, + 975; /2)
X, E@a+c) oA ECarc) Ay g(a-f) (<-4, /2) (lg=Gl2)
L ° _
(55)

Thus (53) determines Jd which, in turn, using (34) de-
termines gJ, the electromagnetic field component due to
the surface currents. Adding to it gA, the antenna field
derived in Sec. III finally gives the total electro-

magnetic field @ wusing (47).




Since"¢v in (54) may be expressed in the form (32) as

F, -z KW g (P (56)

vV

the total tangential (to the antenna surface) electric

field is expressible in the form
E. = Z E E A % EI 5
; P 3(P) { } (P) 3 (p)j (57)

where

<

% ':g(P) = (P) = E; (P> (58)

Eg(p) being the tangential electric field produced by the
surface currents J. The determination of the self-consistent
antenna current, then involves steps identical to those
outlined in Sec. III D, with the stipulation that the

total tangential electric field EE replaces the antenna

electric field E?.




V. APPLICATION TO FAST WAVE COUPLING AT THE ION

CYCLOTRON RANGE OF FREQUENCIES

As an illustration of the loop antenna theory, we
consider coupling to a semi-infinite plasma slab
immersed in a uniform magnetic field Bo' with a density
profile assumed to vary linearly from ne(x=a) =0 to
ne(x=xp+a) = %e' where tilde denotes the absolute maximum
value. The plasma surface impedance components'gff(m,n)
and-@ss(m,n) for this case may be analytically de-

termined17' 18.

More complicated density profiles would
require numerical integration of the Maxwell's equations.
An elegant analytical approach for the determination of
*3ff for arbitrary density profiles using Epstein's1
method has also been recently developed by Bhatnagar et

al.20

. In this paper, however, we are primarily concerned
with the antenna theory and will not further delve into
questions connected with the treatment of the plasma im-

pedance matrix; nor indeed enter into the subtleties

of ICRF heating schemes.

Using the parameters of Table 1 and the procedure
outlined in Secs. III and IV, one obtains the antenna

impedance ZA and the antenna input power, for unit

PA'
applied voltage at the antenna terminals as a function

of frequency (Fig. 2). Also, ideally




‘F'A = ?E - L + L g L—'w (59)

where Py is the Poynting vector into the plasma while

LA' LF and LW are the antenna, Faraday shield and the
wall losses, respectively. That such a condition is
approached to within a few percent is a confirmation

of the computational accuracy.

The computations performed on the CRAY 1 computer
require approximately three minutes per run for the
parameters listed in Table 1. The run time varies
linearly with M ox and noox and quadratically with Prax"
For most cases of interest sufficiently removed from the
region of resonance, both m and n may each be re-

max max
duced to half the present values without significant loss
in the accuracy of the results. In most cases, acceptable

convergence was obtained for Poinse 7 By

Although (59) is already an extremely demanding test,
further confidence in the computations is gained by the
fact that when the wall, the plasma, and the Faraday
shield are far removed from the antenna, the input im-
pedance values obtained are within 1% of the short
circuited transmission line impedance given by

L. 27 b lb/we ban(2l) (60)

5cC




- 24 -

Tﬁese computations also confirm the existing re-
sults13' 21, 22, namely, that the antenna propagation
constant is principly determined by the antenna, the
wall, and the Faraday shield geometry, and is largely
unaffected- by the presence of the plasma. It will be
subsequently pointed out in Sec. VI how this property
may be utilized to introduce the concept of reflection-

less coupling.

VI. DISCUSSION

A. The Fz(n) spectrum

In the computations of Sec. V, it was assumed that
the current was uniformly distributed over the antenna

width 2w, so that Fz(n) in (8) is given by
F,(n) = n, sw (“zw)/(’”wnz) : b8}
As a result of this assumption the integrand

L L
Vi(z) = $E (a3 b d’/ Ay 225 te2)
B2




is maximum at z=0 with a mild taper towards the edges.
Since EE(E) at z=0 was employed in the variational

formulation, obtained from (30) tends to be somewhat

2p

large resulting in the discrepancy noted in P, exceeding

A
the right hand side by approximately 3% in (59). The
situation could be remedied by taking a current profile
slightly peaked at the edges, so that V(z) is constant
over the antenna width. This would also reduce the Ez
field over the antenna surface (an important boundary
condition, conspicuous by its absence in the variational
formulation of Storer14, which is strictly applicable
for thin antennas only). That such an effort is not
called for in practice is attested by the fact that the
antenna voltage varies by a negligible extent (v 3 %)
over the antenna width. A more ambitious undertaking
would, in addition, require the inclusion of the trans-

verse antenna currents Ji which were neglected at the

outset.

B. The Faraday shield

The perfect alignment of the Faraday shield along Bo
assumed in this analysis precludes Ez and the attendant
coupling to the slow (lower-hybrid) or the ion-Bernstein
waves. Assuming, however, that a small angle? exists

between the Faraday shield conductors and Bo’ would result




- 26 -

in Ez given approximately by

E g Ey s-¢ = B, ¢ - (63)

The energy coupled into the fast and the slow waves,

respectively, is given by

¥ > *
[3{1 = Re [(1/2) Sl ] =Re (1/2) 15l /gﬁ 7 (64)

= Re I‘Mz) B2 H;] = Re (1/2) ‘Ezﬁ/‘%: ; (65)

The relative power input into the two waves is given by,

E/R=9 8, 4015 /5,10 @

Inserting the expressions ﬂn:ﬁff and‘fgs (for the case

ny = 0) from Refs. 18 and 23, respectively, one obtéins
1/3 1/3 =2/ 2
2 m;) ( z
- T n_—14) (67)
Y 31/.7_ Mg = 97
Thus for tf corresponding to 30, and n, < 3, approximat-

ely 1% of the energy is coupled to the slow wave.

For a relatively clean plasma, as in the case of
ASDEX, the slow wave converts to the ion-Bernstein waves

and is eventually absorbed by a combination of electron




s O

Landau damping and ion-cyclotron damping in the plasma bulk,

and one might consider dispensing with the Faraday screen altogether.
Less benign effects might, however, accompany if the impurity har-
monics dominate, leading to surface heating of both the electron

and the impurity ion specie524’25.

In case the plasma density at the antenna surface al-
ready exceeds the requirement for the lower-hybrid re-
sonance, the ion-Bernstein waves will be launched direct-
ly25, 26 with 955 (ny=0) given in Ref. 18. For this case,

Yy < 0(92) for the parameters of Table 1.

The above estimates are provided in order to illustrate
an important concept. A more precise answer must await an
exact boundary value solution which at the outset allows
an inclination between the Faraday shield and Bo and, of

course, the inclusion of ny: 0 terms.

Nor does the story with the slow wave coupling end
here. The part of the fast wave not absorbed in a single
pass through the plasma would be subject to significant
scattering from wall imperfections of size comparable to
the wavelengths Ayo/m and Azo/n. The ensuing change in
polarization will continually divert the fast wave energy
into the slow waves which may assume an important role in

the energy absorption process.
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Another key role played by the Faraday screen consists
of reactive loading of the antenna considered as a

13y 2122

transmission line . How this property may be put

to advantage is described in the following section (VI C).

C. Impedance matching

The impedance values obtained for the ICRF coupling
(Sec. V) are well suited for experimental purposes. Yet
in the face of variable plasma conditions, one would re-
quire complex matching networks to create optimal coupling.
One possible way out is an antenna long enough to preclude
a reflected wave. In addition, the characteristic im-
pedance Zo’ principally determined (see Sec. V) by the
antenna width and separation from the Faraday screen13'21’22,
can be made equal to the generator impedance, thereby

creating an improved impedance match - a considerable boon

for the experimentalist.

A reactively loaded spiral antenna (Fig. 3) would
give rise to a transmission line with a reasonably constant
characteristic impedance. This geometry will create
efficient coupling conditions at low frequencies correspond-
ing to Alfvén wave hating of ICRF heating at low harmonics,

tapering off in efficacy as the frequency is raised.
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At higher frequencies where the antenna length 2£ is
comparable to the rf half wavelength, one may employ a
meander antenna (or a number of similar alternatives),
shown in Fig. 4. For such an antenna the coupling effi-
ciency would diminish as the frequency is lowered; yet a
considerable advantage in the form of a matched-load
(dictated by the fairly constant impedance transmission
line formed between the antenna and the Faraday screen)
termination may be available. Similar ideas of reflection-

less coupling have been previously advanced by Lisitan027.
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APPENDIX A

Plasma surface impedance matrix

Let a and B be the amplitudes of a set of two waves
with non-identical polarizations at the arbitrarily pre-
scribed surface x = X 8 in the geometry consisting solely
of the semi-infinite plasma slab with boundary at x=a.
Then « and B together with the wave polarizations uniquely

determine the electromagnetic field 6v=6:+8§. Specific-

ally at the vacuum plasma boundary (x=a)

_ . P
ty = E—\/ +/5 E’r , (a 1)
< ;o |
E, = A& +p & (A 2)
Ha( Ha
Hy =< Hy A0 (a 3)
and
& £
HZ = Hz ‘L(\S Hz . (A 4)

Eliminating o« and B, one may rewrite




and

where

and

E = Hiv 4 H
7 ’€~F$ 7 g_r{:_ z
E.z E gss H\/ N gsg Hz y
_ S, e L
4“ = (g H, - Hy) )
& —1
4#5 = (E; Hzﬁ Eyﬂ e ) &
- (E” A A, -1
ij 2 B2 Hy - il Hz ) & 2
4 = (Elwy —EXnf) o'
o s X
N = (H\/ Hz - H\/ HZ ) *

_.31_

(A

(A

(A

(A

(A

(A

(A

For the case of ICRF heating, if we choose the pol-

arizations for the a and 8 to be along y and z axes,

respectively, the two waves are effectively decoupled.

B8
Consequently, Ey, Ez' HY

a

and HS vanish and one obtains

5)

6)

7)

8)

9)

10)

11)




.

from (A7)-(A11), the well-known results

A e
. I A 12
Spprimiehy fMah, o
’{CS =10 ! (A 13)
6B
“%;S_., e /Hy Y (A 14)
and
ﬂp = O-, (A 15)
Apart from nomenclature, the development of é;E’

28 treatment of the plasma surface

parallels Brambilla's
impedance matrix for the case of lower-hybrid wave

coupling.
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APPENDIX B

A. Fields due to an elementary excitation

Fields for the spatially repeated (at intervals Ayo

)

sheet currents X exp [i(nxx + nyy + nzz)] are given by

(X is unit vector in the x-direction)

—s ._1 2 —d
EX —(ﬂy(d-hx)C’D 5
N ‘S’D—1
Ey g x 2
=]
E'Z = —L nxnzCD J
H, = O,
oh1 —1
Hy :[_ﬂrnzC/D J)
and
-1
HZ = SD 7
where

(B

(B

(B

(B

(B

(B

1)

2)

3)

4) -

5)

6)
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= Bl
S = Stan [ﬂy {(7—-2) — LL)’*Q A)ro /ZEJ 3 (B 8)

and

D= 2 s (n Ny, /2 . (B 9)

B. The Green's functions

The Green's functions for the impulse excitation 6 (x)
may now be obtained by integrating (B1)-(B6), one at a time,
over the Fourier spectrum (14). The integrand consists of
residues corresponding to the singularities of D in (B9)

which possesses simple poles at

n\/[\ = 2w . (B 10)

The path of integration extends over the real n, axis from
- to +» and closes back over a semicircle of Radius R+
in the upper or the lower half plane, respectively, for

> . . & &
X < 0. The Green's functions obtained in this manner are

given by
-1
: - _ (= F (h+ NJ) N
GE, = -t % ( D N (B 11)
- T F u_n ’
C1E7 = = I (B 12)
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GE, =- Z Fun, (B 13)
GH, = o (B 14)
— N—1
QHy-——L%F”z x (B 15)
and
_ -4
GHy = L2 BNy, Ox . s (B 16)
where

o= - (“70 /4m) & (x) exp [—L’ﬂ7{) exp {L‘ (Y\yy-mzZ)j.- (B 17)




- 36 -

APPENDIX C

A. The antenna field component EZ

AF . — _
E. = ((n,, /2n) ZZ2Z F) F(P) € (x-b)D
z y mm N P

. (“Y“Z/Nx)("‘y +ng)—1exp gf n}(£+b)§ St {(n7+n3){}

(C 1)

EX® = -t(ny, /2m) 233 FOO F(P) S(xib)
m N P

" (ny N, /Nx) ("‘7’_”3)_1e><|) {_uns (£ H;)E S, E(m),‘mg )J?f

(C 2)

AS
E_ b =-i(n),/2M) ZZZ F(r) FP) E(x-b)

z mhF

-1
N,nZ(N:M;‘) expiing(b—b)}

) {s@{(ny+n§){} i LLx‘b (nS/N)') cos E(h), +n§)££]

(C 3)
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EAS"'; = C(ﬂ/yo/zn)ii’z F(n) F(p) £Cx+b)

Z MhP

. anz(Nj+n;)"1 exp {4’ "13(‘“5)}

-[Sén%(h),-ns)Q} U (/N C‘”f(‘“y"“g)eu /

(C 4)
AS, . S35 Fn) E SCx)
R Sl B e B Rl
S |
e Uon, (WY~ L”g) gu\}.izf‘lg(-ﬂ-ﬂ))} /
{C '5)

= A5y - (241) 2

- S55 Eiv) E = i’ Fis -n
= L ST (S NPT I

-2 8(-b,b)n,n (N;m;)‘1 exP{Cn} u, (JH’:)} g

(C 6)
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B. The field components Ei,_ﬂi,_ﬁ? and Hi__

Knowing E? from (16-21) and Ei from (C1-C6) one ob-

tains Ei from the divergence equation

N« E +n, E 44 A B — o € n

The magnetic field components are then obtained using the

Maxwell's equation

A A

VXE:L_]“:! (C 8)

In our original derivation of the antenna field in

Sec. III, however, all the field components were directly
derived from the antenna current distribution. Equations
(C7) and (C8) were then employed as a check on the

correctness of the algebraic expressions,




Table 1

a plasma position

2b antenna breadth

21 antenna height

2w antenna width

f Faraday shield position

c=b wall separation from antenna back

xp plasma profile width

Y ) .

ng maximum plasma density
BO magnetic field strength
A Atomic mass (Hydrogen)
AO free space wavelength
Ayo fundamental y-wavelength
Azo fundamental z-wavelength
m .y Maximum y-harmonic

Noax Mmaximum z-harmonic

P maximum p-harmonic

max
flA antenna specific resistance

Faraday

shield specific resistance

wall specific resistance

10.6 cm

49.0 cm
18.0 cm

5.5 cm

20.0 cm
5x1013 cm-3

2:23 T

429 cm
251 cm
258 cm
37
37
1.5x10 ° 2-cm

3x 10 ° 9-cm

90 x 10" ° 9-cm
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FIGURE AND TABLE CAPTIONS

Fig. 1 Geometry of the single loop (a) and of the
system (b) comprising of the repeated loops
(both along y and z directions at intervals
Ayo and Azo' respectively), the plasma, the

wall, and the Faraday shield.

Fig. 2 Antenna impedance and input power (for unit
applied voltage) as a function of the rf
frequency for the parameters of Table 1.

Fig. 3 The spiral antenna.

Fig. 4 The meander antenna.

Table 1 Parameters for the sample ICRF coupling

calculations of Sec. V.
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