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Abstract

This report is devoted to the propagation of electromagnetic waves
in the I.C. frequency range and is intended to complete a work by
M. Brambilla and the present authors/1/.

In addition to a derivation of the coupling equations, we present
an evaluation of the coupling coefficients in many of the current
I.C. heating scenarios.
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Mode-Conversion and Tunneling at the Two-Ion Hybrid and
and Ion Cyclotron resonances

1 Introduction

It is known that coupling of two waves propagating in inhomogenous plasmas
can occur in a well defined region of space where the values of the plasma
parameters let the wave vectors to become equal.

This fact may be useful for R.F. heating purposes, when a relatively un-
damped wave can propagate until the coupling region, and is converted
there into another wave, which can eventually be easily absorbed. Typical
examples are the IC heating schemes, in which the fast wave launched by
the antenna couples with an ion Bernstein wave; this happens in proximity
of the ion cyclotron harmonics or in proximity of the two-ion hybrid
"resonance", according to the actual scenario.

This paper is written with the purpose to complete the work on the subject
by Brambilla and Ottaviani |1| , by including the calculations there omit-
ted.

The problem was initially approached |2-6| by starting directly from the
dispersion relation and interpreting thewave vector as a differential
operator: Kk — -nLE;. This method, when applied to hot plasmas, leads
however to ambiguities concerning the position of the derivatives.

The resulting equations usually do not satisfy energy conservation, or
eventually conserve quantities which are not clearly related to the physi-
cal ones |7] .

Recently Swanson |8| and Colestock-Kashuba |9| derived the electric

field equations directly from the Vlasov equation. The approach followed
in Ref. |1]| 1is however simpler than the one of Ref. [8-9| , and leads
to similar results. The difference is discussed in Ref. |1]




Sec 2 of the present work partially reproduces the derivation of the
field equations of Ref [1]| , while their explicit solution in slab
geometry is obtained in Sec 3 in the small Doppler broadening Timit.

The author wishes to thank Dr. M. Brambilla for addresing him to the sub-
ject of the present paper and for continuous advice during this work.

2 Electric field equations

The electric field equations for a collisionless hot plasma may be in
principle obtained by solving the coupled set of the Vlasov equation and
the Maxwell equations.

The resulting equation will be in any case of the form:
=2 >
1) Q-of-fw‘- E = §OPE =N

where gcp must reduce to the usual collisionless hot plasma dielectric
tensor £ in absence of inhomogenities; the lengths are measured in

=

units < /co .

Restricting ourselves to the warm plasma approximation, the homogeneous
£ becomes:

—_

2) £= Eo + Q(L,J)m,;mj

where £o is the cold plasma dielectric tensor and:

[
3) g(@,j);i_(_é_i___)
N OMmi dM; Imj =o



In order to find the inhomogeneous €.p we must allow £o and g?{id)
to vary with ;? according to the implicit dependence through the plasma
parameters, and we must substitute ™Mi with =i i .

This procedure leaves some uncertainties in the order of the derivatives,
so the most general, warm plasma § ep will be of the form:

4) Eep =

v

o =6 (4])did; - b i € (hu)d) - ¢ %oy g ()
where a, b, ¢ are real and

5) a + b +' ¢ = 1
in order to obtain Eg. (2) in the homogeneous case. Further progress is

gained by imposing energy conservation. In absence of absorption, when
€o and € (4,j) are hermitian, we must have

. = &b
6) div (P+T) =0
’ -
where P is the Poynting vector:
-
7) =

-’
and T is the Kinetic flux.
Taking the divergence of (7) and using (1):

Ty

8) ob'l/P::- I/W\(E+ gOF

=
8

By Eq. (6), the r.h.s. of (8) must still be a divergence. It is easily
shown that this is obtained only by imposing a =c 1in Eq.(4). Eq.(6)
is thus satisfied by a Kinetic flux of the form:
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where only the hermitian part of E'(‘J) must be considered. Eq.(9)
coincides with the homogeneous result given by Stix |[10] .

The above procedure leaves undetermined only ¢ , which however we set
equal to zero in order to obtain the simplest equations.
The dielectric tensor becomes:

10) Eop £ = :5.,!? —9;[@(%1') '”)J'E]

Let's now specialize Eq (10) to slab geometry, introducing a system of
coordinates (x, y, z) with the magnetic field directedalong z and all
the gradient along x . It is appropriate to perform the expansion (2)
only in the perpendicular components of the wave vector; moreover, we set
Ey =0 so that EZ (Ex,Ey) and &  reduces to a 2x2 matrix;
finally, among the warm plasma terms, we retain only those relative to
the first harmonic resonance, since warm terms at the fundamental fre-
quency are negligible with respect to the cold ones. The result is:

5. D "
11) é = = G (Pﬁx+/”3)
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Here o refers to both ijons and electrons, and 2« ) denotes a sum

only over the species that exhibit a resonance at «w =mf« in the region

of interest .

Egs.(1) - (10) and (11) are better written in the variables E_ and E_

defined as:

&y ( L Ex
13 - L )
E s V2 | ~¢ E_y
The result is the system:
& 2
! d t 2 _Ci_ o _ } _1 d__
[—5(‘1—;" "ﬂ"lﬂ) - (Mf[— L) +2 (51)(6'0.[—)( 6M3)j£+ g(er MJ)E_.:
3 = O

L Lemg) Byt [$( 5 mS) - (A-e)|E-= 0

The advantage of using this variables is that the resonant terms apply only
to E+ . Moreover, since R does not contain resonant terms, its deriva-
tives can be neglected. This permits, by multiplying to the left the first

of Egs.(14) for [Z{f ( 5;1 *f“isj & (m"’,,~£)_]

z ) .
and the second one for EI (%; -./143) and summing, to obtain

a single equation for E+ , which describes the coupling between the fast
wave and the (ion) Bernstein wave:




dx? dx xt

+ Ef’ﬂl‘a +%(/'ﬂ"u-ﬁ’.)] . %(5'%) +

" { (mh=R) [t -L) + 'y [(,-.‘,,_ S) +6 [my+2(wh, —e))]f E;= 0
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In order to simplify this equation, although retaining all the relevant
physical features, we assume a B dependence of the form:

16) B= B Rt . B,
R I+ x [RT

where x=0 1is the position of the cyclotron resonance.
So, for all the resonant species:

X

Rrm, Vit
c

17)

Xm'j =

Thus the relevant dependence on x is through the Z function relative to
the resonant species, while all the slowly varying terms may be kept constant.
Separating resonant and not resonant terms, and using the asymptotic expansion
for the Z function (a good approximation when the coupling layer is well se-
parated from the Doppler broadened resonance) we get:
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We thus obtain the equation which describes the propagation:
= 2 —
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The typical order of greatness of the various quantities appearing in Eq.(19)

are:
=5
22) &l
-1
a(rvXSfupme ~ M szp
b~ - Me
L A
Qe ~ 7’x ~ M

It will be shown in the next section that Eq.(19) may be solved in closed
form when either o= B = o or f£=o , and with a perturbative treat-
ment in the general case.

We close this section by giving an expression for the energy flux. From
Egs. (7)., (9), (11) and (13) we get for the x component of the total flux:
23) Sx:Px"'Tx:: = EM{E;OIEE _j/"l.yE*E,,_-l-
g§m A J
* —_
+ 2Re(e) E5 dEx{
Ax

It is useful to evaluate this expression in the W.K.B. approximation by re-
placing dex with 1 Mx . From the second of Egs.(14) we find the
polarization:

2
E- [Mx ~imy)
24 R
) e micrmtg+ 2 (M- R)
and: E)( - Q mbx-l-((”’;;‘R) "'A-Mxm‘j
- )
E+ M’y +m1’3+.z(m';,-e)
25)
%f“ 2 HifF LrR) vd ity e My
+

A L L
Mx + My 'f'-?.{/"lrf"r'?)

Directly from Eq.(15) we recover the dispersion relation




26) SM_?_ + [(Mtl’("s) T -26" (/“Lu"r{,)] Ml + (/"’l;f'R) (I"’zf.r -L-) =0

which, provided that:

27) JEYRIN
(Mbu = S)

may be factorized into the dispersion relations of the fast wave and of the

Bernstein wave:
({"ILH "R) ({hL" —‘_L")

v v 1
mM = M + M e S
28) J,F X,F 3 (MLII _ S)
(2
,, L v mS)
M g = Mygdfay = = e

Using Eqgs.(24)-(25) we get:

L !!
29) .= & 2Re(my) (' ~R) ; 3+R¢(6*)f15+
g g ]f"‘!'x"‘/"*"g +2 [/"lu"R”

I?,

For the fast wave this becomes

r o 5 |- s ® IEF{z
30) SK = = ,ZR"(MX) deso o L R la) +
g (MT}{—R)&
which approaches for x—2>oo to:
i é (m—80)" jF =
31) Sx =+ S 29, "= o IL_‘*[
8 Im (Mt;f—Ro)z

while for the Bernstein wave
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P 8 = 8" . . .
S 2nmx [ le) lt.-}-} high field side

oo
=|

o i (evanescent wave) low field side

As expected, the energy is carried mainly by the Poynting vector for the
fast wave, and by the kinetic flux for the warm plasma, electrostatic wave.
The latter is a backward wave since Re (6)<© in the propagating
region, so that the direction of the power flow is opposite to the phase
velocity.

3 Solutions of the propagation equation

We develop the solutions of Eq.(19) in three distinct cases:

a) £ =0 x £FRB# o

6) £#o kel Sl
<) g #0 < #pPFEOC
a) E=S0D

This situation is formally identical to the cold plasma limit and occurs
whenever we consider a "minority" heating scheme in which the first har-
monic of the majority species does not coincide with the fundamental
cyclotron frequency of the minority species.

The majority species does not contribute to the warm plasma resonant term,
and the latter becomes negligible.In this case the dispension relation shows
a true cold plasma resonance near S=¢o , and the approximation ¢=o0

is fully justified.

Examples of this situation are 3He++ minority in Ht or p* plasmas.




= T =

The propagation equation reduces to a an order one:

3w 4 [(- ﬁ)a] ¢ 9% (1-B)E, =0

;;r. x

Using the dependent variable:
- - £
34) F—(! X)E+

Eq.(33) transforms into a Budden equation

2
JF Z _ A )F:o
35) e ?x({ e
A= p-a
Changing in turn the independent variable:
36) E o= -249 (x-o)
[-6: —1- Acrx
2

we get a Whittaker equation

ALF(E) 1 <
m AR [+ L JE(3)-o

whose suitable solutions are the Whittaker functions of 2" ind [12]

38) F, = W,

Using the asymptotic expansion:

el : x X
39) W“(;) ~ ;KC g ] dei?’ "f’”‘<M3[;)<§ﬁ

'z

we see that the solutions corresponding to the cases of a fast wave
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incident from + @  (low field side) and from =-oo (high field side)
are given by F_ for x< &£ and by F+ for Xx2>4 , respectively. |
Since the Whittaker functions are defined in the complex ;;-plane cut
along the negative real axis, the solution in the opposite region must be
the appropriate analytical prolongement.

This is obtained by passing the singularity from above |Appendix 1] .
The result for 1.f.s. incidence is:

40) E+ = A X‘ia(. W'klé ("E) x <

.o,
Eyx A= 2Pwr, (3) - 28ie Weu(B) [
] Wy D) ) (k) X

And for h.f.s. incidence:

) Bz A 2= Wil (3)

X—of 7
Here we have defined the optical thickness
2) Moz aTR =T Aq =L (4-1) « 9

and A is a normalization constant .
The asymptotic behavior of the field results:

- ~AQxx
43) Sipieg @ e X << X

~iQex gmi e le X

E+ A X >>eod
Plx)P(11x)
for 1.f.s. incidence, and:
- f?x"‘
44) Sk ™ e
a - Mo 4 fxX
E 4 ™ e



s 18 =

for high field side incidence. The incident amplitude is normalized to 1.

The transmission and reflection coefficient are defined as rates of the
respective power fluxes (Eq.31)

T= c—2q°
45 20\ 1.f.s. incidence
) R= (1-e7%")
=20
T=¢ q
46) h.f.s. incidence
R=o0

In evaluating (45) we used the identity

) || yW;(”) y real

Apparently Egs.(45)-(46) do not show energy conservation since there is
a missing energy:.

48) szqb(j-cfb%) 1.f.s. incidence
A =|-R-T=
= C'2q° h.f.s. incidence

It may be shown |Appendix 2| , that this energy is entirely absorbed at
the two ion hybrid "resonance" X =«

b) x=B=0

The typical example of this situation is a pure first harmonic heating
scheme, with incidence perpendicular to the singular layer (fn3 =«9),

The propagation equation becomes

4 - de+) 42 t (5 v o~
49 - [EAEs) A B, —Lq’ A [E Es ~
: dx3 (x d x +th : 7xolx(x _;)+T’<t+
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By setting:

QU

E4

-
50) F"Tédx

and subsequently Laplace-transforming, we get the system

51) ‘Ef)(f’z*‘g‘?t()f + (P 9%) By =0
E, 5 = &
PE+ 17

The result is expressed by an integral representation:

P ¥ X

o (l-ﬂ»)%_'___g[_ ({})SJf dp

where the integration path must go to infinity in the following directions

53) - LArg < - T 4 AnepoS . A mT<Argp< 3T
Eq.(51) differs from that given by Ngam e Swanson |3| 1in the term before

the exponential, whose occurrence assures the carect asymptotic behavior of
the Bernstein wave.

Instead, Eq.(49) is essentially the same as given subsequently by Swan-

son |8| , with minor differences due to the choice of the variable (E
instead of E_ ). Swanson however did not realize that (49) can be explicitly
solved. An appropriate choice of four independent integration paths, each
corresponding to a well defined asymptotic behavior of the wave, are shown
in Fig.(1-a) and in Fig.(1-b) for x<o and x>0 respectively.

The asymptotic behavior of Eq.(52) may be evaluated with the saddle point
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method for the Bernstein wave, and with a method based an the Hanckel
contour integral for the [~ function |13] for the fast wave. The latter
cannot be evaluated with the saddle point method because the relative
saddle points are too close to the essential singularities Pz £49yx .

Defining:

3
54) H(r) = PX - f?’xg [(!-ﬂ) Mof‘g_% -(I—R)% +% (j;‘) ]

we get:

" 121
55  H(P) = x - gt FEr
P‘\"“f,(

s6) H(p) = —(::7215 (Ph+ 294%¢" + 89 )

The saddle point condition is equivalent to the dispersion relation:

z t
57) o= H'(p)= x - e (f’*ﬂqx)

PL""Ttx
whose asymptotic solutions are
: Y}
e 3 %I ¢ X< 0
= B-wave
55 fo= x\'1z
t ( : ) x>0

_ 2
59) Pe=1i I L{—z'_ (r2) ‘E)j’ ] F-wave
\ ]
And F _2'.',[]" ];(]IZ' x< ©

60) H' (k) =

r2L X S i
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61y H (pe) = £ i o ixd

In order to expand H(p) around the saddle points, the singularity
Po must be far enough from the saddle point Ps that:

62) | H[6) (po— Pe)?] 21

In the asymptotic region this is true for the Bernstein wave, but not
for the fast wave for which the expression (62) is of order unit.

The Stokes' lines relative to pg are shown in Fig. (1).
We have
2 L Ry x 2o
3

63) H(Fa) =

. -Y 3
Y ;::f_/ £ - [ x| = x < ©

=+l

where the optical thickness is defined:
32
64 = IC (1-8) ¢
) n]? g ( ) 7x

The result of the evaluation of (52) for the B wave is:

3 gl & 1,
65) E, ~ ¢ ¢ (zn')"l—::} % s

for the paths Cl and Cyq of Fig. (1—a)‘

8 . 1 e @ =
66) E;, ~ s (g5) ¢ ‘;—) e

for the path D, of Fig. (1-b).

2

Let's now evaluate the contributions of the integral Cy and D,
(C2 and C1 are their complex conjugates).
Changing the variable in Eq. (52)

67) Pz -aqy +E

we get




. Yp
- ~4 Jx % """)
68) E+ =¢ 2 f &) " e,bxcp(&)olb
C

N
3,05

69) CF(&): - &£ (k1) f(b—i?x-)+£7x] (H:f—)«r)ﬁ“ﬁ-?
(e - 24 9%)

ot aqf [0 (£ o4 (£ -]

Ex

The integrand in Eq. (68) is dominated by e until a distance from

the origin of order

70)  teo ~ ]-“‘é/va

We thus have a good evaluation of(68) by simply replacing ‘be) with
q%c) , provided that:

e 2
71) ltoX] = '§ 2 [ x( e >? |

well satisfied in the W.K.B. region. Then

e _,11P () -JATfo Gb){%—’)ebydb
Iy < L
y B+ e R et p

£ 0 —1'(—5--& t?xs
73) o) = (-4) 597 =t e«-(zvx)e £58)
2

Here C3 and D3 must go to infinity in the less restrictive directions
Re(t) >0 und Re(t) <0 respectively.
Finally, changing again the variable:

1y k= -

we get

fx -3 e (",’,ﬁ-f)
5)  EF() ~ P2 ) (-4 mf ¢2) ‘dz
C’H

where (Cy is Hanckel's contour for I function integral representation:
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76) L ) e i dz = ~2milT(Y)
H

The results, neglecting irrelevant phase factors, are listed below:

3 .
-3 # o -1,
77) Ef ~J g__"__P ___'2_'&___ e gl for Cz
% P("Hﬂ)
_F ar “1p(3 < @ e-*"fxx fva D3
= T C0imefn)
-32m L Ks X
Br o __j_r ?tb = for C,
! T« [ (ime/T)
(Zﬂ M’/z LT z}'?x* 100'1— Dl

E
E'f i q,( r‘ (""1 P/'ﬂ")

The final step is to connect the solutions of the regions X O
This will be done explicitely for the case of low field side incidence,
while only the results will be cited for the opposite case.

Incidence from + e excludes the paths C, and C3 in x<o , which are
associated to waves carrying energy from-co .

Moreover, we must exclude the unphysical growing solution in x>0
As shown in Fig. (2-a), the presence of a branch point in p = ~x9qy
makes contributions from the two rectilinear portions of C3 to differ

Mp

by a factor e . So, the contribution of the path C must be multi-

plied for the weight ( | - ¢~2M¢ ) in order to cancel the growing solution.

The required solution for E,  can thus be symbolically written as:

-—

78) E, = (1-e¥P)sc, + Cs

which is expressed by means of the standard integrals in x<©O
The subsequent modifications of the paths, needed to obtain (78)
by means of the integrals in x>o are shown in Fig. (2). The result is

79) Es= (1-¢27)D, -~ (1-e7%1e) D, + D,
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Egs. (78) - (79) together with (65) - (66) and (77) lead to the
following connection formula which we have written with the incident
amplitude normalized to 1:

: Y
als F2 (‘_Q_qu)zﬁ?xx+ T (1m)%e 0% (1-e7T) -L-Z-r(g)

80) '3
"‘/Z. 3f;_
- %2 P("iﬂ/r) 5.
- A9y 2
- e =A1ax ﬁp[z( 1) ¢, (1) l
B aey i

(X(.o)

The coefficients of transmission (TF,B) and reflection (RF,B) on the
fast and Bernstein wave are finally obtained as rates of the power
fluxes - Eqs. (31) - (32).

The results are

— ~2M
lg= € P
iy ..Zl‘fp( _ nqu) low field side
IG = ¢ ! incidence
z
-2%p
1) 1 Re= (1-¢ )
Re =
L
In a similar manner, one easily obtains
TF= q—zﬂp
high field side
T = O

1) incidence
82) * Re= 0O

Reg = I"c—qu

The results are the same as (45) - (46) and (48) except that the
energy absorbed now appears converted into the Bernstein wave.
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c) General case

The general case includes the "minority heating scheme", when the
fundamental frequency of the minority species concides with the

first harmonic of the majority species. Typical example is a Dt plasma
with a small concentration of H': the warm term 6 is now proportional
to the majority concentration and is no Tonger negligible.

The other case which belongs to the general one is the pure first
harmonic heating with oblique incidence.

We were not able to obtain an integral representation of the solution
like EQ. (55) for the general case. The main difficulty is that
substitutions Tike (34) and (50) Tead now to a second order equation
in the transformed variables.

However, we can evaluate the coupling coefficients in the Timit of
small optical thickness, with a technique similar to the Born
approximation in scattering problems.

Eq. (19) may be modified as follows
83) HoE+ = (HoHl'f'Hz)E.f
where Ho describes the propagation of "free" fast waves:

L
) Ho = 449k

while the r.h.s. describes the "interaction" with the singular Tayer:

£4 + [+- o0

9.] U

85) H, =

¥
86) H& - "(I'&)E‘T‘lj]';;’z, + ‘Ti,[([s—d) + [l‘fs)i'fxc]“)l?

Es. (83) may be rewritten by using the appropriate Green function
for Ho (The one describing outgoing waves [14]):

o

[T T T
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4 20 I K (x- !) ot
H_I‘C»[x x')a"{‘f e " OLMz-J—@J?x,XX
87) 0 - .2Tb_ _Kz.'{'T;x‘*‘l‘r -24.7,(
e -
(r—>o")
+ 00 :
88) e I o P H B ® falx'GfX-x')Hz €4 (<)
- 2
where Eo is any free solution:
89) HoEo = &
As usually
90) G (x-x)= G, G-x)t G Oex)
(,,()-c-x’) x>x’
Gy (x-x') = { o < x!
o x > x’
C,,_,(x-X') =
G (x-x") x<x!
Then Eg. (83) is transformed into an integral equation
x + oo
91) E+=Eo+ HiEy + {Gw("""’) H:,JEJ-I‘JXI *[Ca.. (x-’*’)H‘; E-fIOJXI
- oo

K

We now obtain asymptotic formulae for the amplitude of the fast wave.

_— = =X . : F
For 1.f.s. incidence we take LCo= € . Since asymptotically H,E+

is negligible with respect to the main term, we get:
. 120
k=2 !
92) E-fF ~ 2 ‘TXX-O-/ G)-l- (’(“X’) Hz’E+ o!!(' =
ey

K9, DX 1’:‘ Ca e (x >>©)
= ¢~ x> L' / XJ“TT- & =4 2
-0 K

F

1 %
93) Es = 9-17'¥+/ G. (x-—x') Hzlf..'o’x' = s

1 o )-T X’ , ,
__éﬁ-qxx [I'f' ol)(‘-_.’—.. 2 x Hz E.,.] (x((o)
B ~2p 2 P
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Thus we obtain for the transmitted and reflected amplitude (1.f.s.
incidence)

4 %0 .
£ Gy x
Ar = H-ﬁ[ O‘x-«?:!—‘fx T H, E+

94) 1pe :
] ~4fxX
Ag-= _£ oA x -Z_.—"‘fx- Q HzE-l-
and (h.f.s. incidence)
+ 20 ? w
- L 4 E
AT = f-!-—[o dx -z‘-?-,{ e H.Z &
95) * 2o J P X =
~ oo -2!7,(

Egqs. (94) - (95) are still exact, since they are expressed in terms
of the exact solution E+(x).However, since the latter is not known,
we can only obtain a first order evaluation by replacing E4 with Eo:

+ 20
=1 Ax Loy dfle 1 o 2% 1
Aq +_£ — [('70""71’) pr L& E(- X2 = 7. Xt

%) .
e 2% ¥ )
4% ¢ [ MVl o+ 4Me L o+ 2% L ]
AR.= A{ ..n..’: (q‘ ﬂ’f) x T’( XZ q‘(‘ )(3
for 1.f.s. incidence and
4 20
- A x L i M L 4+ 27 _L]
= |+ L el 1 2 + <1
AT l #L Tr.i [(qQTAIP)x # xg, q': x3
97)
+20 e 7
rq. x
A ~ / Ol_x e X [ + ) -!__/.lﬁ_i_ + JJI‘IP__,']
R s — Mo ﬂTI’)x ?K xz, q{: XJ

for h.f.s. incidence.
Here we have used the optical thicknesses . and 7, (Egs. (42) and (64)).

The pole must be bypassed from above, and the integrals for AT must
be evaluated with the formula (A2).

The results are :
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AT = |- (qef@f‘)

98) 1.f.s. incidence

AR;' 2 (“lp“"l-)

Ar = 1- ('70""7?)

99) h.f.s. incidence
AR= o

We note that although (94) and (95) are formally very similar, the
results are quite different. This is a consequence of the causality
requirement, i.e. the displacement of the pole from x=o0O.

The small optical thickness expansions (98) - (99) suggest the extension
to arbitrary #, and M, :

IAT{ - €.- (f"o"‘"??)

100) 1.f.s. incidence
-2'] —2’79
Aal = e M-

We see that (100) agrees with the correct expressions in the
exactly solvable cases. Moreover they satisfy energy conservation:

~200 ~2/1p 4
i 4 -54e 4A
101) Tgz I-1Arl - |arl = [+ ¢ S Tl 20

And Tg has to be interpreted as the power converted into the Bernstein
wave.
The results may be summarized as follows:

Te = ¢~ 2(%0#¢)

3
LT
102) Rp = (e e ) 1.f.s. incidence
Rsz (e
TG = 6"2’70"2”}"" (-th"c-‘ﬂ?r

Te = Q‘z (%0 +15)
103) h.f.s. incidence
Rp = 0

Ra = I-¢7% (%0 + 71e)
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Thus, the general case is completely described by two optical thick-
nesses which we rewrite in terms of physical quantities:
7 A
T [Mu-R) 4 [S/+ & mty)
2 z ¢ o
2 (/‘1.1"50) ?"

AR ¢
=T LAReL org,

(h’;l ’50)"

104) "o=

An interesting consequence of (105) is that reflection vanishes when
Me = ™Me , condition which can be satisfied in the first harmonic

heating scheme at 45° incidence.
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Appendix 1

The behaviour ~ I/x of the resonant terms derives from the asymptotic
expansion of the Z function:

X <y
& e )6
M) Lo mZ2 202 )x - Xo ReZ(rxe)-ilT Ze o

Performing the limit Mo (Xo —'>09) in the sense of the distributions

we obtain
A2) P}/""‘ —-.’SE,?‘ X_iq)] = f—’- 2 (‘S‘(x)“
Ma—> 0O RT Rt X
- Qi :

roo"  X+4Yy

So, the causality requirement is taken into account by giving to X a
small positive imaginary part.

Appendix 2

The power absorbed in the limit m,20 can be evaluated by replacing x
with x+4y and performing the limit y-= o* at the end of the
calculation.

The imaginary part of Z must be replaced by:

Xo T xX X - | -Y
B3] o RRRAEE by o) e P e T S

This may be applied to the cold plasma 1limit (€ = 0). Considering for
example 1.f.s. incidence with a»o and normalizing the field so that
the incident flux be unitary we get |15]

57 R ..l ' ¢
w A& (~f-Ro) s' T _><+_¥‘_,, | Werea (-5) ]
X (- So) Tx byl | xray-oa :

b !
LM (R ST Y w, )
(mi=-%)%  TIx  (e-at)tey?

2

T




= P

The limit r=aﬁf shows that the absorption is localized in  X=&

L
ps) A oo L) 246 e 3T | Wy (o) ]
and

1 20 -Zo -2'70
A6) ASx:] %%M/: g T 0% e )

- Oo

as expected.
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FIGURE CAPTIONS

Fig. 1:

Fig: 2:

Independent integration paths for evaluating the electric
field (Eq. 55)

a) Well defined behaviour for x —» - oo

C1 : Bernstein wave cyrrying energy toward - o
02 : Fast wave carrying energy from — oo

C3 : Fast wave carrying energy toward - o

C4 : Bernstein wave cyrrying energy from - oo

b) Well defined behaviour for x —» + o

D;: Fast wave carrying energy toward + <°
02: Evanescent Bernstein wave

D,: Fast wave carrying energy from + <o
Dq: Any other independent path, which includes
contributions from the unphysical growing solution

Subsequent deformations of the paths to find the
connection formula in the case of 1.f.s. incidence
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