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Abstract:

A new variational formulation of Maxwell-Vlasov and related
theories is given in terms of a common Lagrangian density for both
the "Vlasov particles" and the Maxwell fields. This formulation is
used to derive in a consistent way, on the one hand,correct charge
and current densities and, on the other, corresponding energy and
energy flux densities. All of these densities generally show in
addition to particle like contributions electric polarization and
magnetization terms. By some limiting procedure collisionless gui-
ding center theories with polarization drifts included are also
treated. In this way local energy conservation laws are formulated

for such theories, which has not been possible up to now.




INTRODUCTION

Systems allowing a Lagrangian formulation of the equations descri-
bing them often show such properties as conservation laws which are not
present in other systems. Moreover, the derivation of, say, such conser-
vation laws is often facilitated quite a bit when a variational formula-
tion is used instead of the explicit form of the underlying equationms.

For the usual Vlasov—Maxwell theory F.E. Low once gave a variational for-
mulation []:1. His Lagrangian for the Vlasov part was based on the par-
ticle equations of motion in the usual Lagrange picture, i.e. with the po-

sition x of a particle being a dependent variable x (t; x,, 11), where

X,, v, represent initial values of x and é. On the other ;and, the Max-
wellian part is described in a Eulerian picture with x being an indepen-
dent variable. These two different pictures cause some difficulties in
applying Low's Lagrangian formulation. In this paper the Vlasov part will
also be based on a Eulerian picture of the particle motion which is pro-
vided by the Hamilton-Jacobi theory. This will be done for rather general
Vlasov-like theories, which also allows collisionless kinetic guiding
center theories to be treated. The latter will be based on a Lagrangian
for guiding center motions in a Lagrange picture given by H.K. Wimmel [?j
from which Littlejohn's guiding center mechanics, with the polarization
drift included [3{1, can be rederived. In order to allow the use of a Ha-
milton-Jacobi theory for this case, a limiting procedure has to be applied,

starting with a somewhat modified Lagrangian allowing a Hamiltonian.

The new formulation will be used in order to obtain correct expressions
for charge and current densities as well as for corresponding energy and
momentum densities and their flux densities for the stated general class
of Vlasov-like theories. All these expressions will eventually be given in
terms of usual quantities such as velocities, magnetic moments etc. They
generally also show in addition to particle like contributions electric
polarization and magnetization terms. The latter two are, of course, iden-—
tical to zero for the usual particle Vlasov theory. They are, however,
essential for kinetic guiding center theories, and one important result of

this paper is that for these theories correct charge and current densities
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are derived, leading in a consistent way to local energy conservation
laws, a result which had not yet been obtained in the case with pola-
rization drifts /2/ . It will also be shown that these charge and current
densities fulfill certain criteria resulting from an exact Vlasov theory,
such as a vanishing current density in time-independent but inhomogeneous
magnetic fields for "isotropic'" guiding center distribution functions.
Drift motions are thus exactly compensated by magnetization effects in

this case.

The paper is organized as follows: In Sec. I the Hamilton-Jacobi
theory is reviewed in a way suited to its later application. In Sec. II
Lagrangians for Vlasov like theories are introduced. These are specialized
in Sec. III to ones that allow coupling to the electromagnetic field. First
expressions for charge and current densities are obtained there. In Sec.

IV energy and energy flux densities are derived. All the densities are ex-
pressed by conventional variables in Sec. V. Section VI presents an appli-
cation to the usual Vlasov-Maxwell theory yielding the already known ex-
pressions, and in Sec. VII kinetic guiding center Maxwell theories are
treated for which self-consistent expressions for the various densities

are given for the first time.

L. Hamilton-Jacobi theory

In order to allow the inclusion of systems more general than the
usual Vlasov theory, especially kinetic guiding center theories, we con-

sider a more general space than the normal x - space with position vectors

lz (Y.I, ey yn) = (11 ] 12) . (1)
= (g5 ¥y yg) = X (2)
is the position vector in normal x - space. y, is assumed to be of
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dimension n,. Corresponding to y we need variables

a = (af, ey an) (3)
such that we can define a function
S =58 (y, o, t) (4)

for each particle species to be a complete solution of the Hamilton-
Jacobi equation

35 35 B
a_t+H(1"'eTf’t)'0’ (5)

where H (y, P, t) is the Hamiltonian for the '

'particles" as a function
of the canonical variables y and P.

The following relations hold:

35 _ O _ _ 4
"'&——P(X,E,t) ,BE_-V(X’E,t)_dtl’
3y
(6)
2 3 39S
Gr*t¥oay )% "0
where V

is the velocity of "particles" in y space and 3S/3a appears

to be a constant of the motion. A general constant of the motion is
3 3S
a function of a and e

Furthermore, one can form the Van Vleck de-




terminant

828

w = | ———|| =w (y, &, t), (7)

aai Byk

which can be shown to satisfy the continuity equation /4/

aw 9 _
T 3y (wV ) = 0. (8)
IL. Lagrangians for Vlasov-like equations

If used as a Lagrangian, the following functional of S(y,a,t) and an

additional function ¢(y,o,t) has the property of yielding Vlasov-like

equations:

L, (£) =~ [ da% d" (%—% + H (y, %SL’ ©) ¢ (y, o . (9

Hamilton's principle

t,

§ [ Ly () dt = 0 with 85 =8¢ =0 at ¢

Y

1ty (10)

together with the assumption that certain partial integrations over
y can be performed with vanishing contributions from boundaries gives

by variation of ¢

38
ot

E
ay

+ H:(y, ,t) = 0 (5)



and by variation of S

2P 0 ) = 0 . 1
+1(_¢ (11)

If we define

¥ (y, o, t) % ; (12)
with w given by eq.(7), then from eq. (8)

— 4+ Ve« — =0. (13)

Thus ? is a constant of the motion:

. 23S
¥ (y, o, t) = f(g,a—g)
and therefore
b =w £( o, =) : (14)

~

Since f is a constant of the motion, it satisfies the "Vlasov"
equation when a is replaced by P via P = 35/3y , and it will in fact
turn out to be-}he distribution function for the particle species
considered or at least to be closely related to it in the case of

guiding center theories. In the case of H being an N particle Hamil-
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A

tonian f is a solution of Liouville's equation. This case will, however,

not be considered here.

III. Coupling to the electromagnetic field

In the following v denotes the particle species with charge e

and mass m . For the coupling to the electromagnetic field we have to

restrict the "particle'" Hamiltonians to correspond to gauge invariant

theories, i.e.

~ e\)
H\, = e, 0 (L) & H\) g~ ) A (x,t) , 22, E, B) , (15)
where
X=y, » B* 24 = canonical conjugate to X
(16)
22 = canonical conjugate to 3y -

Furthermore, we have

dH 9H oaH,,
LT T R - =V 17
T 3P Y25 " 3 “7)

In the usual Vlasov theory Hv does not depend on 22, E, B. E and B
follow from ¢ and A:

E=-— = - 9%, B = curl A. (18)
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The Lagrange density for the vacuum fields is

_ 1 -

L(t)=LV+LM=
= -3 [d% [ad" @ o @ bl e S B 250, B) )
Bt ai C_! Blz’—,_ ¢\J
+fd3x-1—(E2—B2). (20)
8m — —

Using this function in Hamilton's principle, we obtain by variation of

. Sy qH =
%, B tel+H ) I (21)
8 B« e s B i ) (22)
v’ v v v =’ 3o 2
1 : n n -
o et = 2
o i div E % f dad Yo W, f\) ev

(23)

+ div E\Z, f d"a d“zy2 v, ;:'v g—g’“]

[

p = charge density ,




] n n c oH
a7l 2 o
jo 5l fudin ds2yyom £y 3E (24)
n .n -~ oH
_ 2 94y
¢ curl % f daod Y, ¥, fv 3B
= # -eurrent-density s

Equations (23) and (24) are the inhomogeneous Maxwellian equations
with expressions for the charge and current densities on the r.h.s.
The current density - and correspondingly the charge density - shows
three different contributions: "particle', electric polarization and
magnetization contributions (the latter without a counterpart in the
charge density). The "particle" contribution obeys by itself a conser-

vation law which is a consequence of the gauge invariance of the theory

expressed by the combinations -%%” + ev¢ and -%3” - %?.é. The electric

polarization and magnetization contributions also separately obey con-
servation laws. There exists therefore some ambiguity in defining such
densities. The fact that unique expressions are obtained for the charge

and current densities is a consequence of deriving them from the variation-
al principle. It is only these expressions which can be consistent with a
local conservation law for the energy which will be derived in the next
section. A further simplification of eqs. (23) and (24) is obtained in

Sec. V.

/
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Iv. Energy and energy flux densities

In order to derive expressions for these quantities, we first

introduce
z = (¢, y) = (zo, Zs s Zn)’ E_ = {E.x) § (25)
_ n
B (v,g),é..:%fda 3
"2 =4 ( £)
lpB z ¢\) Y O ’
P Cy = 8 G o (26)
B = v a3 ovy ’
o (z) = (&, A) , po=0,1,2,3
H _a =
We then define with
‘g asv ~ 38 & asv
=0 ( ot er * (5;_ T e Ay, ’ B2l
B - =2
i od
- 1 _9yB - u -
= 8 ('\bB ’ BE » 1 1,2; d)].l’ aia’ H 091:2,3)
9d
‘g - & @ -8 =f (5, u=10,1,2,3) (27)
M m M °Za
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a canonical tensor

3 20 b’ 2 n, oyt a{
o, =g —E B e na | a 2y2 B B (28)
H i 1

z
kl =0 3z 290 B8 i=1 9z i
E. ko 3y8
oz 9z
al 1

With the summation convention applied we have

1

B - 2 J 2 n, o, W, axs
= ¥ ( ) + 2 s [ d %y, — (— %)
Bzal u=0 Bzal oz Kk i=1 2 i)z)L sz 3¢Bl
a a §—F

Bz 0z

al A

] Y . (29)
Bzak

Because of the integration over h2) in the second term of the r.h.s. the
summation over A could be extended to go from 0 to n instead of just from

0 to 3.

The Euler-Lagrange equations are

o o5 s

3z T I R ey Y !
o B B
2z

I

0 , allB, i=1,2

(30)

u=0,1,2,3
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Furthermore, we have

2
o4 oy ag+ % a,g)
Bzak u=0 Bzak 3¢u azak 3 v - B@u
a9z 1
a (31)
2 n awla! 52y 1 ag
2 B B B 8
+.I.L I d Yy (az it 9z ez )
8 i=1 k 9y k °Zn oyt
B B
]
3z

A

Using eqs. (30) and (31) in eq. (29), we obtain in a manner similar

to that usual in field theory

% % s 1
9z ot 0X.
al &

= 0 (32)

This - alsmost - constitutes the local conservation law for energy and

momentum; almost, because ekl is not symmetric.

In the following only energy conservation which is related to

601, will be considered. The '"Vlasov'" contributions to 900 are
i

oy 9 n
v 2 Ep: B B 2
o= I [aFy - - £ [d°%
00~ img SELE PV Sl 2 &g

L QT
ot
n 9S 9
_ n ™ v B _ n ™ z{
[ dad s 5% 35, £ [ d%d Yy, ;
ot

n 2 =
= é f dad y2 wv f“ Hv s (33)
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In a similar way, one obtains

\Y _ n n2 ~
(OOi)_EIdaJ‘d YZvavH\)y-—\)' (34)

The full expressions for BOO’ GOi are rather complicated:

- n ny o 2 " _ 2 _EE'\J
000 % j o I d bp) Wv fv (ev s Hv E oE )
v odiv [z [ d% [ d"2y, w £ 2]
v 2 v v 3E
(35)
—p¢+8lﬂ(§2+§2)
+div [0 GFE-35 [ d%d2y, w £ Ay
b — v 2 v v 3E ’
5 n_ .np i # ]
(OOi) - é I d'a d Yo Y fu (ev L Hv) XX
20 noogn2 g Sy _ 1
+Bt EEIdeYZW\Jf\Ja__ lmEj
_ n 2 i 9Hy
cffdad Yo % & 3B B (36)
= aﬁ\)
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L
These expressions have the property that all non-gauge-invariant

terms cancel in the continuity equation

P00, 201 _,
ot axi

and can therefore be disregarded. What is left can then indeed be inter-

preted as energy density € and energy flux demsity n:

= 2 . o - s _.a_\.)_ .l. 2 2

€ =L I da d 4y, w f (H\J E °E ) + e (E” + BY) , (37)
- n_ 02 £ (1 Hy £

n 5 f dad Yy ¥, fv (Hv v,*¢c E x B ) + e E x B, (38)

"particle"

Like charge and current densities, these expressions show
electric polarization and magnetization contributions. In the following
we get a further simplification of these expressions as well as of the

expressions for the charge and current densities.

V. Integration over the additional coordinates y,

From eq. (15) we have

Sy, _ ) (39)

312

and therefore
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P, = const, = a, - (40)

We can thus write

a = (El, fz) = (i’ EZ) 41
The function Sv separates into
Sv B Sv1 * sv2 2 (42)
with
= . 95yt _
sz fg .zg . ayz 0. (43)
From this it follows that
BZSV
= S'k (44)
da. dy .
1 2k
and therefore
328U1
wo s |l ; (45)
v Ja ]
1i %k

in which i,k only assume the values 1,2,3. A consequence of eq. (45)
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is that

ow
v

sz

= i, (46)

The integrands of p, j, €, n therefore only depend on v, via
£, (o, SSvfag) through BS\,/BE2 = ¥, * vector independent of y,.

The result of the;i_2 integrations is therefore

np - 3Syy _ = 95,1
[ d vy £, (@ 359 = £, (o, 31) 5 (47)

which is a constant of motion in x-space. We can now replace the o,

integration by a p integration by using p = 3S5,,/8x. This gives

2

9 Sv1
d3p = || ——— || d3o:i =y d3a1 (48)
Ba1k Bxi
and
f (a g-S'“'l) A (e e g2 ) (49)
v = 3a R R A

which is now a solution of the "Vlasov" equation in x, p - space:
My v, £]= 0. (50)
] v v

where the brackets are Poisson brackets.
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With all this we can now replace on the expressions for p, j , € 1N
3 ny e 3
[ @a, d"2y, w, £ ... by [dp g ooiiis, (51)

from which the interpretation of fu as distribution function also be-
comes evident. This is the final general result of this paper. In the
next sections these results are applied to the usual Vlasov case and

to the case of kinetic guiding center theories.

VI. The usual Vlasov-Maxwell theory

Here we have y = X, a=2a,,

[ 250> 1 wsivis (52)
o Hy - 9H: -
M- oo (53)

Because of eq. (53) only particle contributions remain, and we find

the well-known expressions

5 a5 £, (% ps O) e s (54)

©
I
[ae}

z f d3p fv (6 Pa L) e, v, {2z, p; €) ,

|—
I
™

. :
VIdprHV+Tf

™
L}
™

|=
[
™
Sy
(s}
W
L]
L1}
jas]
<
+
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VII. Kinetic guiding center - Maxwell theory

According to Wimmel [}iI Littlejohn's guiding center motions

including polarization drifts [}] can be obtained from a Lagrangian

Ly = ¢ % (G ©) + Zub+vp) - e

m 2 2

_UB_z(vll +£), (56)

2
Dbl o gl (B @) S;
B = magnetic moment,
£3
if in 6 [ L_dt =0 x (t), v,(t) are varied independently while

L
u is kept 1 constant. u therefore only appears as a parameter. This

Lagrangian, however, does not allow to construct a Hamiltonian as a
function of canonical variables. In order to obtain such a Hamiltonian,
we have to modify the Lagrangian and also introduce an additional

coordinate. The following choice is a possible one:

l = (i, C) N X == (X, = Vn) . (57)
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From this we find canonical momenta

|
[

(P1s PZ) = (_Bs Pﬁ) s

o
I

. e
ex + — A+m (v, b + v

¥ ; (58)

pc='m (g-é—v.,) s

Since Lg does not depend on ¢ , the corresponding Hamiltonian does

not either and therefore P, = const. To be in agreement with Little-—

john and Wimmel, this constant has to be taken as zero:

=]
]

5 m@®-x-v =0, (59)

m
. 1 e e
k=g @ T - mabb- ool
- o
€ fﬁi ’ (60)
1 e
Vn:mb‘(g_‘;A)-
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Using this in

. oL oL
H = x° _'g + vy —B - L
g - 9xX vy, g
1 '2 . 2 2
= 7 EE + mv,, (E . ._}S.- V") + -%l— (V" +_V.E)
+ uB+ed,
one obtains the Hamiltonian
L e pi_o1m _ 2. pT?
Ho=5 -2 ~5pe L&-CA 21 (61)
m m m
- < VE (p A)+-2"(1+?)V +uB+ed.

This function of the canonical variables is to be used in order to get

BHg/BE.and aHg/BE. After insertion of p again from eq. (58) this re-

sults in
Mg _ me
® -2 =) B
- B
EH—g=-T(;(—V)—mC(;<—V)XE (62)
3B B =~ Vg’ T BZ = g =
+ iﬁi vp * (é - VE) b+ub,
B — —




- 20 -

X, =b x (x xb) . (63)

These relations are correct for all e. € only occurs in the original
L ]
expressions with the momenta as variables instead of x. We now replace

the integration over p by an integration over x. Because of eq. (58)

we have

dp=¢ m d3x (64)

and we therefore define

i

F(x, _1'5, t) €2m £ (%, Ps £) = (65)

The integration over x 1is simplified when going to the limit € » O.

For this purpose we first write down the exact equations of motion:

e X= eE+ {% x % B , (66)

=-—= =2 _-9¢ , B= curl/A ,




. s

;{=é+%(vn§+1g) 3 (67)

& =9 +-£—B + %%— 252 .

va=b X
With

§=§*--‘§G"3 (68)
eq. (66) can be decomposed into

€ é xb=e Ef x b + {? (_]3_L Va - X, B) (69)

e£°g=eE:-m\}..+-§—(£c_lX_I;_l)'_l_{, (70)
where

fs,=gx(§xg),ﬁ.,=g-§. (71)




i Dk

Equation (69) implies a "gyromotion" with a frequency of order

1/e, thus
€ é_x b= E-é%-(é_x b) + terms vanishing for ¢ >0, (72)
e‘i *b= ¢ :ﬁ; (é + b) + terms vanishing for € > 0, (73)
= 0 for e = 0

Equation (69) therefore yields the following result, being exact for

¢ -+ 0: The motion consists of a drift

- (va B, + ¢ E x b) (74)

on which is superimposed a gyromotion with frequency

~

eB,
Uoe T e e
and a gyroradius
elx, - vple
r = -~ 1L . (76)

Be eB,,

The motion possesses an adiabatic invariant
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5 € \}:{.l. _lr_]:)l2
i, = - (77)
B"

which in the limit € - 0 becomes an exact constant of the motion.

Since for €+ 0 y > o rg + 0 , the integration over the
E E
phase of the "gyromotion" yields 2m for the remainder, and we can re-
place
3. BII
d xby 2w duE ? dV" )
(78)

x by Vo -

We now write
. 3
F Gy =5 &) = fg (x, v, W, £) 8 (0, (79)

where § (uE) is to be understood in such a way that integration over
Mo only gives a contribution for B < 0 for € -~ 0. Furthermore, a
dependence on u is added, which is possible because u only had the
character of a parameter. We can also sum our expressions over U,
i.e. integrate, which is analogous to summing over different particle

species. We therefore arrive at the replacement rule

pe BfT
j d3x F (x, %, t) ... *+ 2% j = duy dv,, fg (Zs Wais” By B) Wil (80)

With eqs. (80), (65), (64), (63), (62), (51) the general expressions
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for charge and current densities (23), (24) and for enmergy and

energy flux densities (37), (38) yield

2m -
p = 5 E{: I Bv" duy dv,, fgv e, (81)
2m - N
+ div X ris f B u du dvy fgv B (EDv = X_) x b,
=32 (B, dudve £ e (v, +vyDb)
J vmu V" " oy D n D
-2 2 B, duady, f D v —v) xb (82)
ot v m f " B —Dv _E 2
27 2 m,¢
- ¢ curl E ;i: I Bv" du dv,, fgv [ﬁ b - *7?(22y . XER x E
va m\Jv"
i E-(E-hv)b- B (E\J_VE):[’
2 -
€ = % ;éf j Bv" dy dv,, £
(83)
m 2 2 2
ey iz # Vpv (EDv E-E) ) +u QI
+l(E2+B2),
8 — -
27 -
4= 5 m I Bv" du dvy, fgv

Vg 2 2
E("z_ (Vn + EE )+ UB) (VD\) + vy _}_3)

+ (pB + 2mv Ve * (vgy . VE)) A7)
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2
mvc
- Ex (v, - vp) X B) (84)
B =
m v,C
Z E x (v, = vyl
B " Pl
[
+HEXE’

where Bv" =b - Bv 5 Ev being defined in eq. (67), 0

— ——

is given by

eqs. (74), (68), (67), fgv is a solution of the drift kinetic equation

of of . BE
?rfi— L —gii- + v, _§€%~,= 0 (85)

with G" following from eqs. (70), (73), (68), (67):
. * Y
m v,=eE,+— (v. xB) -+ b . (86)
v v c v

It has thus been established that the drift kinetic equation (85) together
with Maxwell's equations with charge and current densities (81), (82)

form a self-consistent system obeying a local energy conservation law

e + div n = 0, with € and N given by eqs. (83), (84). Moreover, the

current density (82) has the property of vanishing for fgv = fgv (%? v"2 + uB),
which corresponds to a stationary solution of (85) for A = ¢ = 0 but

A (x) arbitrary. One thus gets a compensation of drift and magnetization

currents as with solutions fv (v) of the exact Vlasov equation.

|
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Summary

By using a Eulerian description of point mechanics in the form of
a Hamilton - Jacobi equation a new variational formulation of Maxwell-
Vlasov and related theories has been given within a Eulerian picture
for both the electromagnetic and the Vlasov parts. This formulation
allowed us to derive correct charge and current densities as well as
corresponding energy and energy flux densities consisting of particle
like, electric polarization and magnetization contributions. By some
limiting procedure collisionless guiding center theories with polari-
zation drifts included were also treated. In this way it was possible
for the first time to formulate consistently local energy conservation
laws for such theories. Also, Liouville's equation could be formulated

variationally likewise.
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