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Abstract

A recent theory by MOLVIG et al. on particle transport in
turbulent fields with overlapping island structure is critically
reviewed. An inconsistency in the derivation of the diffusion
coefficient D from the assumption of a Wiener process is pointed
out and corrected. In the region AQ-TK >> 1 the results if
properly interpreted are unchanged. For AQ-TK << 1 the results
differ ( AQ = particle velocity/mode correlation length, T =
"randomization" time ). Computer experiments are performed to

support the critical arguments.




1. Introduction

Experimental evidence /1, 2/ indicates that "anomalous"
transport of energy by electrons in plasmas is correlated with a
superthermal level of low frequency electromagnetic mode activity.
Turbulence theories based on the interaction of linear drift
modes, e.g. /3/, the references cited therein, and /5-11/, or on
the presence of solitons /12/ have been proposed. Also attempts
to evaluate the thermodynamic partition function /13/ have been

made.,

Recently, Molvig et al. /14/ proposed a mixed Eulerian -

Lagrangian transport theory where the turbulent electron motion

is considered with the modes frozen in as it were so that the mode
spectrum and the transport process can be investigated separately.
This theory applies to situations when the modes develop a set of
islands for the potential(s) around resonant locations and the
islands strongly overlap. In this case the particle trajectories
become of the "mixing'" type /15/. Trajectories which are initial-‘
ly close to each other diverge exponentially. As a result, after

a few Kolmogorov times 1, ("randomization" times) the orbits may

K

be viewed as a diffusion process with independent random incre-
ments with Gaussian distribution ( Wiener process ). The auto-

correlation time TaC of the Eulerian modes is assumed to be

large compared with t1,. This scheme, called 'mormal stochastic

K

approximation" (NSA), yields a diffusion coefficient /14/ of the




type
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where E is the field strenght of a perturbing mode. A s
k,w k,w

the Green's function of the particle motion, essentially a

broadened version of §(w - kv).

The aim of this paper is to point out and correct an in-
consistency in the theory /14/ of Molvig et al.. In Sec. 3 it is
shown that the assumed diffusion process has not been properly
treated. In Sec. 4 this claim is corroborated with numerical ex-
periments. The corrected theory yields a diffusion coefficient

which, depending on the parameters, agrees or disagrees with /14/.

Before a short derivation of the relevant equations is given
in Sec. 2, it may still be useful to briefly mention some related

or contrasting theories.

In 1966 Dupree proposed a turbulence theory /4/ where secula-
rities in the orbits owing to wave particle resonances are avoid-

ed by a velocity space diffusion. The diffusion coefficient
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has the same structure as (1).

In the same year Rosenbluth et al. /16/ investigated the topo-
logy of magnetic surfaces disturbed by modes with a magnetic com-—
ponent. The formation and overlap of islands was discussed. A
quasilinear model of field line diffusion was proposed, i.e. a
diffusion coefficient analogous to eq.(2) without the t3 term in
the exponent. In 1978 this model was applied /17/ to determine the
energy transport of electrons which are tied to the stochastic
field lines. In 1979 this quasilinear diffusion coefficient was
tested /18/ by numerical solution of model equations which are equi-
valent to recursion equations as discussed also in /14/ and Sec. 4
below.

1979 Hirshman and Molvig /5/ gave a self-consistent theory
of particle diffusion and nonlinear mode evolution for the uni-
versal instability in a sheared magnetic field in order to ob-
tain absolute values for the anomalous energy transport. The
theory includes orbit diffusion by analogy to the ideas which
led to eq. (2). Some of the simplifying assumptions made in /5/

were relaxed in /6/ and /7/.

In addition and in contrast to the work mentioned above,
turbulence theory was further developed by Kraichnan and co-
workers. The "direct interaction approximation" (DIA), /8,9/
yields (in a slightly simplified version /14/) a frequency and
wave number dependent diffusion coefficient which is of the

type




PIA .y DIA

2
k,w gt k-k',u-w' |

< Er >0 (3)
The physical process underlying eq.(3) is inelastic Compton scat-
tering from mode w,k to modes w',k', while eq.(1) corresponds to
primary wave particle resonances w' x k'v. Although the mechanisms
are very different, an explicit comparison by Diamond and Rosen-

bluth /10/ gave no significant discrepancies. The simplified DIA

renormalization method used in /10/ had been developed in /11/.




2, Equations of motion

Let us consider a "typical" drift wave situation. Electrons move

in a sheared magnetic field B = B, { 0, x/LS, 1) in the pre-

sence of electrostatic waves E = - Vo:
= i (ky+kz -w t)
o(x,e)= . I . (x)ie T ond Y, (4)
m,n=-» °’

where x = (X,y,2z) and km = 21rm/Ly etc, In the guiding center ap-

proximation the equations of motion are

q

. 1 . e

x, =5 [ ExB] ; Vi = == Eu , (5)
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where q,, m, are the electron's charge and mass, and E, = E*B/B,

etc. If positions, times, velocities and potentials are measured

in units Eo, m;l, Pgw and (Te/ q, )(pS/Ln) eqs.(5) simplify

to
*T EY ’ el il (5a)
m. L
L] l n
Vp = -~ -!;1— ‘6“‘ Ey . (5b)
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Here p_ = cslﬂi, Q; = ion gyro frequency, LI kTe/mi’ W
cS/Ln, and Ln > 0 is the scale lenght for the density, varying
in the x direction. For small x, |:c|/LS << 1, it is a good ap-

proximation for our purpose to set v, = const and z = 2z * vat.




In this case eqs.(5a) may be written as a one-dimensional Hamil-

tonian system with conjugate variables x,y:

. oH . oH
X =T == : SRS
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2 (6)
vy X
H(x,y,t) = T + 0(x,y,2_*Vnt,t)
Let x0 = X, y0 =¥ + xov,,t/LS be the unperturbed solution
for ¢ = 0. Transformation from x,y to 8x = x - xo, Sy =y - yO
yields
4o .
. . + +
§x = -} imd_ (x +6x) e © I--kl:u(ycv iy
_ m,n o
m, N==c
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For simplicity we shall neglect the x dependence of the modes, as

done in /14, 18/.

Resonances occur for k"(xo)v" —w = 0, where driving terms
are only weakly time dependent. Consistently with the assumption
v, = const, it is a good approximation for drift waves to neglect
wmn compared with k,v, because it shifts the resonant positions

X only slightly. Around each resonant position X, mow at




ky = kmxo/LS + kn = 0, there is an island in which the particles

are trapped if the islands are well separated.

With these approximations and a further change of units: x' =
2 2
 E | B
sz/(LSLy), y 2ﬁy/Ly, t 21!v..t/Lz and & Lz¢/(v"LSLy) one

finally obtains (omitting the slashes)

+00
§x = 2 |¢m’n|m sin[: m(y0+6y)+(mxo+n)t + ¢mn ]
m, n=-
(8)
8y = ox ,
where ¢ e*nZo = | @ | e*®mn . Initial conditions at an
m,n m,n

arbitrarily fixed time t, = 0 are 6x = 8§y = 0.

For the purpose of numerical investigation further simplifi-
cation of eqs.(8) is achieved by assuming that the mode strenght

@m " is the same for all n, ==snse ., With
]

4o ; ) +o0
J e*™F = 2¢ § st -2mD), 9

=—o0 1=—c
and Z .= 0 without loss of generality, the differential equations

(8) are replaced by the recursions

6y1 = 6y1_1 + 27 6x1_1 5

(10)

]

le 6x1_1 + 27 E)O A m 51n[:m(y0+5y1) + 2rlmx  + ¢ ]




where Am = 2|¢m . Initial conditions are 6xo = Gyo = 0.
Actually, eqs.(10) are not the most general discretized

version of eqs.(8). For arbitrarily chosen to # 0 there is a time

lag AT, 0 < AT < 27 between the first 8- function pulse before

t, and t, itself. AT -> 0 was chosen in eqs.(10). At the opposite

end, AT => 21 , the order of the recursions is reversed, with 6y1

and le_1 on the r.h. sides replaced by 6y1_1 and 6x1. For the
sake of comparison with theoretical models it is advantageous to

consider both limiting cases, see Sec. 4.

Equations (8) were solved numerically in /14/ while eqs.(10)
were solved both in /14/ and /18/ in order to obtain diffusion
coefficients. In Sec. 4 we solve eqs.(10) again, but for the pur-

pose of obtaining correlation functions like

<[eyt) - syt ] 2.



3. Diffusion process

In 1981 Molvig et al. /14/ proposed the "normal stochastic approxi-
mation" to describe turbulent plasma response. As stated in the
introduction, the theory is based on the chaotic "mixing" type
behaviour of the particle motion in strongly overlapping islands

of the potential. Any small segment of starting values L B for
example, is mapped onto the whole available range 27 after a time

T called Kolmogorov time. As a consequence, the Lagrangian

K’
perturbations §x(t), 8y(t) develop much finer spatial scales than
the Eulerian correlation lenght of the modes ¢(x,t). This dispa-
rity of scales together with the assumption that the "mixing"
time Tk is small compared with the autocorrelation time TaC of
the modes is used in NSA to perform an average over the micro-
scale fluctuations first, with the modes ¢ frozen in. The averag-
ing is performed with 6x and 8y as normally distributed random
variables, i.e. a Gaussian distribution, because this is what the
central limit theorem predicts for the cumulative effect of many

independent increments A8x, A8y which together yield the orbits

§x, 8y.

To be more precise, a diffusion or Wiener process was assumed
to describe the '"radial" motion 6x(t). In a symmetric Wiener
process /19/ the probability density to find a particle at positi-

on x at time t when at t = 0 it was at x = 0 is given by




= 0=

i, o B8 _ £>0. (11)

P(x(t)) = —
Y41Dt
The probability density to find the particle at time t' at
position x' and at a later time t at x is the product of two in-

dependent probability densities:

1 1 . - 4DET'e T %D(t-t")
47D Vt'(t-t")

P(x(t),x'(t")) =

(12)
= e ¥ 0,

etc., where D is a diffusion constant.

Let Wiener averages be denoted by < » For a symmetric Wiener

W

process x owing to its Gaussian nature it holds /20/ that

--EE <x2 >
e 1 ax >w = e 2 W ,
(13)
G 1 <(ax + bx')2 >
i(ax + bx'") 2 W
<e > = e
1)
From eq.(11) it follows that
2
<" > = 2D¢t, t>0 (14)
t
and, for y(t) = fdt' x(t'), (see Appendix A)
0
<y2(t) By = %-D e3 , t>0, (15)
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In Appendix A it is shown that for t > t' > 0

(16)
- -23-1) (e=e1)% [ 3t - 2(e-t") ]

The fact that this is not a pure function of t-t' is important

in the following.

From eqs.(8) and (14) it is straight-forward to derive an

equation for the diffusion coefficient D:

1 2
D -"Z-E< [Gx(t)j >W
(17)

) 5t Jae, |

= Y mm'| @ d , ,|* 5 Jdt dt
W, m,n m',n 2t 0 1 0 2
1 Tm,n(t1) ® ¢ Wm',n'(tZ)
e < g >
W
where

¥ (0 = m [y, + oy(e) ]+ (mx +m)t+o .

?

With the symmetries involved, and transforming to t= t, -ty

one obtains
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E By
: ' -1
= 1 i
D mén m'gn' mm'| §8 = et e édt1 (j)'dr

*exp i{(m+m')yo + [:(m+m')xo+(n+n'):|t —(m'x0+n')T L XS

1

+ 4 o }eoexp { S [moy(e) + m'oy(e,-0]% }. (18)

m',n

For large times the rapid t oscillations reduce the double sums

tom+m' =0, n+n' =0, (see below) and with equ.(16) one
obtains
(19)
t t1 2
21 : mD 2
D = Z |m¢m,n | = fdt1 IdT exp {;(mx0+n)1 == (3t1—21)}
m,n 0 0

An upper bound to D is obtained by taking the absolute values of

the terms in the sum, by replacing 2t by its maximum 2t,, and by

1

extending the T integration to infinity. The result is

t
ps I luf o 23T e L
m,n ? 2/D t o /e,

As a consequence, D does not tend to a constant value for large

times, but goes to zero instead for t —-> =:

0225 /3 § |a| |e (20)

12 L
m,n e

In Appendix B it is shown that the same result holds if the terms

m+m' 20, n+n' 2 0 are retained.
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We have thus reached the preliminary surprising result:
Provided that X |m||d>m n|2 < o , the diffusion of particles
m,n ’
(in the case of strong island overlap) cannot be understood as

a simple diffusive Wiener process with a time-independent

diffusion constant.

The opposite conclusion, reached by Molvig et al. /14/, is

based on the following error: On page 330 the correlation func-

tion <[§y(t1) - 6y(t1-T)] 2>W is mistakenly replaced by % D 1o,
As a consequence the t, integral is trivially done and cancels

the factor 1/t, and D = D

M is determined by the inconsistently

obtained relation

sz 3
. 2 o i(mxo + n)'l' - —B_M T
D, = 1 Im@m nl [dt e 5 (21)

m,n ? o

the structure of which is analogous to eq.(2).

In /14/ the authors nevertheless present computational evi-
dence that diffusion can be described with a finite diffusion
coefficient in agreement with eqs.(14), (15) and (21). In the
next section this discrepancy is analyzed and a final conclusion

is reached on the diffusive nature of the particle motion.




= Yhe

4. Resolution of discrepancy

In /14/ numerical solutions are presented for both the discretized

equations of motion (10) and the original equations (8). For the

+co
. : . 2 s ? :
discretized case our proviso, Z |m|[¢m n! finite, is violat-
m,n=- ?
ed since It const(n). For this case the derivation of
b

D has to be reconsidered. This is done next, and, supported by
numerical experiments very good agreement with a Wiener process

with finite D is obtained. Since particle motion in the physical-

ly realistic case 2 |m| |¢m n|2 < @ should not be totally
m,n i
different from the degenerate case ¢m - ¢m, it is even more gl
2 i

important to resolve the discrepancy with our previous result

D -> 0 for large times. This is done at the end of this section.

For ¢  =¢_ one obtains from eq.(19) with the help of eq.(9)

D= n) |mao |2
: m

m2D'r2 22
3 (3t1—21)]

1 =271 °

[:imx T —
+ 27 2 |m (] |2 E -
S m = 1>

The first term comes from 1 = 0. (A factor 0.5 results from proper-

ly treating the T integration at T = 0.) The 1 > 0 terms are

easily seen to converge to zero for t >> T = (sz)-1/3, so that
for later times D = Do’ where
+0o0
D=n[m2|<b|2. (23)
o — m
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In /14/ the erroneously derived D,, was further evaluated for

M
AQ-TK >> 1, where AQ ( =Ak,v,, ) is the effective width of Q =
mX | + n as function of m and n. In this case the complex exponen-
tial function in eq.(21) is rapidly oscillating and may be re-
placed by a §- function. With e el and the summation over n

]

treated as an integral

% (mx + n) (24)

\ 2
Do Tak Mgl
m,n
is found to agree with Do' For AQ+T, << 1 see below.

K

In order to test the Wiener hypothesis we solved the recur-
sions (10) numerically for N equally spaced initial values Yo»

N >> 1, with phases ¢m chosen at random. Apart from the moments
2 .
Ro(t) = <[6y(t)] “ >, So(t) = <exp iMéy(t) > , (25)

as in /14/, where < > is the numerically obtained ensemble

average, we also investigated the correlations

w
[l

R(e,e1) = <[ ay(e) - sy(eD] % >

(26)

8. moft,e]) < exp iM [ 6y(t) - Gy(tL)] >
for r = 1 and 2, where P t; =r + At. M is a typical mode
number m, and At = 21 is the interval between two - function

pulses. The results are shown in Figures 1 - 3.
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In Figs. 1 and 2 the numerically obtained values of Ro’ RI’
R2 are plotted as functions of t, for t - t' fixed, as series of
crosses., Each cross corresponds to one iteration. The solid curves
are the analytic formulae (15), (16) for the same correlation
functions in a Wiener process, with D given by eq.(23). The
agreement is quite good. ( It becomes even better if the arbi-
trary initial phase shift AT, mentioned in Sec. 2, is properly
chosen. With AT = 27 the crosses are distributed about the same
distance to the other side of the analytic curves). The essen-
tial result of the figures is that indeed <[:6y(t) - Sy(t')j 2>

is in fact not a function of t - t' alone, contrary to assumptions
in the literature /14/.

In Fig. 1 the time scale 1, for randomization of the particle

K

motions, T = MZD, is large compared with the interval At = 27

K
between two pulses: T = 5.3 At. In Fig. 2 it is the opposite:
T = 0.0029 At. Obviously, the agreement between theory and nu-

merical results does not depend much on TK/ At. The parameters

in Fig. 1 were chosen as follows: m_. = 200, m = 550, A =
min max
2 e | = 2-10“9 = const form . S ms=m s, ® = 0 otherwise,
m min max m
and 50 iterations. In Fig. 2 there arem . = 365, m = 385,
min max

A= 2-10_5, and 100 iterations. For both sets of parameters the
island overlap criterion /14/ is well satisfied. N = 6000 and

- 1 + 1.2/% in all figures.

In Fig. 3 the crosses are So and Sr = <exp iM(8y - 8y')>,




_.17_

r = 1 and 2, again for fixed T mE = t; , as functions of t,

while the solid curves correspond to

M2 3
<exp 1M &y >W = exp [-—3—-D t ]

(27)
2

G - M 2
<exp iM (8y - 8y') >q = exXp - ~3=D x (3t - 2Tr) ] :

In addition, the dashed lines for comparison show the functions
- Wt 3 . . .
expL_--—E— DT ] as used in /14/. Again, the correlations are

seen to be functions of both t and T = t - t'.

Figure 3 is a good test of the Gaussian nature of the particle
diffusion. Even if the second order moments <(§y - Sy')2 > are in
agreement with a Wiener process, the higher order cumulants /20/
could change eqs.(13) (with x = 8y) so that the exponents on the
right-hand sides would have, in addition, contributions from
<(8y)™ >, <(8y - 6y")™ > , n > 2. A Gaussian probability distri-
bution is the only one for which these higher moments disappear
from the exponents. The good agreement between the numerical re-
sults and the analytic Wiener curves in Fig. 3 therefore supports

the Gaussian nature of the diffusion process.

The parameters in Fig. 3 are the same as in Fig. 1. For
Tg << At no corresponding figure is shown because already after
the first iterations the numerical results are determined by

noise, which becomes dominant after a few T Noise is due to the

K
finite number of start positions. Rond~off errors, which on the

CRAY computer may be artificially enhanced, do not play a role
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in Figs. 1 and 3. In Fig. 2, however, round-off errors accumulate

some-what erratically up to about 4 Z.

With the foregoing results it is obvious that a Wiener type
diffusion process is a valid model for the degenerate case & - =
¢m . It remains to understand why the numerical results /14/ for
a mode spectrum with finite energy are also in agreement with the

diffusion coefficient (24) when theory predicts that they should

not.

il

From eq.(19) it is possible to obtain both an upper and a
lower bound, D, and D_ , for D, with D, more detailed than in re-
lation (20). The bounds follow from taking the maximum or the

mimimum of t in the correlation term 3t1 -21 in eq.(19). With

ci =1/3, cE =1, T;3= m2D+ there is, after a transformation of
variables
3/2 —lﬁ—lk T
t : /—'— 2
1 1 1 c, t1 =
z m l¢ 2, -—1; [at Byt Fete fdt e ~ c e (28)
t 0o /ET o]
rb -

where t = t/Tk and Q= mx_ + n. Let us define

t =1, (AR o1, )2, (29)

c K K

n -
Cosider first the case AQ-TK >> 1. For t >> tc one obtains

approximately




D =
e

1 s fdr e ' (30)
Vt, o

A
¢, m,n 1

0.5

which is proportional to t . This is the decline, as pre-

dicted in Sec. 3. For 1, <<t << t_, however, the complex expo-
K e P P
nential function in eq. (28) is rapidly oscillating and may be

replaced by a §-function in QTK/ci/E: , so that
_ _ \ 2 2
D =D =7 Jix a0 Iém,n' (S(mx0 +n) . (31)
m,n

Thus, up to times of order tc >> 1., the details of the corelation

K
function <[ &y(t) - 8y(t')] %536 ot matters. there iu. 5 Finige

time-independent diffusion constant (31), and it agrees with the

erroneously derived one, eq.(24).

The interpretation of t. is straight forward. For fixed m and
a finite interval An of n values the region Ax where resonances
are possible is given by Q(Ax) = 0, i.e. Ax = An/m = AQ/m.

According to eq.(14) the time t 3 for a particle to diffusively

A
cross this region is determined by (Ax)2 - (AQ/m)2 = 2DtAx' With

T o mZD it follows that t = t, . Hence, for t > t_the part-
K c Ax c

icles have left the resonance layer of overlapping islands, and
the assumed process of diffusion cannot take place any more. The
numerical results in /14/ ( AQeTy, >> 1 was satisfied ) were ob-
viously obtained for times that did not exceed t.-

For AQet, << 1 and t > T, the t—o'5 decline of eq.(30) is

K
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again recovered. Owing to the strong diffusion the particles
leave the resonant zone even before their motion has become
random. No steady state diffusion exists. In contrast, eq.(21)

yields a well defined but erroneous value D m[ I |m||¢ l2)3/4.
m m,n

m,n

We are thus led to the following final conclusions: Provided
the particles stay long enough in the region of resonant island
overlap the diffusion may be considered as a Wiener process, i.e.
a process with Gaussian probability distribution where present
events are independent of previous ones. Numerically obtained
correlation functions support this conclusion. The diffusion
coefficient itself is not a sensitive function of the details of

the correlation functions.
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Appendix A

Let x(t) be a symmetrical Wienmer process as described by eqs.(11),
(12). In order to obtain correlation functions for the integrated
Wiener process y(t) = f; dt' x(t') it is useful to determine

< il t)%le") > first. Let x = x(t), x' =x(t') and t > t' > 0. It
follows that

<xx'>w=<x'(x—x')+x >w=<x >W
2
4o -.x_r
. - f dx' x'2 e 4Dt = 2Dt
V41Dt -

where the first term did not contribute because both factors are

independent and odd. For general t and t' we have

< x(t)x(t") >y = 2 Deminimum (t,t') . (A.1)

From this we get

t t!
<y(t)y(t' s t) >, = Jdt, Jdt, < x(t1)X(t2) >y
o o
t! t
= 2D fdt2 fdt1 m1n(t1,t2) (A.2)
(o] (o]
£ t, t t'
p 2
= 2D fdt, I e, ©, * rat ot J =D fat, (-t + 2t,t)

(o] (o] tz 0
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For t' = t one obtains eq.(15) for <y2 >4 + Also, repeated

application of eq.(A.2) yields

<[ oy +m'ye s0) ]2 > =

= %-D [:(m+m')2t3 + m'(m+m')T(T2-3t2) + 3m'2T2t - 2m'2'r3 ]
(A.3)
=-% D [:(m#m')zt'3 + 3m(wm')e' %r + 3ule't? + mir 2
with T =t -t'. For m + m'" = 0 one obtains eqs.(16). The last

expression (A.3) is particularly useful for application in

Appendix B.

AEEendix_E

In order to give an upper bound on D, for general m,m' and n,n'
N

one needs a lower bound on K = 2DK/3 =

= <|:m6y(t1) + m'{s‘y(t2 < t1)]2>w. We minimize K with respect to

u=m+ m' at fixed m. According to eq.(A.3) K is of the form

K(n) au2 + bu + ¢

with a = tg , b 3mt§1 , C = 3m2t 12 + m2T3 , T = t, = ti:2=0,

2

The minimum occurs at U, = -0.5b/a and its value is
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2 2 2
K(uo) = - — + ¢ = (3t

+ 1) .

Hence, a lower bound is given by

~
v

K(uo)

v
&~
=]
-
(= d

The same consideration that led from eq.(19) to eq.(20) applies

again, so that D -=> 0 for t -> = results for general m,n and m',n'.
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Figure captions

Fig. 1:

Fig. 2:

Fig. 3:

Time evolution of moment Ro and correlation functions
R1, R, , eqs.(25), (26). Crosses: numerical solution,
solid curves: analytic Wiener process. Kolmogorov time

Tg >> iteration period.

Same as Fig. 1 but Ty << iteration period.

Time evolution of moment S0 and correlation functions

S1, 52 » eqs.(25), (26). Dashed lines: Sf, S2 according

to Ref. /14/. Parameters as in Fig. 1.
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