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Abstract

The behaviour of IC waves near resonances in tokamak geometry

is investigated in details. For this purpose, a one-dimensional
model is proposed, which takes into account the orientation of
the incident wavefronts with respect both to the singular layer
and to the magnetic surfaces. The differential equations describing
the waves are derived again from Vlasov-Maxwell equations in the
finite Larmor radius approximation; they are shown to conserve
the wave power flux in the absence of dissipation, and to repro-
duce the local dispersion relation in the WKB limit. These
equations are solved exactly in some important situations, and
with the Green-function technique in the general case. The amount
of power coupled to Bernstein waves and absorbed by cyclotron

damping is explicitly evaluated.

This report has been prepared under the contract JB1/9020 between
the IPP-EURATOM Association and JET.

This report is an improved version of the IPP-JET-Report No. 15,

July 1983, by the same authors.
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§ 1 — Introduction

The description of the propagation and absorption of Ion Cyclotron
waves in a Tokamak plasma is made difficult by the fact that Maxwell
equations do not admit separate-variable solutions in this geometry.
Approximate methods of solution, such as inverse aspect ratio expansion
or geometric optics, fail in the vicinity of resonances (ion cyclotron
harmonics and two—ion hybrid), i.e. precisely where most of the
absorption is expected to take place. Hence a separate investigation

of the singular layers is of the utmost importance.

In practice, such an investigation is only feasible in a plane-layered
geometry, where the problem can be reduced to the solution of an
appropriate set of ordinary differential equations /1-7/. Perkins /8/
has suggested how the results obtained with this approach can be
applied to a tokamak. Observing that near a resonance the gradients

of the dielectric tensor are essentially horizontal, so that k, » =

implies kX >>k,_, he writes

Z’
l ' N Eg —>
gy | _P 3 ~ (1)
?{// R + B,— %/‘ % X €x

(here X, Z are cartesian coordinates in a meridian plane, K is the
wavevector, Bp and B, the poloidal and toroidal magnetic field,
respectively). Eqs. (1) imply a linear relation between k” and kl:
the wavevector components parallel and perpendicular to the static
magnet field, which, together with the conservation of the toroidal
wavenumber n;, permits the reduction of the tokamak problem to one in

a single space dimension.

The relation between kd’ and kJ_following from Eq. (1) is, however,
surprising at first, since by definition Kl_cannot have a component
along the static magnetic field. In the next section, we will show that
Eq. (1) is a consequence of a special assumption about the incident
wave. Nevertheless, a simple generalization of this equation can indeed
be used to construct a one—dimensional model of the waves behaviour

near singular layers, much along the lines suggested by Perkins. This




behaviour depends, however, on the orientation of the incident wave-
fronts with respect both to the resonance layer and the magnetic
surfaces. Thus quantitative results can only be obtained by combining
the local analysis of the resonance with ray tracing (or some other

global method of solution) between the antenna and the singularity.

Section 3 is devoted to the derivation of the appropriate differential
equations for waves in an inhomogeneous plasma. This is immediate

only in the cold plasma limit. When finite Larmor radius effects have
to be taken into account, additional space derivatives arise from the
non-locality (dispersion) of the conductivity tensor. For these terms
the simple prescription of substituting the gradient operator for the
wavevector , k - i%ﬁ is not sufficient to define the differential
equations uniquely. In the absence of a better criterion, the differen-—
tial form of the warm plasma terms was therefore mainly chosen in
order to obtain a soluble set of equations. These "standard" wave-
transformation equations, however, do not strictly conserve the power

flux in the absence of dissipation /7/.

Recently, Colestock and Kashuba /9/ and Swanson /5/, /6/ have rederived
the differential equations for waves in an inhomogeneous plasma,
starting from Vlasov equation. In Section 3 we do the same with an
euristic but very simple procedure. The equations obtained in Section 3
are specialized to I.C. waves in a tokamak plasma in Section 4.
Finally, we use these equations in Section 5 to discuss ion cyclotron

heating in a few situation of fusion interest.

We have been able to solve the wave equations "exactly" in two cases.
The first is near a Two Ion Hybrid resonance, when the cyclotron
resonance of the minority ions does not coincide with the first
harmonic of the main plasma (e.g., a He;+ or D+ minority in an

H+ plasma). In this case, the problem is much simplified by the fact
that it can be adequately treated within the cold plasma approximation,
and it reduces to a slightly modified form of the classic Budden

tunneling problem /10/.
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The second soluble case is near the first harmonic resonance W = Zf%,
in a single species plasma. It is fair to say that our results in this
case are simpler than, but numerically very close to, the approximate

results of Swanson /6/.

On the other hand we were not able to obtain a closed solution for the
popular case of an H+ minority in a D plasma. Of course, this problem
reduces to the second of the above mentioned cases for extremely small

H+ concentration, and, more interesting, to the first one when the H'
concentration exceeds a certain threshold. We have obtained an approximate
solution, valid for small optical thickness of the two-ion hybrid layer,

which suggests how to interpolate between these limiting cases.

There is no space in this paper for sistematic applications. We may
mention, however, that we have coupled the results obtained here with a
ray-tracing code capable of following IC waves in tokamak plasmas of
arbitrary meridian shape /11/. In spite of the fact that a number of
interesting situations remain unaccessible to this approach (notably,
all cases in which high quality cavity modes are excited), the resulting
code represents a useful tool for the investigation of IC heating of

tokamak plasmas.

§ 2 = Modelling resonance, layers in one dimension

Let us describe the plasma equilibrium configuration parametrically as

X = X@j%) =7 @)/9) 2)

q[, a function of the magnetic flux, labels magnetic surfaces, while &
is the usual poloidal angle, QJfET are a natural set of coordinates,
they are, however, not orthogonal, except in the case of circular con-
centric magnetic surfaces. We can nevertheless define at each point a
triad of orthogonal unit vectors as
—
e iR
T TR 2% FU L RERE 0 At

where RT = Ro + X is the distance from the vertical axis. The components

of the wavevector with respect to this reference frame are /11/
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(in the limit of circular concentric magnetlc surfaces, 2 = E}).

The dispersion relation, on the other hand, depends only on the components
-ty
of k parallel and perpendicular to the local static magnetic field. The

perpendicular index of the fast magnetosonic wave depends only weakly

on k,:

2 2
p— IY! -
ot - - CER-0
2_
_—ES)
where R, L, and S = —(R+L) are the elements of the dielectric tensor in

the familiar notations of Stix /12/ (crf. Section 4) and n = kc/q).

(6)

In the ion cyclotron frequency range R, L, S are of order CUF[/EZi; 2>j_)
while typically n% is of order unity. On the other hand, n, plays a
fundamental role in determining absorption, through the Doppler broadening
of the ion cyclotron resonances. k, and kL can be expressed in terms of

kq} s k’t: 5 kQ_: as follows:
g m <
-i’e =k, ® + SPern ®

4% = 41 +‘4kal (7)
ko = ke wf)@ 2P 30n (&)

where \#/ = atan (B /B ), and k,,I is the component of k orthogonal to B

and lying within the magnetic surface.

By combining Eqs. (4) and (7) we obtain the desired relation between kX’
kz on the one hand, k, and ki. on the other hand. This relation becomes

3
very simple if we neglect terms of order @~ or rea/R, where r is the




distance from the magnetic axis:
L A~ 2 2
~ M§ ; : ;
Pi// = {+(—&X3mt+ &zw&t,)éun@

Let us note first of all that we obtain Eq. (1) if we neglect kz, and

(8)

~

we put sin® = + 1 in Eqs. (8). In words, we are assuming that the incident
wavefronts are essentially parallel to the resonance layer, and that
the latter cuts magnetic surfaces at a right angle. A somewhat more
general relation can be obtained by maintaining the assumption that
wavefronts are vertical cylinders (kx>9'kz), but allowing for an arbitra-
ry position of the resonance layer with respect to the magnetic axis:
m
) = -t PQ_Lﬁdnt S.«m@ 9)

R

Note that k, 1is then independent from %L.for the equatorial ray (sinT= 0).

/4

From these examples we conclude that any relation between k;, and kif
obtained by specializing Eqs. (8) as it has been done to write Eq. (1)
or (9) are completely inadequate. Thus for example kX)P-kz

cannot hold if the wave is approaching the two ion hybrid layer from
the low magnetic field side, since then it encounters first a cut-off
(kx—¢ 0). Even in the opposite case, the Eikonal approximation in most

cases breaks down before such a condition is well satisfied.

The values of kZ and T for a wave incident on a singular layer are
determined both by the boundary conditions near the antenna (initial

shape of the wavefronts) and by the refraction due to gradients of the
dielectric tensor along the wavefronts. They can only be determined from
the solution of Maxwell equations between the antenna and the singularity,
e.g. using ray tracing. If kz and T can be determined, on the other hand,
Eqs. (8) provide a perfectly adequate starting point for a local one-
dimensional analysis of the singular layer along the lines suggested

by Perkins. Namely, the goal will be achieved by neglecting the variations
of kZ and % in traversing the singular layer, while substituting -id/dX

: : g . . . 2
for kX in all terms of the dispersion relation which contain %L (cfr. the




first of Eqs. (7)):

jg’ : z{ > —

—_i=—] &y -+ i% (10)
The order of the resulting system of differential equations is then de-
termined by the highest term retained in the finite Larmor radius ex-—

pansion of the Dispersion Relation.

The role of k, is completely different: no finite-order expansion in

k,, makes sense near ion cyclotron resonances. Thus a description of wave
resonances with differential equations is justified only if these are

not too close to cyclotron resonances, say if

[“"’”‘Q@‘ il e )

i Fron o5

5 Vi,
throughout the singular layer. Under this condition, it seems more
appropriate to consider k, as a parameter in the equations. We only note
here that if condition (11) is not satisfied, the wave resonance is
washed out, and absorption can be easily estimated by integrating the

power transport equation /14/ through the Doppler broadened cyclotron

resonance.

§ 3 - The differential equation for e.m. waves in an inhomogeneous,

warm plasma

The differential equation describing the propagation of e.m. waves in a
plane layered plasma near ion-cyclotron harmonic or two ion-hybrid
resonances has been carefully derived by Swanson /5/ starting from the

set of Vlasov-Maxwell equations. In principle, we should generalize this
derivation to the somewhat more complex situation described in the

previous section, in which the wavevector is not parallel to the space
gradients (hi-#O)’ and k, 1s not a constant. To avoid the rather cumber-
some algebra required for this purpose, however, we propose a less

explicit but very simple derivation, which also provides some immediate
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insight into the conditions for the validity of the obtained differential
equation. It is convenient to deal first with the general case; application

to the tokamak geometry will be made in the next section.

The constitutive relation in a locally Maxwellian plasma can be written

- M o2 o, 1
TEL) = S ) Jdo i (59)

T
- ' e 6:/ - 5 (11)
U;ﬁ' U'_wl /
=/ ~7/ j i l
where ’zf U are the solutions of
ol’z, il OID' Rl Zrtwtit O sl }
T U ks 7—;1 E(n,tﬁaxBo(‘a[t) _—
which satisfy the "final" conditions
-/ - -/ — i
wen U=v ab t=t (13)

If the plasma is uniform and steady state, the "conductivity kernel" in
Eq. (11) depends only on t-t', so that }a and E? are algebraically
related in the Fourier-transformed space-time (E;LU ). If the plasma is
nonhomogeneous, on the other hand, a finite-order system of differential
equations for the propagation of waves can be obtained from the integral

relation (11) only by assuming weak dispersion:

kv W - nSL;
:L_:Iﬁ <4 u)h n | s 9 (14)
S‘7-<. //an

for all species of particles, and n = 0, + 1, + 2, ... On can then
distinguish in Eqs. (11) the local, short scale dependency due

to the thermal motion of the particles, still of the form t-t', and the
slower general dependencies due to the gradients of the plasma parameters.

This justifies the ansatz




E(2)4) = Eg(¥) exp L (3(3)-wt) as)

with

B
il

P —
5| > [ e
Substituting (15) into (11) gives

. () - wt) 2N, e
J(’Z/t) ( Z} m S

s (17)
i Sbt’[j{a) Eesp ifult-t) -Bes-s)]
In the dlsger51on1ess (cold) limit
172 2
g 3 | 5
Fﬂ (’ZIU") = S 3/2 3j —?EJ) (18)
m Jfﬂj'

Since to lowest order in the inhomogeneity

S@'/)~sz') ":’ -R; 7 7) = PY,(’&) H(z¢ DV a9

where t{ is an appropriate matrix independent from Lr , the space
dependé;; part of the phase factor in Eq. (17) disappears in this limit.
Eq. (17) then easily leads to the usual cold plasma conductivity tensor,
with plasma parameters dependent on space.To next order in the dispersion,
under conditions (14) and (16),Fin57’is uniformly bounded, and the largest

space derivatives arise from S(%) . It will therefore be enough to expand
g P

QKPL[S(SEj—SQZ)] oS P EL

i "\.
‘--_._-

(20)

'§4+ F(F-9)(74%): VR §




Substituting into (17), we immediately obtain

. e ol f
fion - e - TR IE @
= S oxlld k(,_
cold bot
where CT and CT' are the cold and hot local conduct1v1ty

tensor, respectlvely, and in the second term the limit ¥3ﬁ>C) has to
=>

be made after taking the €{,~der1vat1ves. Hote that in spite of the

appearance of two~space derivatives, this expression arises only from

first order terms, one space derivative being introduced by the identity

oF

—Jr . E

"R E P + higher order terms (22)
¢ amg

which follows from (15) under condition (16). Substituting into Maxwell

equations, we finally obtain the desired form of the full wave equation

in a warm, weakly inhomogeneous plasma

QA —>
= w%w £_479 9?—5 OE

%ol'?wf E = o @h? é‘“ (23
) s b-s

where & (ﬁ;) is the local dielectric tensor.

From Eq. (23) one immediately obtains the power transport equation of
the Eikonal approximation (Brambilla and Cardinali /14/). This makes it
almost selfevident that for negligible dissipation Eq. (23) implies the

conservation of the total power flux (electromagnetic plus kinetic):

olir ¥ =

—2 G L s,

S =x D&

S= gz Re(E"™xB)~ = E E i
QE

where g; is the hermitean part of & . We can, however, give a

simple direct proof of this statement as follows:
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The most general differential operator which can appear on the rhs of
Eq. (23) is

et E= £#4E e'(4) 29 £

- : ~t Wi 4. o0
= AT : - - ‘. | E (25)

52|26 ) 9 E] - < Lelo))E]
where for brevity D :’9/9&:' and ”( }) @2 [9'? Dk])h 0
a,b,c are real constants. In the first place, in order to recover the

correct dispersion relation in the limit of a uniform plasma, we must

choose
a+b+c=1 (26a)
If moreover we require that (24) holds, we easily obtain
a=c (26b)
Eq. (23) satisfies both (26a) and (26b), with the particular choice
a=c=0 (26c)

This further condition excludes terms arising only from spatial
derivations of the dielectric tensor, and ensures the validity of the
local dispersion relation in a cold plasma even in the presence of

a weak non-uniformity in agreement with the above considerations

(Eqs. 18-19).

While Eqs. (14)-(16) look formally the same as the Eikonal ansatz, it
is important to realize that for the validity of the Eikonal approximation

one has to impose the further condition
e
% Vik| <4 27)

In deriving Eq. (23), no use has been made of this condition, but
only of the much less restrictive conditions (16). Eq. (23) can

accordingly be expected to be valid under more general conditions than
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the Eikonal approximation, namely whenever the warm plasma approximation
is locally valid. In particular, it will be adequate to describe the
wave behaviour near a hybrid resonance, in the absence of strong super-
posed ion cyclotron damping. Of course, far from the resonance, where
(27) is also satisfied, Eq. (23) asymptotically admits the Eikonal

solutions, as it should.

Eq. (23) is identical with the equations derived by Swanson (5-6/ and
Colestock and Kashuba /9/ when kz = 0, i.e. for wavefronts parallel to
the singular surface. It differs slightly from these equations when

kz # 0; the reason of the difference is not completely understood. In
most cases this difference is irrelevant as far as the physical results

are concerned.

In one important respect, however, Eq. (23) is less general than the
equations obtained in reference /5-6/ and /9/. By considering only a
slab geometry, in which k, 1is strictly constant, the authors cited
can retain the full dispersion along the static magnetic field. Hence
the complex plasma dispersion function (Eq. 32, below) appears in the
coefficients of their wave differential equation. Thus this equation
also covers the case of strong ion cyclotron absorption superposed on

the two—ion hybrid resonance.

It should be clear from the above discussion, however, that such a
procedure cannot be generalized to the more general geometry of a

tokamak. The necessity of the second of conditions (14), as an integral
part of the weak dispersion condition, is beyond doubt. To make this

point even more evident, we can remark that, in the presence of rotational
transform, k, is itself a differential operator, as shown by Eq. (8).
Hence a finite-order differential equation for the wave field can only

be valid where the large argument asymptotic expansion of the trans-—
cendent Z-function is acceptable. This again excludes the immediate
vicinity of cyclotron harmonic resonances, as required by the second of

conditions (14).
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§ 4 - The wave equations in Tokamak geometry

In order to specialize Eq. (23) to ion cyclotron waves in the tokamak
model suggested in section 2, we have to specify the appropriate di-

electric tensor. There is obviously a premium in making from the start
all approximations allowed by the physics of the present problem. Thus

under the unrestrictive condition

p, =dmml _ m o
' FQQh?na, ES;L ~s m
0 4

the slow cold-plasma wave (shear Alfvén wave) can be factorized out by
letting[Eiz| v wse/wz - ®, Moreover, we note that for ions near the
cyclotron resonance, w = Qci’ the Finite Larmor Radius (FLR) corrections
to the dielectric tensor can be neglected compared with the cold plasma
contribution, which are also resonant. This is the case for the minority
species, since the two-ion hybrid resonance occurs close to the cyclotron
resonance of the minority ions. Hence among the FLR terms we need to
retain only the contributions from those ions which are close to the first
harmonic resonance, w = 2 Qci’ if present. With these simplifications,

the reduced 2x2 dielectric tensor becomes (g is written as customary,

= = -+ >
in a reference frame such that k = k, e + ky, ez):

o o ! (D B (T'”f) (29)

oo
I

*L(D—O'ﬂi> g-O"nj

Here S, D are the zero Larmor radius terms,

S= F(R-f—L) J:%(R-L

z )
> 2 -
R=4+9pe_ 5 Dol 2 _ v
‘ng ZJ toe __u)f-SZ}’ SZI (30)
L =4+ “r _s .Lf)_fh’}'ﬁ_x 2 W
B 72 oe L gl 7,
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while

2
Ve
S 4 ) =P (x, 2( )) 1)

:LCQ'

embodies the FLR corrections. In o, the sum extends over all species of
ions for which w = 2 @ ; near the point under investigation. Z is the
C

Plasma Dispersion function for real argument,

4 = dn &y -x®
Z(x) = = ?j = L T
(. ) T P + L9 | me (32)
L = W- anj V;;, = %2—11
| ‘P?//Vrgi- | rmj

The reduced dielectric tensor (29) has the decisive advantage of possess-—
ing rotational symmetry around the direction of the local magnetic field
(this is not the case for the complete dielectric tensor, for which

€ x + Eyy)' On the other hand, the resulting dispersion relation

0= G‘-'ni + [Qh;'— )4—20’ Cm,;‘——R)_‘I’hfi- fn,f‘—R)@;‘— [_) (33)

reproduces the results of the exact dispersion relation over the whole
IC frequency range with very good accuracy /16/. In particular, we re-

cover Eq. (6) for the fast magnetosonic wave, provided
2
m—R
lO‘ -/%——} < 4 (34)
mi-S

Singular layers occur when this condition is violated: either because
w =2 Qci for some species, in which case ¢ becomes very large, or
because a two-ion hybrid resonance makes S very small. Both causes for
singularity occur simultaneously in a D+ plasma with H+ minority, due

to the "degeneracy" QcH =2Q




Guided by the considerations of the previous sections, we now proceed

to write the field equations near these singularities. To this end,

it is also important to choose the appropriate field components as de-—
pendent variables. It turns out that only two choices avoid the appearence
of spurious singularities in the differential equations. These are either

the couple Ey’ Bx’ or the circularly polarized components E+, where

A (= L (35)
. E
Cs Vi(to;it 3)

For the present problem, the latter choice is to be preferred, since

then onf applies only to E . The resulting equations, measuring

lengths in units of c¢/w and neglecting small terms, are

4 (0' d.@) om, E, + Oli_f n3E,) - Ay -LE,

+2m2§§++mzl§ ) + (36)

Power flux conservation for these equations reads

= 0

(37)

L Ei ¥-CJL. —— CJE;+
Eﬁx'_gﬂf g%w H‘C{ %_+fn E_ (; :Zf{é(_) T,czi

From Eqs. (36) we can obtain a fourth-order equation for E+ alone

if we note that R is never resonant, so that its space derivatives

near a singular layer can be neglected., Then
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Llr T - el i )+

[ 2(/~Rﬂ§i( jb f)+ -

{07 RICHL) + 72 or-5) + oo+ 2R, O

Now, near a cyclotron resonance w = n Qci’ but excluding the layer
of strong dispersion (condition (11) above), we have

- X x 1) =, — g—i—RT
I"“){("’J)’"w 1

, a8 (39)
-n L \

where for simplicity we have shifted the origin of the X-axis at

the cyclotron resonance, and RT denotes its distance from the ver-
tical axis. We can then write

1<

> 19

e
e S
s=S - = (40)
0 X

where S (and similarly LO, R

= R) are the "asymptotic'" values of

S(L,R), or, more precisely, the values of these quantities without

the resonant terms; while
=5
¢
/

G:iz)cfgﬂﬁJ

(S'" includes contributions from those ions for which w = Q

cl
at X = 0). Equation (38) then becomes

ON_""’

sy (iJ
S'QZU) Q

(a41)
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_D%Za _«;d_?-) +O-{-)—<2[@—-;°(—‘)E+J
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_ﬂﬂioﬂli)( @ d§)+qx = e )Ee0

where

{’3 ) E({_)2( %QiXL‘ ’h’; (XS*" éfD;Z)% (43)
he [Dx/ C{i o c%?( (2 *‘3-('”//2'&))

XS, XL are the cold-plasma two-ion hybrid resonance and cut-off,

respectively:
y s/ y 5’
- = - _2 (44)

’ 2 2 2 2 2 PP .
while QF = -(n"-RO)(n"—LO)/(n"—SO) and qc = QF-nZ are the "asymptotic"

values of n; and n_, for the fast wave, respectively, and finally

2, 2.2 2
Py is the value of n, = n,-n,

Note that, in order of magnitude,
Me : ER
(2 P 58]
w
P X~ Xs = O (b & FRr)
2 :
3" st & Sogsefim
QF“"{X’“’PX ”O('ma)

where £ . = L /n is the concentration of the minority ioms.
Min in e

at the cyclotron resonance, X = 0.
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§ 5 - Applications

i) Two-ion hybrid resonance, non degenerate case_

If the cyclotron resonance of the minority species does not co-
incide with the first harmonics of the majority ions, FLR corrections
to the dielectric tensor and to the dispersion relation are very

. An example of dispersion diagrams near such

lasma
a resonance is shown in Fig. 1. At the hybrid resonance, for k, = 0,

small, of order Bp

the fast wave actually couples with the acoustic wave, whose perpendi-
cular index is however so large, ni ~ 105, to be out of the scale

of the figure. Even a very small damping therefore suffices to de-
couple the two waves altogether. Under these conditions, FLR
corrections can be safely neglected, and the hybrid resonance can be

treated as a true cold-plasma resonance.

++

3
plasma. Such a plasma composition can be of temporary interest in

3 ) g o . .

Examples of this situation are a He of D minority in a hydrogen
large tokamaks, when routine work with Deuterium as majority species
might give rise to contamination problems. It presents the unfavourable
property that the hybrid layer screens the cyclotron resonance of

the minority ions for waves coming from the low magnetic field side.

In the following, suffixes 1,2 will denote the majority and minority

species, respectively. The concentration of the latter will be treated
<

as small, say Zznzlne ~v 0.1,

Equation (42) reduces in this case to

éf Q__EB)E; 4,ﬂi {- El)E

X TN X Xt

(46)
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Note that
&1 m2ap Y2
A=p-X = = [ 5o @)
s Z \n2-S
C{% /B

is always positive, i.e., as it is well known, the cut-off is always

to the low-field side of the resonance. Moreover, a finite ng dis—

places the effective cut—-off farther away from the resonance: the

point X = B is the reflection caustic corresponding to the vanishing
2 2 2

of nX = nl—nz.

Equation (46) is solved by noting that the quantity
Xs
F “‘("I{—z )E+ (48)

satisfies the Whittaker equations

d°F A
ol X2 " Cﬁ‘ Q_ WS)F

h
O

(49)

The general solution of Eq. (46) can therefore be written in terms

of Whittaker functions /17/:

E, = X_‘”-;(_g e W-CK/L @%X (x—)g)) - 0

‘~Ro )2 s/ (51)
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is the effective optical thickness of the evanescent layer between
the cut-off and the resonance. The constants C4 and 02 have to be
determined from the radiation conditions far from the singularity.
In this way the coefficients for power transmission T, reflection R,

and absorption A are found:

a) wave incident from the low magnetic field side:

T=¢ 1 Re(-€™M)"

(52)

- -2
A=¢e qighg ,Y(‘)
b) wave incident from the high magnetic field side:
_ 2 —2n
T=e ' R=0 A=1-e 1" 9

As well known, situation b), in which the wave encounters the
resonance first, is more favorable for absorption than situation a),
in which the wave encounters the cut-off first. Note also that N,

: ; ; ; 2 . .
increases with increasing n_: the decrease of the effective index

qy = (Q;—ng)llz is more thai offset by the enlargement of the
evanescence layer due to the displacement of the reflection caustic
when ng increases. This enhances absorption in case b), but (if
n1;;<% 1n2 = 0.3466...) decreases it in case a). Finally, since

n, is proportional to the toroidal radius of the plasma, single
transit absorption of waves excited from the low-field side will be

relatively inefficient in large devices.

The results (52)-(53) hold if the wave resonance X = XS lies out-

side the Doppler-broadened cyclotron resonance of the minority ionms,

|XS| % 2| n,| Ve QRT/C} or
L
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ma Via
(_n_ [’Yl//‘ ki (54)
G/

Under this condition, the power absorbed by the minority ions is
easily estimated by integrating the power transport equation through

the cyclotron resonance layer. The result is

Kl o
A_%X';Wgﬁ ) mv‘LP"—

(55)
Sx | Pl (wp2 [«?)
where we have used the identity
Q
e % = “l—‘ (56)

o ZEE R

In Eq. (55) SX is the power flux of the incident wave if this wave
comes from the high magnetic field side, of the transmitted wave in
the opposite case (this statement refers to the case 22/A2< leAl;

it must be reversed if this inequality is reversed). Finally, Py is

defined in Eq. (43) as the WKB value of ny at the cyclotron resonance.

Equation (55) predicts that cyclotron absorption by the minority ions
is weak, and inversely proportional to their concentration. Screening
of the left-hand component of the electric field, E, by the

minority ions is very efficient, being a zero Larmor radius effect.
Equation (48), together with the fact that the solutions of Eq. (49)
are regular at X = 0, shows that E+ vanishes at the resonance in the
limit n, ff;'= 0; more generally, |E+[2 A (n /n ) n" 2. Since

the antihermitean part of the dielectric tensor is proportional

to nzlne, the dependence of ASX/SX on the minority parameters is

easily understood. Of course, if n2/ne is so small that condition

(54) is violated, these arguments do not apply, and ASX/SX ot nzlne

|
!
-?
;
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when n, > 0. It follows that ion cyclotron heating of the minority
ions is most efficient just near the transition where Eq. (54) is
only marginally satisfied. Since most antenna excite a broad n?-—
-spectrum, and refraction further broadens the spectrum of n,, how-
ever, this condition has only an indicative value. For waves incident
from the low magnetic field side, the minority concentration should
rather be chosen to satisfy the condition n, = %—1n2, which maximizes
the power absorption at the hybrid resonance. This restricts nZ/ne

to rather low values in large devices.

ii) First harmonic heating of a single species plasma

Figure 2 shows examples of dispersion diagrams near the first har-
monic of the cyclotron resonance in a pure Deuterium plasma,

w = ZQD. As first noted by Weynants /18/, for k,, = O there are two
confluences between the fast and Bernstein waves, separated by a
region in which the two roots of the dispersion relation are complex
conjugate. This evanescence layer merges progressively with the

layer of cyclotron harmonic damping when ]kﬂl increases.

In this case we have been able to find an exact solution of the

wave equations only in the limit n, = O (wavefronts parallel to the

Z

resonance layer). The case n % 0 will be treated approximately below.

Z

With n, = 0, in the present situation Eq. (42) becomes

- (2 <E) g2 d (e dEy

A3\ X dx X\ X olx
o “E g ~
+a—X—%++C{XE+ =°0

where qi - Qé and h = 2(n2-S)/(n2-L). The position F = X—l(dE+/dX)

(57)

transforms this equation into a system of two second-order equations,
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which is in a form appropriate for solution with the Laplace integral

method. In this way we obtain

E+Qq - P(P+%ﬂi)‘

2.2
+
C P Clx (58)

FI- 40 P Py 1P
-oxp 1 pX + &g, (k) (--aten = ) - 3 5 d
X : 203
X C[x U(Ix

Four independent contours producing solutions with a well-definite
asymptotic behaviour for X + +» and X + -« are shown in Figs. 3a

and 3b, respectively. The asymptotic behaviour of the solutions
representing Bernstein waves is easily evaluated with the saddle-point

method. It is important to note that on the propagating side (X < 0)

these waves are found to behave as

3/'2_

) (59)

Thus Eq. (57) predicts that Bernstein waves can carry a finite amount

[X|
=

B Y. .
By~ X e (£

of energy to infinity, a result which makes it possible to conserve

the total power flux.

The saddle-point method cannot be applied to the solutions representing
fast waves, because the corresponding saddle-points are too close

to the essential singularities p = i_iqx. However, the asymptotic
behaviour of these solutions can be evaluated using a method related

to the Hankel representation of the[‘-function /17/.

The knowledge of the asymptotic behaviours allows the derivation of
the connection formulae. Omitting the details of the calculations,

we list the results for the two cases of interest:
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a) Fast wave incident from the low magnetic field side:

the power transmission coefficient on the fast wave, T_, on the

F
Bernstein wave, TB’ and the reflection coefficient on the fast wave,

RF' are respectively

- -2 e -2 e i
\.l:.-: . 72' IE) €. 2’({-— 7

Re = (4~ 97271)2’ -

b) Fast wave incident from the high magnetic field side:

the power transmission coefficient on the fast wave, T the reflection

F,
coefficient on the fast wave, RF’ and the reflection coefficient on
the Bernstein wave (or conversion factor), RB’ are respectively

_.271
T R0 R{eql("”
B 4 F

Here

—

2= gl-teqs  A-g=- 2N

=0
it (62)

is the optical thickness of the evanescence layer.

Equation (57) coincides with the equation used for the same problem

by Swanson /6/ in the same limit n, = O, and of course under the

additional condition of sufficiently small Doppler broadening of the
cyclotron harmonic resonance, Eq. (15). In the present case, this
condition can be written

|y C_ 3 (5(\12 (63)
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The results (60) and (61), obtained from the exact solution (58),
are similar, but simpler, to those obtained iteratively by Swanson.
Remarkably, they are formally identical to those of a cold-plasms
Budden tunneling problem with the same effective optical thickness,
except that TB and RB’ the fraction of power carried away by the
Bernstein wave, would appear as absorbed at the resonance itself in

the cold problem.

111) zbg_ggneral case

e g e e e e e

In the general case (two—ion hybrid resonance in a D" plasma with
H' minority; first harmonic resonance in a single species plasma at
oblique incidence, Rz £ 0), we have not been able to find analytic
solutions for Eq. (42). We did therefore turn to the Green function
technique familiar from the work of Swanson /3/. The above remark
about the form of Egs. (60) and (61) suggests however to apply this
technique starting with the following very simple form of the wave

equation:

SE,
(‘I)‘(% +C(XE+:—HE (64)

+

The fourth-order differential operator H can be immediately

identified by comparison with Eq. (42).

Equation (64) can be interpreted as describing the scattering of

fast magnetosonic waves by the two-ion hybrid singularity as a whole,

and the solution obtained by the Green function approach can be

loosely compared to the lowest-order Born approximation. We can

therefore expect it to be a good approximation if the effective optical

thickness of the singularity is small.

P 1 OIS TEIGNGS o R
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Due to the simple nature of the differential operator on the rhs
and the assumption of small optical thickness, applying the Green
function method to Eq. (64) is straightforward. Details of the

procedure are given in Ref. /19/. The results are:

a) fast wave incident from the low magnetic field side:
= =& @‘ q]g“)
=
-2 =AM, % 65
R—: (QJ ‘Vh—— lqz) (65)

e —2(Mm + _ )
IB:“{'l'?, Q?f Tll)___ 471-64’72'
b) fast wave incident from the high magnetic field side:
i —-2_@[+m2)
l BT €
Re =0 <w

_9 N
R&: "{"‘ Q (nz['F’YI )

T,R have the same meaning as above, while n, and Ny generalize

1
Eq. (51) and (62) to the general case:

_ m//Z-RO Zi QS/-f'-OanZ)
b=z "7 =So ) 1! :

0

(67)

e 2.
= _”_ m/“Ro

2
127 3 fn,f-so) I

Equations (65) and (66) have been obtained under the explicit

condition

N]{ <<4) n?l«i (68)
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We note, however, that they reduce to the correct expressions in
both cases in which the exact solution is known, independently from
the magnitude of n and nz: namely, in the cold limit (o' =0,

Eqs. (52)-(53)), and in a single species plasma near the first
cyclotron harmonic for perpendicular incidence (' = 0 and né =0,
Eqs. (60)-(61)). It is therefore tempting to suggest that they re-
present an acceptable approximation in all cases, as implicitly
assumed in the literature for results derived with the Green-function
method /3, 6/.

Equation (65) can be loosely interpreted by saying that the two—ion
hybrid cut-off (more precisely, the reflection caustic ni = ni-né = 0)
and the confluence with the Bernstein wave act as two independent
scattering centers. The expression for RF is particularly inter-
esting, since it shows that for 1 =’q2 the two reflected waves
cancel each other by destructive interference. For a single species
plasma near w = ZQC (S' = 0) this occurs when “; = Q;, i.e. when the
wavefronts are inclined by 45° with respect to the resonance layer.
For the same condition, the power transmitted to Bernstein waves is
maximized. Thus for oblique incidence, waves launched from the
low-field side can be considerably more efficiently coupled into
Bernstein waves than for perpendicular incidence. This possibility
is, however, of interest only for a single species plasma, since in

the case of minority heating the inequality n, >>n, usually holds.

We should also mention that in the case of a single species plasma

(S' = 0), the equation of Swanson /5, 6/ and Colestock and Kashuba /9/
can be integrated exactly also for né + o,

and gives, instead of (65), the reflection coefficient RF =

= (1 - exp(-Z(nl+n2))2 (with the corresponding modification to TB).

In the presence of minority ions, however, the form (65) is obtained
again, except for an irrelevant rearrangement of terms in the de-

finitions of n, and n,.

1 2

p——
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It remains to discuss the conditions for the validity of Egs. (65)-(66)
and their particular case (60),(61), and to estimate cyclotron ab-
sorption. To this end, one must distinguish two regimes, depending
on whether the wave behaviour near the singularity is dominated by

the confluence with the Bernstein wave or by the minority ions. The

latter situation occurs as sSoon as

m 2 VZ
= = i (‘OPi o

~J RIS — (69)
Wﬁe (Speab a Czii (12

If this condition is not satisfied, the situation is essentially the
same as in a single species plasma. Since the confluence with the
Bernstein wave occurs quite close to the cyclotron harmonic resonance

w = ZQC, the condition of small Doppler broadening is correspondingly

severe:
Vig
4 4
|’n”1 e _(5 0 (70)
C 7 4| Prarma
In the case of minority heating near w = Q] = 292, on the other hand

+ . . s + oy s . . . . .
(H minority in D ) condition (69) is always satisfied in practice
by a comfortable margin. As the minority concentration nz/n in-
creases, the hybrid layer moves away from the cyclotron resonance,

as shown in the examples of Fig. 4. The condition that there is no

overlapping becomes

M, \’/4% A

which is easily satisfied over most of the n,~spectrum from usual
antennas. Under this condition, screening of E, by the minority
ions is just as efficient as in the cold plasma limit discussed

above, and the resulting cyclotron absorption is




..28_

AS o (.’”//2_R )2 W mf/z Vie,
___‘x ~ E:f?r)

SN e 2 (72)
Sx x| (wp2/w?) C
2 2 > [
e o v (2
w? Q% C2 LA

The first term, representing cyclotron absorption by the minority
species, is identical with Eq. (55). The second term represents the

(weaker) first harmonic absorption by the majority ions. I(a) is de-

g s
=F o __il' f’, ?\/(J? (73)
T 1R[5)]

I(a) » 2/m for a - 0 (main species much colder than the minority),

fined as

: 2 3 : ;
and 1ncreases as a when a -+ « (opposite situation). For equal

temperatures, a = 1/2, I(a) = 0.7.

In Eq. (72), SX represents the incident power flux if the waves are
launched from the 1.m.f.side. This feature makes minority heating

of H+ in a D+ plasma much more efficient than the schemes considered
in subsection i) above, with 22/A2,< Z]/Al. In particular, there 1is
no need to restrict the H concentration to the very low values which
maximize coupling to Bernstein waves at the two-ion hybrid layer.

In spite of the inverse dependence from nH+/ne, ASX/SX remains
sufficiently large to exclude any cavity mode excitation (except at

most the mode with Np = 0) up to much higher minority concentrations.
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Figure Captions

Fig. 1 Perpendicular index of the fast wave near the two-ion hybrid
) + 4+
resonance 1n a H He3 plasma, for nHe/ne = 0.005.
Plasma parameters RO = 3 m, B0 = 3.5T at X = 0,

n =103, T, = 1 kevV, T = 1.2 keV.
e 1 e

a) n, = 0; b) n, = 3; c) n, = 6.

Fig. 2 Perpendicular index of the fast (F) and Bernstein (B) waves

. - ; ;
in a pure D plasma near w = ZQD. Plasma parameters as in Fig.l.

a) n, =0; b)mn, =1.5.

Fig. 3 Paths in the complex p-plane for the solution of Eq. (57).

a) X <0; b)) X >o.

Fig. &4 Perpendicular index of the fast (F) and Bernstein (B)

. + __+

waves in a D -H plasma, near w = QCH = ZQCD;

plasma parameters as in Fig. 1, n,, = 0.

a) nH+/ne = 0; b) nH+/ne = 0.01; c) nH+/ne = 0.02.
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